1 2	NIH Funding of COVID-19 Research in 2020: a Cross Sectional Study
3	Logesvar Balaguru, BS, BA ¹ , Chen Dun, MHS ¹ , Andrea Meyer ² , Sanuri Hennayake, MS ¹ ,
4	Christi M. Walsh, MSN, CRNP ¹ , Christopher Kung ¹ , Brittany Cary ³ , Frank Migliarese, Jr. ¹ ,
5	M.D, Tinglong Dai, PhD ⁴ , Ge Bai, PhD, CPA ^{4,5} , Kathleen Sutcliffe, MN, PhD ^{4,5,6,7} , Martin A.
6	Makary MD, MPH. ^{1,4}
7	
8 9	1. Department of Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD
10	2. Pennsylvania State College of Medicine, Hershey, PA
11	3. MedStar Washington Hospital Center, Washington, DC
12	4. Carey Business School, Johns Hopkins University, Baltimore, MD
13	5. Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
14	6. Department of Anesthesia and Critical Care Medicine, School of Medicine, Johns
15	Hopkins University, Baltimore, MD
16	7. School of Nursing, Johns Hopkins University, Baltimore, MD
17	Corresponding author:
10	Chen Dun, MHS 600 N. Wolfe St. Blolook 665, Boltimore, MD 21287 USA
19 20	Phone: $410-502-6845$
21	E-mail: cdun1@ihmi.edu
22	

2	c
2	J

Abstract

- 24 **Objective:** This study aims to characterize and evaluate the NIH's grant allocation pattern of
- 25 COVID-19 research.
- 26 **Design:** Cross sectional study

27 Setting: COVID-19 NIH RePORTER Dataset was used to identify COVID-19 relevant grants.

28 Participants: 1,108 grants allocated to COVID-19 research.

29 Main Outcomes and Measures: The primary outcome was to determine the number of grants

30 and funding amount the NIH allocated for COVID-19 by research type and clinical/scientific

31 area. The secondary outcome was to calculate the time from the funding opportunity

- 32 announcement to the award notice date.
- **33 Results:** The NIH awarded a total of 56,169 grants in 2020, of which 2.0% (n=1,108) were

34 allocated for COVID-19 research. The NIH had a \$42 billion budget that year, of which 5.3%

35 (\$2.2 billion) was allocated to COVID-19 research. The most common clinical/scientific areas

36 were social determinants of health (n=278, 8.5% of COVID-19 funding), immunology (n=211,

37 25.8%), and pharmaceutical interventions research (n=208, 47.6%). There were 104 grants

38 studying COVID-19 non-pharmaceutical interventions, of which 2 grants studied the efficacy of

39 face masks and 6 studied the efficacy of social distancing. Of the 83 COVID-19 funded grants on

40 transmission, 5 were awarded to study airborne transmission of COVID-19, and 2 grants on

41 transmission of COVID-19 in schools. The average time from the funding opportunity

42 announcement to the award notice date was 151 days (SD: ± 57.9).

43 **Conclusion:** In the first year of the pandemic, the NIH diverted a small fraction of its budget to

44 COVID-19 research. Future health emergencies will require research funding to pivot in a timely

- 45 fashion and funding levels to be proportional to the anticipated burden of disease in the
- 46 population.

48

Introduction

49	The National Institutes of Health (NIH) is the world's largest funder of biomedical
50	research, employing over 20,000 people with a \$41.7 billion budget in 2020 appropriated by
51	Congress. ^{1,2} NIH-sponsored research aims to tackle the toughest problems in healthcare while
52	financially supporting research at every stage. Prior research suggested that the NIH research
53	funding has been disproportionately aligned to disease burden in the population. ^{3–6} Throughout
54	the 1990s, NIH funding patterns were under major scrutiny from Congress and the scientific
55	community due to concerns that funding allocations by the NIH failed to adequately reflect the
56	burden of disease on society. ⁵ In 1998, the (IOM) released a groundbreaking report guiding the
57	NIH to improve and develop disease-specific funding processes. ²⁰ A landmark study published
58	in the New England Journal of Medicine as well as a follow-up study by Gillum et. al in 2011
59	revealed that the NIH disease-specific funding levels were not correlated with several measures
60	of disease burden. ^{4,5}
61	The COVID-19 pandemic tested the NIH's ability to fund critical research to answer
62	research questions that significantly affect public health and require urgent scientific clarity. We
63	analyzed the relative weight and composition of the NIH research funding of COVID-19
64	research in 2020 to evaluate the responsiveness of the agency to the pandemic.
65	
66	Methods
67	Study Design and Settings
68	We conducted a cross sectional study using the NIH Research Portfolio Online Reporting

69 Tools Expenditures and Results (RePORTER) datasets of all COVID-19 grants, including grants

70	created by a special COVID-19 appropriations by congress. ^{7,8} We also reviewed the NIH Fiscal
71	Year 2020 budget to identify spending on NIH COVID-19 research. ⁹
72	We reviewed all grants funded for COVID-19 research between January 1, 2020, and
73	December 31, 2020. For each grant, we collected the date of funding opportunity announcement,
74	award notice date, and the amount awarded as listed in the NIH RePORTER dataset. The date of
75	the Funding Opportunity Announcement was obtained from the NIH COVID-19 grant
76	opportunities. ¹⁰
77	We categorized each grant into one of six research types: basic science, clinical science,
78	translational science, public health, infrastructure & education, and other (Appendix 1). Each
79	NIH-funded grant was also subcategorized by clinical/scientific area (Appendix 2). We adapted
80	definitions for research areas and subcategories of primary research subjects from NIH Research,
81	Condition, and Disease Categorization (RCDC) thesaurus and supplemented them using
82	definitions from the Association of American Medical Colleges (AAMC), National Cancer
83	Institute (NCI), Economic Social Research Council, the Department of Health and Human
84	Services (DHHS), and Methods in Educational Research. ^{11–17}
85	Each grant was independently reviewed and categorized by at least two independent
86	reviewers (LB, SH, CD, CK, AM, BC). For grants that were categorized differently, a study
87	group discussed the aims of the grant and made a final decision.
88	
89	Data Source
90	RePORTER is an electronic tool developed by the NIH that works in conjunction with
91	the NIH's RePORT website. This tool allows users to generate lists of funded NIH studies based

92 on specific search criteria, such as funding source and research area.⁹ To obtain a list of all the

93	grants that funded COVID-19 research in 2020, we used the NIH's pre-generated COVID-19
94	RePORTER dataset. ⁷ The information describing 2020 NIH funding by research was found on
95	the Research, Condition, and Disease Categories (RCDC) RePORTER database. ¹⁸
96	
97	Outcomes
98	The primary outcome for this analysis was to calculate the number of grants and funding
99	the NIH allocated toward COVID-19 in 2020 to the 6 research types and each clinical/scientific
100	area. The secondary outcome was to calculate the time from funding opportunity announcement
101	to award.
102	
103	Statistical Analysis
104	We calculated the funding amount for research areas by compiling each grant's total
105	funding amount allocated by the NIH. The funding amount for the clinical/scientific area was
106	calculated based on each grant's categorization. We plotted the weekly number of COVID-19
107	grants awarded during 2020. Data cleaning and statistical analyses were conducted using Stata
108	(Version 14.0).
109	
110	Results
111	In 2020, COVID-19 research accounted for 5.3% (\$2.2 billion) of the annual NIH budget
112	of \$41.7 billion. ¹⁹ Of the \$2.2 billion that the NIH spent on COVID-19 research, 86.5% was
113	allocated from congressional special appropriations while the remaining 13.5% of COVID-19
114	funding originated from the regular NIH annual budget that year. We found that several disease
115	and condition-specific research areas were funded at levels much greater than COVID-19 (Figure

1). Rare Diseases research received 2.5-fold more funding than coronavirus research and aging
 research received 2.2-fold more research funding than coronavirus research.¹⁸

There were 1,419 NIH COVID-19 grants from the year 2020 in the NIH RePORTER dataset. Of these, we identified 1,108 COVID-19 grants with relevance to COVID-19 research, 24 were duplicates appearing in different places and 287 did not have COVID-19 relevance. Of the 1,108 COVID-19 grants identified, 266 grants were able to be matched to their funding opportunity announcement. The average COVID-19 grant was issued funding 151 days (SD: ± 57.9) after its funding opportunity announcement, with a median of 137 days (IQR: 109-196) and range from 43-295 days.

In the first three months of the global pandemic, a total of 6 grants were awarded for
COVID-19 research. In the first half of 2020, a total of 240 grants were awarded funding (Figure
Accordingly, in the first three months of 2020, the NIH spent a total of 0.1% of its annual
budget on COVID-19 research. In the first half of 2020, the NIH spent 1.2% of its annual budget
on COVID-19 research. The months with the most COVID-19 research grants awarded were
August and October.

Regarding the type of the COVID-19 research funded, basic science research comprised the greatest number of grants funded by the NIH with a total of 313 grants, compromising 6.9% of total COVID-19 research funding. There were 231 grants awarded for public health research and 231 grants awarded for clinical research, accounting for 5.7% and 26.8% of NIH COVID-19 funding, respectively. The NIH allocated the largest dollar amount to infrastructure and education research with 55.5% of all COVID-19 funds going to these purposes with 216 grants, accounting for 3.0% of the NIH's annual budget (Table 1).

138	The most common clinical/scientific areas of research were social determinants of health
139	(n=278 grants, 8.5% of COVID-19 funding), immunology (n=211 grants, 25.8% of COVID-19
140	funding), and pharmaceutical interventions (n=208 grants, 47.6% of COVID-19 funding) (Table
141	2). Of the 208 grants dedicated to pharmaceutical intervention research, 85 grants focused on
142	novel therapeutics development (6.4% of COVID-19 funding), 79 grants focused on existing
143	therapeutics (28.2% of COVID-19 funding), and 69 grants on vaccine development (32.2% of
144	COVID-19 funding). Of the 211 immunology grants, 41 grants studied immunity gained after
145	infection of COVID-19, and 15 grants studied immune response from vaccination. Of 64
146	neurological grants, 13 grants focused on changes of tastes or smell.
147	There were 132 grants awarded for COVID-19 testing, compromising 8.5% of all
148	COVID-19 funding. There were 83 grants on COVID-19 transmission, representing 3.5% of
149	COVID-19 funding. Of these, 5 studied airborne transmission and 2 grants studied COVID-19
150	transmission in schools.
151	A total of 104 grants focused on non-pharmaceutical interventions, with 6 grants on the
152	efficacy of social distancing and 2 grants on the efficacy of face masks. Additionally, 92 grants
153	studied the effects of COVID-19 infection in pediatric populations 10 of which examined
154	Inflammatory Syndrome in Children (MIS-C). Geriatric health and COVID-19 was awarded 68
155	grants and maternal health and COVID-19 was awarded 41 grants. There were no grants
156	dedicated to studying the efficacy of face masks in children.
157	

158

Discussion

159	Despite the escalating public health threat and poorly-understood mechanism of
160	transmission of the novel coronavirus in 2020, the NIH only spent 5.3% of their total budget that
161	year on COVID-19 research, extending prior literature that that NIH funding priorities
162	misaligned with disease burden in the population. ^{5,20} The NIH's slow start in funding COVID-19
163	research was also noted in a February 2021 study in <i>Health Affairs</i> by Sampat and Shadlen. ⁶
164	They described the current low investment in COVID-19 research as "small compared with the
165	potential value of these interventions for ameliorating or preventing the disease and securing a
166	return to normalcy". A stronger research effort could have helped reduce transmission of the
167	infection before a vaccine became available.
168	Infrastructure and education accounted for 55.9% of NIH COVID-19 funding, yet many
169	of the major clinical questions surrounding COVID-19 transmission were unanswered at that
170	time, such as transmission among children. Significant restrictions have been placed on the
171	nation's 52 million school-aged children, including school closures, 6-foot distancing
172	requirements, and outdoor masking while distancing; however, only a few grants were dedicated
173	to study these questions in this unique population, creating challenges for evidence-based
174	policymaking.
175	The lack of rapid clinical research funding to understand COVID-19 transmission may
176	have contributed to the politicization of the virus. Some of the most basic questions that were
177	being asked of medical professionals in early 2020, such as how it spreads, when infected

178 individuals are most contagious, and whether masks protect individuals from spreading or

179 getting the virus, went unanswered. In the absence of evidence-based answers to the common

180 questions the public was asking, political opinions filled that vacuum.

181 The social and political climate of the COVID-19 pandemic has been plagued with

182 misinformation hindering important mitigation efforts. The NIH, as the largest research funding 183 arm of the federal government, has a responsibility to fund research that can address 184 misinformation with evidence. A resilient health care system in times of crisis should be able to 185 pivot funding toward specific grants answering critical gaps in knowledge. NIH may consider 186 developing procedures to rapidly pivot funding and guidelines for reviewing targeted proposals 187 relevant to addressing a public health emergency. 188 Our study has several limitations. The type of research and the clinical/scientific areas 189 studied were based on definitions that may not be collectively exhaustive and mutually 190 exclusive. In addition, we only reviewed abstracts and did not review the entire funded 191 proposals. There were other barriers to clinical research that were not captured here, including

that protects research subjects with standard ethical principles for research could be developedfor the next health emergency.

slow institutional review boards and long journal peer-review times. A rapid research protocol

195

192

196

Conclusion

197 NIH funding patterns for COVID-19 grants did not align with COVID-19 disease burden
198 and were allocated slowly. The NIH should develop mechanisms to rapidly pivot funding to
199 address scientific unknowns associated with a sudden, large-scale health emergency. Supporting
200 sound clinical research aimed at developing evidence-based recommendations is important for
201 public policy and promotes public trust in the medical profession during a pandemic.
202

204 Strengths and limitations of this study

205	•	Our study characterized and evaluated the NIH's grant allocation pattern of COVID-19
206		research in the year of 2020.

- We categorized 1,108 grants by research type and clinical/scientific area and identified
- 208 NIH funding gaps in research dedicated to efficacy of masks and social distancing,

airborne transmission, transmission in schools, and COVID-19 in children.

- We found that in the first year of the pandemic, the NIH diverted a small fraction of its
- budget to COVID-19 research. Future health emergencies will require research funding to
- 212 pivot in a timely fashion and funding levels to be proportional to the burden of disease in
- the population.
- The type of research and the clinical/scientific areas studied were based on definitions
 that may not be collectively exhaustive and mutually exclusive.
- We only reviewed abstracts and did not review the entire funded proposals. There were other barriers to clinical research that were not captured here, including slow institutional
- 218 review boards and long journal peer-review times.
- 219 Patient and Public Involvement
- 220 No patient involved in this study.
- 221 Contributors: LB, CD, CMW, and MAM designed the study. LB, CD, AM, SH, CMW, CK,
- BC, and FM collected the data. LB and CD analysed the data. LB prepared the first draft of the
- 223 manuscript. LB, CD, AM, SH, CMW, and MAM made critical revisions to the manuscript. All
- authors reviewed and approved the final draft.
- 225 Competing interests: None declared
- **Funding:** No Funding was reported for this study.

- 227 **Data sharing statement**: Data are publicly available.
- 228 Ethics statement: Ethics approval was not sought as the study presents results of an analysis of
- secondary data and does not involve human participants.

230 Acknowledgment

- 231 We thank Farah Hashim, Jonathan Teinor, and Karashini Ramamoorthi for their contribution in
- 232 preparing this manuscript.

234 Reference:

- 235 1. Baye R. NIH plans to move 3,000 employees to Bethesda campus. Washington Examiner. 236 Published October 17, 2012. Accessed October 13, 2021. 237 https://www.washingtonexaminer.com/nih-plans-to-move-3-000-employees-to-bethesda-238 campus 239 Frequently Asked Questions. National Institutes of Health (NIH). Published October 31, 2. 240 2014. Accessed October 13, 2021. https://www.nih.gov/about-nih/frequently-asked-241 questions 242 3. Institute of Medicine. Scientific Opportunities and Public Needs: Improving Priority Setting 243 and Public Input at the National Institutes of Health. National Academies Press; 1998. 244 PMID: 20845560 Gross CP, Anderson GF, Powe NR. The relation between funding by the National Institutes 245 4. 246 of Health and the burden of disease. N Engl J Med. 1999;340(24):1881-1887. 247 doi:10.1056/NEJM199906173402406 248 Gillum LA, Gouveia C, Dorsey ER, et al. NIH Disease Funding Levels and Burden of 5. 249 Disease. PLoS One. 2011;6(2):e16837. doi:10.1371/journal.pone.0016837
- Sampat BN, Shadlen KC. The COVID-19 Innovation System. *Health Affairs*.
 2021;40(3):400-409. doi:10.1377/hlthaff.2020.02097
- 7. National Institutes of Health. RePORT. Accessed October 13, 2021.
 https://reporter.nih.gov/search/14E9CE024F8FC5D27598B8961CAA4A01A2FFCEB861B
 F/projects?shared=true&legacy=1
- 8. National Institutes of Health. NIH-Wide Strategic Plan for COVID-19 Research. Published
 2020. https://www.nih.gov/sites/default/files/research-training/initiatives/covid-19 strategic-plan/coronavirus-strategic-plan-20200713.pdf
- 258 9. Coronavirus Disease 2019 (COVID-19): Information for NIH Applicants and Recipients of
 259 NIH Funding | grants.nih.gov. Accessed October 13, 2021.
 260 https://grants.nih.gov/policy/natural-disasters/corona-virus.htm
- 10. National Institutes of Health. Funding Opportunities Specific to COVID-19. NIH Grants &
 Funding. Accessed October 13, 2021. https://grants.nih.gov/grants/guide/COVID Related.cfm
- Basic Science. AAMC. Accessed October 13, 2021. https://www.aamc.org/what-we do/mission-areas/medical-research/basic-science
- 12. Definition of clinical research NCI Dictionary of Cancer Terms National Cancer
 Institute. Published February 2, 2011. Accessed October 13, 2021.
 https://www.cancer.gov/publications/dictionaries/cancer-terms/def/clinical-research

269 270	13.	RFA-RM-07-007: Institutional Clinical and Translational Science Award (U54). Accessed October 13, 2021. https://grants.nih.gov/grants/guide/rfa-files/rfa-rm-07-007.html
271 272 273	14.	Research infrastructure - Economic and Social Research Council. Accessed October 13, 2021. https://esrc.ukri.org/research/future-of-social-science-insights-opportunities-and-expectations/research-infrastructure/
274 275 276 277 278	15.	Lodico M, Spaulding D, Voegtle K. Methods in Educational Research: From Theory to Practice, 2nd Edition Wiley. Wiley.com. Accessed October 13, 2021. https://www.wiley.com/en- us/Methods+in+Educational+Research%3A+From+Theory+to+Practice%2C+2nd+Edition- p-9780470588697
279 280 281	16.	Lapinski S. Research Guides: Participating in Health Research Studies: Types of Health Research. Accessed October 13, 2021. https://guides.library.harvard.edu/c.php?g=389023&p=2639516
282 283	17.	Social Determinants of Health - Healthy People 2030 health.gov. Accessed October 13, 2021. https://health.gov/healthypeople/objectives-and-data/social-determinants-health
284 285 286	18.	National Institutes of Health. Estimates of Funding for Various Research, Condition, and Disease Categories (RCDC). Published June 25, 2021. https://report.nih.gov/funding/categorical-spending#/
287 288 289	19.	FY 2020 By the Numbers: Extramural Investments in Research – NIH Extramural Nexus. Accessed October 13, 2021. https://nexus.od.nih.gov/all/2021/04/21/fy-2020-by-the-numbers-extramural-investments-in-research/
290 291	20.	Institute of Medicine. For the Public's Health: The Role of Measurement in Action and Accountability. The National Academies Press; 2011. ttps://doi.org/10.17226/13005

Table 1. Till Grants for COVID-17 Research by Research Type (2020)							
	Number of		Percent of All	Percent of Total			
	COVID-19	Dollars Spent,	COVID-19	NIH Annual			
	Grants (%)	USD	Funding (%)	Budget (%)			
Basic Science	313 (28.25%)	151,252,564	6.85	0.36			
Translational	81 (7.31%)	85,436,684	3.87	0.20			
Clinical	231 (20.85%)	591,533,574	26.77	1.42			
Infrastructure and Education	216 (19.49%)	1,235,403,053	55.92	2.96			
Public Health	231 (20.85%)	124,813,879	5.65	0.30			
Other	36 (3.25%)	20,946,874	0.95	0.05			
Total	1,108	2,209,386,628	100.00	5.30			

Table 1: NIH Grants for COVID-19 Research by Research Type (2020)

-	~		· · · ·	
			Percent of	Percent of
	Number of	Dollars Spent,	COVID-19	NIH Annual
	Grants	USD	funding, %	Funding, %
Social Determinants of Health	278	188,229,016	8.52	0.45
Immunology	211	570,461,693	25.82	1.37
Pharmaceutical Interventions	208	1,051,790,057	47.61	2.52
Impacts on Other Disease	133	40,865,572	1.85	0.10
Diagnosis and Testing	132	186,846,477	8.46	0.45
Risk Factor Analysis	111	55,501,547	2.51	0.13
Non-Pharmaceutical				
Interventions	104	115,971,759	5.25	0.28
Pediatric Health	92	63,635,942	2.88	0.15
Transmission	83	77,675,659	3.52	0.19
Other Research	83	515,823,132	23.35	1.24
Virology	79	33,601,202	1.52	0.08
Geriatric Health	68	467,815,039	21.17	1.12
Neurology	64	21,705,014	0.98	0.05
Pulmonology	61	37,068,124	1.68	0.09
Maternal Health	41	19,633,841	0.89	0.05
Gastroenterology	31	12,081,004	0.55	0.03
Cardiology	18	32,997,172	1.49	0.08
Nephrology	14	8,386,775	0.38	0.02

297 Table 2. NIII Grands for COVID-17 by Chincal/Scientific Area (20	297	le 2: NIH Grants for COVID-19 by Clinical/Scientific	Area	(2020))*
--	-----	--	------	--------	----

298 * Each grant can have multiple areas.

299

301 Figure 1: NIH Funding by Research Area (2020)

303 Figure 2. Number of COVID-19 Grants Approved by NIH in 2020

Figure 1: NIH Funding by Research Area (2020)

Figure 2. Number of COVID-19 Grants Approved by NIH in 2020