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Individuals with autism spectrum disorder (ASD) or related neurodevelopmental disorders (NDDs) often carry disruptive mutations in genes that are 
depleted of functional variation in the broader population. We build upon this observation and exome sequencing from 154,842 individuals to explore 
the allelic diversity of rare protein-coding variation contributing risk for ASD and related NDDs. Using an integrative statistical model, we jointly analyzed 
rare protein-truncating variants (PTVs), damaging missense variants, and copy number variants (CNVs) derived from exome sequencing of 63,237 
individuals from ASD cohorts. We discovered 71 genes associated with ASD at a false discovery rate (FDR) ≤ 0.001, a threshold approximately 
equivalent to exome-wide significance, and 183 genes at FDR ≤ 0.05. Associations were predominantly driven by de novo PTVs, damaging missense 
variants, and CNVs: 57.4%, 21.2%, and 8.32% of evidence, respectively. Though fewer in number, CNVs conferred greater relative risk than PTVs, 
and repeat-mediated de novo CNVs exhibited strong maternal bias in parent-of-origin (e.g., 92.3% of 16p11.2 CNVs), whereas all other CNVs showed 
a paternal bias. To explore how genes associated with ASD and NDD overlap or differ, we analyzed our ASD cohort alongside a developmental delay 
(DD) cohort from the deciphering developmental disorders study (DDD; n=91,605 samples). We first reanalyzed the DDD dataset using the same 
models as the ASD cohorts, then performed joint analyses of both cohorts and identified 373 genes contributing to NDD risk at FDR ≤ 0.001 and 662 
NDD risk genes at FDR ≤ 0.05. Of these NDD risk genes, 54 genes (125 genes at FDR ≤ 0.05) were unique to the joint analyses and not significant in 
either cohort alone. Our results confirm overlap of most ASD and DD risk genes, although many differ significantly in frequency of mutation. Analyses 
of single-cell transcriptome datasets showed that genes associated predominantly with DD were strongly enriched for earlier neurodevelopmental cell 
types, whereas genes displaying stronger evidence for association in ASD cohorts were more enriched for maturing neurons. The ASD risk genes were 
also enriched for genes associated with schizophrenia from a separate rare coding variant analysis of 121,570 individuals, emphasizing that these 
neuropsychiatric disorders share common pathways to risk.

ABSTRACT

Background
Autism spectrum disorder (ASD) affects over 1.7% of children in the United 
States1. Epidemiological studies have repeatedly demonstrated that ASD is 
highly heritable2, with the majority of risk stemming from common genetic 
variants, each of small effect, acting additively across the genome3,4. 
However, in at least 10% of cases, rare and de novo genetic variants confer 
substantial risk5–9. Exome sequencing provides an efficient method to 
detect these rare and de novo variants, which has led to the association of 
numerous genes with ASD through repeated observations of such variants 
across independent cases10.

Beyond ASD, exome sequencing has enabled the discovery of genes 
associated with overlapping and distinct genetic architectures across a 
spectrum of developmental and neuropsychiatric disorders6,10–14. These 
exome studies have largely focused on analyses of single nucleotide 
variants (SNVs) and insertion/deletion variants (indels), in particular de 
novo protein-truncating variants (PTVs) and missense variants, with several 
studies noting modest enrichment of rare inherited variants as well10,15. The 
relative enrichment of de novo PTVs in cases varies by ascertainment 
strategy: burden is greatest in individuals with developmental delay (DD), 
intellectual disability, or multi-system congenital anomalies; moderate in 
individuals with ASD or isolated developmental anomalies; and lowest in 
schizophrenia and other neuropsychiatric disorders10,11,13,14,16,17. Indeed, 
hundreds of genes have now been discovered across this spectrum of 
developmental disorders, with associations driven by phenotype severity 
and cohort size18–20.

Furthermore, it has been well established that ASD and DD cases harbor an 
excess of very large copy number variants (CNVs) compared to unaffected 
siblings21–27. While these CNVs of large genomic segments represent 
an approximately 3.5-fold increase in ASD risk28, their incorporation into 
genomic studies has long represented a significant technical challenge. 
Early studies using microarrays were limited to CNVs of hundreds of 
kilobases to megabases12,21,25,29. Among the most significant findings from 
these studies were recurrent genomic disorder (GD) loci associated with 
syndromic phenotypes that arose due to mispairing of long homologous 
segments, a mechanism known as non-allelic homologous recombination 
(NAHR)12,25,28,30. Due to their high mutation rate, these reciprocal GD 
regions collectively represent a significant source of genetic risk for 
neurodevelopmental disorders (NDDs)12,25,28,30. 

What remains less clear is the relative burden of CNVs at the resolution 
of individual genes or exons in ASD etiology, as studies to date have 
been limited by the relatively small samples assessed by whole-genome 
sequencing (WGS) and the high false positive rates for existing exome-
based CNV discovery methods31. Prior studies by the Exome Aggregation 
Consortium (ExAC32), 1000 Genomes Project33–35, and Genome Aggregation 
Database (gnomAD36) have established size distributions and mutation 
rates for structural variants (SVs) across human populations, while studies 
leveraging long-read WGS have provided further insights into the broader 
swath of human SVs, over 99% of which are not readily detectable by 
microarray37,38. Here, we demonstrate that significant improvements 
in computational models to normalize exome sequencing read depth, 
combined with appropriate quality control filters, enable discovery of even 
small rare coding CNVs with validation rates comparable to indels. These 
methods allow us to build upon prior studies22 to now jointly analyze rare 
coding SNVs, indels, and CNVs at the resolution of individual genes and 
exons from large-scale ASD datasets. 
 
Rare variant discovery can also be enhanced through the integration of 
functional data, particularly in cohorts such as ASD that display strong 
selective pressure and reduced fecundity10. One such measure is the 
recently developed ‘loss-of-function observed/expected upper bound 
fraction’ (LOEUF) score39, which is a continuous measure of selective 
pressure against PTVs in each gene. Similarly, the ‘missense badness, 
PolyPhen-2, and constraint’ (MPC) score40 is one of several measures 
of the estimated deleteriousness of missense variation. In this study, we 
used a Bayesian statistical framework, the Transmission and De Novo 
Association (TADA) model41, to incorporate these functional annotations and 
jointly analyze coding SNVs, indels, and CNVs across the largest exome-
sequenced ASD and DD cohorts to date, comprising 63,237 individuals 
from ASD cohorts (20,627 ASD-affected individuals) and 91,605 samples 
from DD cohorts (31,058 DD-affected individuals). Our analyses identify 
hundreds of genes associated with these disorders and reveal significant 
overlap, as well as substantial heterogeneity, in the genes associated with 
each phenotype and in the cell types in which they are enriched during 
early neuronal development. Overall, these analyses provide new insights 
into the contributions of rare coding variation in NDDs, including broad 
overlap and nuanced distinctions of genetic risk and its influence on specific 
pathways and developmental trajectories. 

# These authors contributed equally; + Senior author: joseph.buxbaum@mssm.edu; mjdaly@atgu.mgh.harvard.edu; devlinbj@upmc.edu; 
roeder@andrew.cmu.edu; stephan.sanders@ucsf.edu; mtalkowski@mgh.harvard.edu

​​Rare coding variation illuminates the allelic architecture, risk genes, 
cellular expression patterns, and phenotypic context of autism
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cases was greatest in genes with the strongest evidence of selective 
constraint, represented by low LOEUF scores39 (Supplementary Tables 
4.2-4.7). Both de novo and inherited PTVs were enriched in the top three 
deciles of LOEUF (binomial test; 5,446 total genes; Fig. 1b). We grouped 
missense variants into three bins based on MPC score, which we termed 
MisB (MPC ≥ 2) and MisA (2 > MPC ≥ 1), with MPC < 1 for all remaining 
missense variants. MisB variants and, to a lesser degree, MisA variants 
were significantly enriched in ASD individuals (Fig. 1c). Our aggregated 
cohort demonstrated the greatest risk from de novo variation, with modest 
but significant ASD risk observed in rare case/control (for which de novo 
status cannot be determined) and inherited PTVs in the top three deciles of 
constrained genes, as well as in MisB and MisA variants. 

Detection and analysis of rare and de novo CNVs in ASD
Previous studies using chromosomal microarrays have established a clear 
etiological role for large, rare and de novo CNVs in ASD cases compared 
to their unaffected siblings and the general population21,22,25–27,44–46. Despite 
their considerable impact on ASD risk, CNV discovery at the resolution of 
individual exons from exome sequencing has represented a significant 
technical challenge. To overcome these challenges, we applied and 
benchmarked a pipeline built around GATK-gCNV, a novel Bayesian 

RESULTS
Patterns of coding variants in a large ASD exome dataset
We aggregated whole exome sequencing (WES) data across 33 ASD 
research cohorts, totalling 63,237 individuals: 15,036 affected offspring, 
5,492 unaffected offspring, 28,522 parents, as well as 5,591 affected and 
8,597 unaffected individuals from case-control studies (one sample exists in 
our dataset as both mother and affected offspring, Fig. 1a, Supplementary 
Tables 1, 2, 3, 4.1). Data from 35% of these individuals had not previously 
been analyzed or published. All accessible DNA sequence reads were 
aligned to the GRCh38 human reference genome and coding SNVs, 
indels, and CNVs were identified using GATK haplotype caller42 while a 
new method, GATK-gCNV43, was used for CNV delineation. Variant counts 
were consistent across cohorts, with an average of 1.64 (1.66/affected, 
1.57/unaffected) de novo SNVs, 0.18 (0.18/affected, 0.16/unaffected) de 
novo indels, and 0.035 (0.042/affected, 0.014/unaffected) de novo CNVs 
per offspring. 

Consistent with prior studies, we observed more PTVs and damaging 
missense variants in individuals with ASD compared to unaffected 
individuals (Fig. 1b-c). Enrichment of de novo and inherited PTVs in ASD 

a Cohort: 63,238 samples (20,627 cases)
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Fig. 1 | Overview of SNV/indel and CNV rates in ASD by mode of inheritance.
a, The ASD cohort for SNV/indel analysis consisted of 49,049 family-based samples (15,036 cases) and 14,188 case/control samples (5,591 cases). b, The 
relative difference in PTV frequency between cases and unaffected controls (top) and average per-sample variant count in unaffected controls (bottom) 
across inheritance classes (color) and LOEUF deciles (5,446 genes in top 3 deciles of LOEUF). Using a binomial test, we found significant enrichment 
in cases for PTVs among the most constrained genes (lower LOEUF deciles), which weakened as negative selection against PTVs is relaxed (higher 
LOEUF deciles). c, Equivalent information and statistical significance for missense and synonymous variants. Synonymous variants were not enriched in 
cases or controls, as evaluated via binomial tests, in keeping with well-calibrated variant calling. d, The GATK-gCNV exome CNV detection pipeline when 
compared against WGS on overlapping samples achieved a sensitivity of 82% and positive predictive value of 89% for rare CNVs (<1% site frequency) that 
spanned 3 or more callable exons (red line). e, The relative difference in variant frequency between cases and controls for deletions. Using binomial tests, 
we found that deletions overlapping genes in the lowest LOEUF decile were observed at an elevated rate in affected individuals. f, Equivalent analysis for 
duplications, demonstrating a similar pattern of enrichment compared to deletions but with a weaker effect. 
Abbreviations: PTV: protein truncating variant; CNV: copy number variant; WGS: whole genome sequencing; WES: whole exome sequencing; misB: 
missense variants with MPC score >=2; misA: missense variants with MPC score >=1 and <2; Del: Deletion CNV; Dup: Duplication CNV.
Statistical tests: b,c,e,f: binomial test.
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read depth-based CNV discovery tool for short-read 
sequencing data42. Our pipeline includes a PCA-based 
method for inferring large systematic differences, such 
as different exome capture kits (Supplementary Fig. 
1), and we performed extensive benchmarking of this 
method from 7,165 samples from ASD quartet families for 
which matching gold-standard CNV calls from microarray 
and WGS were available47,48. We measured sensitivity 
and positive predictive value (PPV) as a function of the 
number of captured exons from canonical protein-coding 
transcripts. Our application of GATK-gCNV achieved a 
sensitivity of 82% and a PPV of 89% for rare CNVs (site 
frequency < 1%) that spanned 3 or more such exons (Fig. 
1d, Supplementary Fig. 2). When we considered de novo 
CNVs detected by WGS, GATK-gCNV achieved 82% 
sensitivity and 97.5% PPV for de novo CNV discovery at 
three-exon or greater resolution (Supplementary Fig. 3). 

We applied GATK-gCNV to the 57,294 samples from the 
ASD cohort for which raw sequencing data were available 
(Supplementary Methods, Supplementary Table 3), 
including 13,694 affected and 5,007 unaffected offspring 
with data from both parents and 608 cases and 11,312 
controls from non-family based cohorts. We focused our 
analysis on high quality CNVs spanning at least three 
captured protein-coding exons (Supplementary Methods), 
resulting in 16,889 rare (frequency < 1%) and 650 de novo 
autosomal CNVs, corresponding to an average of 0.90 
(0.91/affected, 0.89/unaffected) rare and 0.035 (0.042/
affected, 0.014/unaffected) de novo CNVs per offspring. 

Consistent with de novo coding CNVs mediating 
substantial risk for ASD, we observed that 3.93% of ASD 
cases and 1.40% of unaffected siblings harbored at least 
one de novo coding CNV, respectively (odds ratio [OR]: 
2.88, p=9.6 x 10-21, Fisher’s exact). Splitting the CNVs by 
dosage (deletions versus duplications) and assigning each 
event to a LOEUF decile based on the most constrained 
gene within its boundaries, we observed that de novo 
deletions with at least one PTV intolerant gene showed 
the greatest degree of enrichment in ASD cases across 
all variant classes evaluated (OR: 9.10, p=2.81x10-20, 
binomial test), with a relative difference approximately 
three-fold higher than that observed for de novo PTVs in 
the same constraint decile (p=2.9x10-4, simulation test). 
Enrichment of deletions was also observed in case/
control but not in rare inherited analyses. A similar but less 
significant pattern was observed for duplications across 
constraint deciles and modes of inheritance (Fig. 1e-f). 
Additionally, duplications with breakpoints residing within 
a gene have been suggested to harbor risk differently 
than duplications of an entire gene, likely through a 
loss of function mechanism28,36. Leveraging our de 
novo duplication data, we found that partially duplicated 
genes in cases harbored more de novo PTV evidence 
compared to partially duplicated genes in controls (1.3 
fold, p=1.7x10-3, binomial test).

To characterize the impact of exon and gene-level 
resolution in CNV discovery, we first considered 75 
large genomic segments (Supplementary Table 4.8) 
associated with NDDs from curated literature28,49–54. Of 
the 650 de novo CNVs discovered from WES here, 223 
(34.3%) matched one of these loci with at least 50% 
reciprocal overlap, including 109 de novo GD deletions 
in cases compared to 6 in controls (OR: 6.7, p=3.9x10-9, 
Fisher’s exact) and 100 de novo GD duplications in cases compared to 8 
in controls (OR: 4.6, p=5.4x10-7, Fisher’s exact, Fig. 2b). Considering rare 
inherited CNVs, we observed a non-significant trend towards enrichment 
of GD CNVs in cases (OR:1.3, p=0.07, Fisher’s exact). Excluding the GD 
loci, the remaining 427 de novo CNVs were also enriched in cases but with 
more modest effect sizes (de novo non-GD deletion: OR = 2.8, p=1.5x10-8, 
Fisher’s exact; de novo non-GD duplications: OR = 1.8, p=5.1x10-3, Fisher’s 
exact). A greater degree of enrichment was observed for non-GD deletions 
that overlapped a constrained gene (OR: 5.10, p=9.7x10-11, Fisher’s exact, 
Fig. 2c) than for those that did not (OR: 1.32, p=0.32, Fisher’s exact, Fig. 

2c) or for de novo PTVs in constrained genes (OR: 2.74, p=8.5x10-34, 
Fisher’s exact, Fig. 2c). Effect sizes for de novo duplications were 
consistently smaller, although similar patterns were observed in relation to 
GD loci and constrained genes (Fig. 2c). Finally, when we considered de 
novo, non-GD CNVs that altered one of 71 genes associated with ASD risk 
(FDR ≤ 0.001, see below), we observed 46 variants in cases (29 deletions, 
17 duplications) compared to none in siblings (p=8.5x10-7, Fisher’s exact). 
Considering the list of 373 genes implicated in both ASD and DD risk (see 
below) this increased to 130 de novo CNVs in cases and one in siblings 
(OR: 48.0, p=1.13x10-16, Fisher’s exact).

b

a

d e

c

Reference

Variant
alleles

Example of
CNV distribution

at a risk loci
in probands

Example risk loci in ASD

or

Non-NAHR, overlapping

22qter (SHANK3) DEL
16p13.3 (CREBBP) DEL

or

NAHR-mediated, recurrent

16p11.2 DEL & DUP
22q11.2 DEL & DUP

or

0.5

1

2

4

8

16 SNV
DEL
DUP

O
dd

s 
ra

tio
 o

f d
e 

no
vo

 v
ar

ia
nt

s 
in

AS
D

 p
ro

ba
nd

s 
vs

. u
na

ffe
ct

ed
 s

ib
lin

gs

DEL

DUP

DEL

DUP

DEL

DUP

Seg. Dup.Seg. Dup.

CHD2 DEL
ARID1B DEL

Copy Number Variants (CNVs): Deletions (DEL) and Duplications (DUP)

Non-NAHR, isolated

Genomic Disorder (GD) CNVs Non-GD CNVs

DEL

DUP

De novo CNVs detected: DEL DUP| DEL DUP| DEL DUP| 
ASD probands (n=13,694) 222 17129 0  80 | 100 | | 

29 32Unaffected sibs. (n=5,007) 1 05 | 8 | | 

Sy
no

ny
m

ou
s

M
is

se
ns

e

PT
Vs

Al
l C

N
Vs

N
on

-G
D

 C
N

Vs

G
D

 C
N

Vs

MaternalPhenotypeCNV Criteria Paternal

All de novo 

De novo
Non-NAHR GDs

De novo
NAHR GDs

De novo
16p11.2 GD

Unaffected

ASD

ASD

ASD

ASD

0% 20% 40% 60% 80%100%
Proportion with maternal origin

All de novo 

0.5

1.0

1.5

2.0

2.5 SNV
CNV

O
dd

s 
ra

tio
 o

f d
e 

no
vo

 v
ar

ia
nt

s 
in

fe
m

al
e 

vs
. m

al
e 

AS
D

 p
ro

ba
nd

s

Sy
no

ny
m

ou
s

M
is

se
ns

e

PT
Vs

Al
l C

N
Vs

N
on

-G
D

 C
N

Vs

G
D

 C
N

Vs

Unaffected siblings with a de novo variant 

2

4

8

15q11.2-13, 7q11.23, 1q21.1-21.2

All GD DEL Non-GD
constrained
gene DEL

All DEL Non-GD DEL
All GD DUP

Non-GD
constrained
gene DUP

All DUP

Non-GD
DUP

PTVs in
constrained genes

MisB All PTVs
MisA

Synonymous All missenseO
dd

s 
ra

tio
 o

f d
e 

no
vo

 v
ar

ia
nt

s 
in

AS
D

 p
ro

ba
nd

s 
vs

. u
na

ffe
ct

ed
 s

ib
lin

gs

≥16

1

0.5

≤0.01% 0.1% 1% 10% 100%

SNV
DEL
DUP

22qter (SHANK3), 16p11.2, NRXN1, 1q21.1

Fig. 2 | Contribution of CNVs to ASD by mechanism and genomic location
a, CNVs involve deletions (DEL) or duplications (DUP) of genomic segments, and include 
a subset of sites known as genomic disorder (GD) loci that reoccur in human disorders. 
GDs that are mediated on both ends by non-allelic homologous recombination (NAHR) 
have recurrent breakpoints in the population, whereas non-NAHR GDs are located at sites 
susceptible to rearrangements. CNVs outside of known GD loci can still contribute to ASD risk 
as more unique events. b, Using Fisher’s exact tests, we find that de novo CNVs are more 
frequent in affected than unaffected offspring, and show a higher elevation than that observed 
in de novo PTVs (p=1.3x10-5, logistic regression). c, High ORs are observed for GD CNVs, a 
subset of which have no events observed in controls in this cohort (e.g., 16p11.2 deletions, 
15q11.2-q13 duplications). Excluding GD CNVs, having a CNV that overlaps a constrained 
gene (LOEUF < 0.4) confers greater risk than having CNVs that overlap only unconstrained 
genes (p=3.3x10-4, logistic regression). d, Using Fisher’s exact tests, we find that de novo 
risk-mediating variants are observed at a higher frequency in affected females than affected 
males. e, Parent-of-origin analysis of de novo CNVs using binomial tests shows maternal bias 
for NAHR-mediated CNVs at GD regions, which is especially pronounced for 16p11.2.
Abbreviations: CNV: copy number variant; DEL: deletion CNV; DUP: duplication CNV; NAHR: 
non-allelic homologous recombination; PTV: protein truncating variant; GD: genomic disorder.
Statistical tests: b,c,d: Fisher’s exact test, logistic regression; e: binomial test.
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misB, misA, deletion, duplication), and evolutionary constraint. We sought 
to utilise these insights and the size of our cohort (63,237 samples) to refine 
gene discovery in ASD by extending the TADA analytic framework6,10,22,41 
to include: (1) rare and de novo CNVs, (2) variants present in unaffected 
offspring, and (3) a continuous measure of evolutionary constraint from 
gnomAD (LOEUF39, Supplementary Methods, Supplementary Fig. 4). A 
Bayes Factor (BF) was calculated to represent evidence of association for 
each autosomal protein-coding gene across variant types and modes of 
inheritance, taking into account null mutation rates and prior relative risks, 
when appropriate (Fig. 3). 

Applying this model to the aggregated ASD data (TADA-ASD) we identify 
71 genes associated with ASD at a FDR ≤ 0.001 and 183 genes associated 
at FDR ≤ 0.05 (Supplementary Table 4.9). Notably, the FDR ≤ 0.001 
threshold is approximately equivalent to Bonferroni significance when 
back-calculating a p-value and correcting for 18,128 autosomal genes (p < 
2.8x10-6), making it comparable to other recent studies of schizophrenia13 
and DD11. We focus on these 71 genes here, and illustrate in Fig. 3 that 
93% of these genes have contributions from multiple variant classes (Fig. 
3b). They also represent a meaningful increase in ASD discovery - a prior 
study from Satterstrom et al. included a subset of 11,986 of the cases 
aggregated here, producing 32 ASD risk genes at this same FDR ≤ 0.001 
threshold using the TADA parameters applied in that study, which increases 
to 51 genes when incorporating the updated model parameters and the 
CNVs discovered here (Fig. 3c). The BFs within TADA allow us to assess 
genomic architecture through the relative contributions across variant types 

Consistent with a female protective effect in ASD, which proposes 
that a higher burden of risk factors is required for an ASD diagnosis in 
females27,55, the burden of de novo CNVs overall was higher in female 
cases than male cases (5.94% vs. 3.47%, OR:1.76, p=3.4x10-8, Fisher’s 
exact). This effect was more pronounced for CNVs than PTVs (p=2.6x10-2, 
logistic regression) or missense variants (p=2.0x10-5, logistic regression, 
Fig. 2d). While de novo SNVs and indels frequently arise on the paternal 
allele9,44,56, a maternal allele bias has been observed from de novo CNVs 
in ASD57. Using parental SNP data, we estimated the allelic parent-of-
origin for 330 de novo CNVs (Supplementary Methods) and observed 
no overall bias (Fig. 2e, 130 maternal vs. 144 paternal, p=0.43, binomial 
test). However, restricting analyses to de novo CNVs at NAHR-mediated 
GD loci, we recapitulated prior findings with 70% arising on the maternal 
allele (70 maternal vs. 30 paternal, p = 7.9x10-5, binomial test). Including 
20 additional samples from the Simons Searchlight project58, we find that 
94.3% of 16p11.2 CNVs occur on the maternal allele (Fig. 2e, 33 maternal 
vs. 2 paternal, p=3.7x10-8, binomial test). In contrast, CNVs at non-NAHR-
mediated GD loci showed a 65.5% paternal bias (Fig. 2e, 60 maternal vs. 
114 paternal, p=5.2x10-5, binomial test), consistent with a mechanistic bias 
in CNV formation and previous findings of a paternal origin across all non-
recurrent/non-pathogenic CNVs48. 

Integrated discovery of ASD-associated genes across 
variant types and inheritance classes
Our analyses identified enrichment of rare protein-coding variants in ASD 
cases with effect sizes varying by mode of inheritance, variant class (PTV, 
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Fig. 3 | Integrating variant types and inheritance classes significantly boosts association power and reveals mutational biases
a, Our implementation of the TADA model includes de novo, case/control, and rare inherited modules for each variant type: PTV, MisB, MisA, deletion, 
and duplication. We leverage information from ASD probands as well as unaffected siblings in evaluating the effect of de novo variants. b, The evidence 
of ASD association contributed by each variant type for each of the 71 ASD genes with FDR ≤ 0.001. Some genes are predominantly associated through 
missense variants and duplications (e.g., PTEN, SLC6A1), suggesting mechanisms such as gain-of-function in contrast to haploinsufficient loss-of-
function for genes with large contributions from PTVs and deletions. c, Applying TADA to our aggregated ASD dataset yields 71 genes at FDR ≤ 0.001, 
compared to 32 and 19 genes at the same threshold in previous studies on a subset of the samples (Satterstrom et al. 2020 and Sanders et al. 2015, 
respectively). Our expanded TADA model makes more efficient use of the available evidence of association by integrating more information into our 
statistical modeling. d, Across 71 ASD genes, the majority of evidence for ASD association is derived from PTVs and MisB variants and, e, de novo 
variants.  
Abbreviations: BF: Bayes factor; PTV: protein truncating variant; misB: missense variants with MPC score >=2; misA: missense variants with MPC score 
>=1 and <2; Del: deletion CNV; Dup: duplication CNV; Inh: inherited; CC: case/control; DN: de novo. Statistical tests: b Extended TADA model.
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and modes of inheritance (Fig. 3d-e, Fig. 4a-b). 
In keeping with haploinsufficiency as the primary 
pathogenic mechanism, PTVs and deletions 
account for over 90% of the evidence in 20 of 
the 71 ASD-associated genes (28.2%). However, 
for 10 genes (14.1%), over 90% of the evidence 
comes from missense variants and duplications 
(e.g., DEAF1, SLC6A1; Fig. 4a). Included within 
these 10 genes is PLXNA1, for which the evidence 
comes primarily from inherited missense variation 
localized within the Plexin domain of the encoded 
protein (Fig. 4b-c).

We next sought to estimate the magnitude of the 
ASD risk imparted by the genes discovered here 
and described in Fig. 3. Within the 71 genes, 
de novo PTVs or damaging missense variants 
were detected in 4.0% of cases and 0.5% of 
controls, giving a combined OR of 8.19. Using 
cross validation (Supplementary methods), we 
refined this estimate by variant type and mode 
of inheritance with OR estimates ranging from 
16.0 for de novo PTVs to 1.02 for inherited MisA 
(Supplementary Table 4.10). We also applied 
this cross validation approach to estimate the 
yield of future gene discovery efforts, predicting 
a greater than linear increase in gene discovery 
at this same statistical threshold from a two-fold 
increase in the current sample size (150 genes; 
95% CI: 108-278) or a three-fold increase (344 
genes; 95% CI: 218-500). 

Comparing the genetic architectures 
of ASD and general NDDs
ASD is frequently comorbid with other syndromic 
and non-syndromic NDDs, including intellectual 
disability (ID), and neurological disorders, 
including seizures59,60. Prior analyses have clearly 
demonstrated both overlapping and distinct 
genetic architectures across ASD and DD, with 
significant heterogeneity across these broadly 
defined NDDs. To explore commonalities in genes 
that impact such NDDs, we integrated our ASD 
data with an independent cohort of 91,605 family-
based samples encompassing 31,058 offspring 
with DD, the vast majority of which (>95%) 
were diagnosed with at least one NDD11. Exome 
sequencing from this DD cohort was recently 
analyzed by the Deciphering Developmental 
Disorders (DDD) project using DeNovoWest, 
a permutation-based frequentist method, and 
reported exome-wide significant associations 
between rare SNVs and indels in 252 autosomal 
genes. However, these analyses did not include 
case-control samples, rare inherited SNVs and 
indels, or CNVs. We sought to re-analyze these 
DDD data to enable direct comparisons between 
the ASD and DD cohorts using uniform statistical 
models and significance thresholds between 
studies.

We applied the extended TADA framework to 
de novo variants in the DD cohort (TADA-DD) 
and found 309 autosomal genes associated at 
an FDR threshold of ≤ 0.001, including 94% of 
the initial 252 autosomal genes in Kaplanis et 
al. 202011 (Supplementary Table 4.9, TADA-
DD found 477 at FDR ≤ 0.05). We observed the 
FDR values generated by our implementation of 
TADA (TADA-DD) to be highly correlated to those 
derived from the DeNovoWest significance values 
in Kaplanis et al. 202011 (r=0.95, p<10x10-22, 
Supplementary Fig. 5). Given the enrichment of 
cases with severe and syndromic disorders in this 
DD cohort compared to the ASD cohort10,11,61, the 

de novo PTV, MisB, and MisA counts in this DD cohort showed the expected stronger but overall 
similar trends in variant enrichment in probands across the top three deciles of LOEUF (Fig. 5a-b). 

Since the first unbiased whole-genome analyses in ASD62, a notable overlap has been observed 
between genes affecting ASD and those affecting development more broadly, including intellectual 
development. Thus, it is reasonable to conjecture that integrating evidence for association from ASD 
and DD cohorts could yield additional genes influencing risk for ASD and broader development. 
Still, a cardinal rule of such meta-analysis is that the data should not be too heterogeneous. To 
determine whether the genes identified in the ASD cohort were also associated in the DD cohort, 
and vice versa, we converted the distribution of TADA q-values to p-values for each study. If the 
genes identified as associated in the DD cohort were also associated with ASD, the distribution 
of their ASD association p-values would be skewed toward zero; if they were not associated, the 
p-values would follow a uniform distribution; and, if some were associated and others were not, the 
p-values would follow a mixture distribution. Selecting the genes associated in the DD cohort at FDR 
≤ 0.05, we evaluated the distribution of their p-values in the ASD cohort. The estimated proportion 
of associated genes (i.e., mixing parameter) was 0.701 (limma::propTrueNull, Fig. 5c), indicating 
that 70.1% of these genes affect risk for ASD. The converse analysis conditioning on the ASD-
associated genes suggests that 86.3% of ASD risk genes have some broad effects on development 
(limma::propTrueNull, Fig. 5d).
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Fig. 4 | Relative contribution of evidence types in ASD risk genes
a, For 71 ASD-associated genes (FDR ≤ 0.001) the relative evidence of ASD association in the 
extended TADA model (log10BF) is shown for variants acting via a likely loss-of-function (LOF) 
mechanism (PTVs and deletions) on the x-axis versus variants that may act via alternative mechanisms 
(missense variants and duplications) on the y-axis. b, Equivalent plot of the relative evidence from de 
novo (x-axis) versus inherited (y-axis) variation for the same 71 ASD-associated genes. c, Evidence 
for ASD-association for the gene PLXNA1 is derived from de novo and transmitted missense variants, 
especially in the Plexin domain at the C-terminus of the Plexin-A1 protein. 
Abbreviations: BF: Bayes factor. Statistical tests: c: Transmission disequilibrium test. 
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evidence for association in the DD cohort at the same threshold 
(Fig. 5d). Moreover, while the remaining 86.3% of the genes are 
likely pleiotropic63, some could have a far greater impact on risk 
for ASD while others have greater impact on risk for other features 
of development. To evaluate the overall gene-set heterogeneity 
between the ASD and DD cohorts, we retained only de novo 
SNVs/indels for independent gene-level BF calculations. For the 
373 genes at TADA-NDD FDR ≤ 0.001, we observed a Pearson’s 
correlation of 0.78 (p=9.1x10-78) of the gene-level log BF between 
the two major subcomponents of the ASD cohort (ASC+SSC 
versus SPARK), compared to only 0.42 (p=2.4x10-17) between the 
BFs of the ASD and DD cohorts. These observations signal much 
more consistent gene-level evidence between the ASD subcohorts 
than between the ASD and DD cohorts (Supplementary Fig. 
6) and reflect both differential and shared genetic architecture 
underlying these often-comorbid phenotypes.
 
Next, we determined if certain genes were observed to be more 
commonly mutated in one cohort or the other. For these analyses, 
we first identified 464 “signal genes,” defined as any gene with 
FDR ≤ 0.05 in either TADA-ASD or TADA-DD from de novo PTV 
and MisB variants (which showed the greatest association and 
therefore were less likely to be benign). Of these signal genes, 
120 belonged to TADA-ASD, 428 to TADA-DD, and 84 to both. 
Notably, even for the 84 genes significant in both cohorts, we 
also observed significant variant count heterogeneity (X2=317.6, 
DF=83, p=3.8x10-23) between the cohorts.
 
Given this heterogeneity in mutational patterns, we sought to 
capture which of the 464 genes have more variation in either the 
ASD or the DD cohorts. A common way to assess this is by a 
standardized chi-squared test statistic (C statistic), but its power 
to discriminate is abrogated by the much higher burden of risk 
variants in the DD than ASD samples (Fig. 5a-b). We therefore 
adjusted for the difference in mutational burden between the 
cohorts by downsampling the DD mutations to be equal to the 
count of ASD mutations, then computed the C statistic. Genes 
with fewer than expected mutations in the ASD cohort relative 
to the DD cohort achieved a negative C statistic; a positive C 
statistic indicated overrepresentation in the ASD cohort. Next, a 
mixture model was adopted to disentangle the two commingled 
distributions, which assigns posterior probabilities that a gene is 
from the ASD or DD component of the statistical distribution (Fig. 
5e-f, Supplementary Table 4.11). Using a posterior probability 
cutoff of greater than 0.99, we find 36 genes to be a part of the 
ASD mixture component and 82 genes to be a part of the DD 
component (Fig. 5f). 
 
Mutational enrichment identifies differential 
neuronal layers impacted by ASD and DD genes
To gain insight into differences in expression of genes identified 
from the ASD versus DD cohorts, we examined single-cell 
gene expression patterns from human fetal brains. Two studies 
provided more than 37,000 cortical cells ranging from 6-27 weeks 
post-conception64,65. To integrate these data, we first removed 
strong batch effects due to different protocols using cFIT and 
then obtained integrated factor loadings and gene expression 
for all measured cells66. UMAP plots visualizing all cells from two 
sources, after removal of batch effects, showed that similar cell 
types from the different batches group together, while cells unique 
to either batch were also preserved66 (Fig. 6a, Supplementary 
Fig. 7).
 
With the integrated data, we applied unsupervised clustering 
to identify cell subtypes in the context of a hierarchical tree to 
illustrate the relationships of major and minor cell type clusters. 
Using the MRtree method67, we observed that cells of each 
labeled type were merged across both datasets into common 
clusters. Visualizing the tree, the major branches corresponded 
to glial and progenitor cells, excitatory neurons, deep layer 
enriched excitatory neurons, and inhibitory neurons. Likewise, 
minor splits reflected the expected relationships between cell 
types (Supplementary Fig. 8a). Based on the trajectory analysis 
of Polioudakis et al.65 , the ExN clade is less mature than the ExM 
clade, which in turn is less mature than the ExMU clade.

Having observed that the results from the ASD and DD cohorts are somewhat 
complementary, we used the Bayesian framework underpinning TADA to integrate 
the genetic evidence for each gene across the cohorts by combining the BFs, which 
is conceptually similar to a frequentist meta-analysis. This combined analysis (TADA-
NDD) revealed 373 genes associated with general NDDs at FDR ≤ 0.001 and 662 
genes at FDR ≤ 0.05 (Supplementary Table 4.9). We observed that 54/373 and 
124/662 genes did not meet the matching threshold in either the TADA-ASD or 
TADA-DD analyses alone, demonstrating a 15-19% increase in yield by combining 
evidence from these cohorts.

Heterogeneity of mutation patterns between ASD and DD 
associated genes
Due to the frequent comorbidity of ASD and DD phenotypes, isolating genes that 
exert a greater effect on ASD than they do on other DDs has remained challenging. 
Still, as documented above, 13.7% of the TADA-ASD FDR ≤ 0.05 genes show little 
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Fig. 5 | Integration of ASD and DD dataset identifies discovery of 
general neurodevelopmental disorder genes and heterogeneity
We analyzed 31,058 DD trios from Kaplanis et al. 2020 alongside our assembled 
ASD cohort to compile a combined dataset of 46,094 NDD cases. a, De novo PTVs 
are enriched in DD cases, with the effect diminishing as constraint relaxes. The 
enrichment in DD cases is higher than in the ASD cases, consistent with expectation. 
b, De novo missense variants are also enriched in DD cases above and beyond the 
enrichment observed in our ASD cases. c, 477 TADA-DD genes with FDR ≤ 0.05 have 
non-uniform p-value distributions from TADA-ASD that suggest 70.1% are associated 
with ASD. d, 183 TADA-ASD genes with FDR ≤ 0.05 have non-uniform p-value 
distributions from TADA-DD that suggest 86.3% of these genes are associated with 
DD. e, Using PTV and MisB variant data, we devised a chi-squared statistic, denoted 
the C statistic, to measure if a gene has more observed variants in one cohort relative 
to the other. A mixture model was used to deconvolve the commingled distributions. 
f, We transformed the fitted mixture distribution into posterior probability for ASD 
enrichment. Using a cutoff of <0.01, we found 82 DD-predominant genes, while using 
a cutoff of >0.99 we found 36 ASD-predominant genes.
Abbreviations: PTV: protein truncating variants; BF: Bayes factor; DD: developmental 
delay; FDR: false discovery rate. Statistical tests: a-b: binomial test, c-d: limma::​​
propTrueNull: , e-f: mixture model.
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We subsequently assessed any 
differentials in strength of enrichment 
of the DD- and ASD-predominant risk 
genes within cell clusters for genes 
meeting the posterior probability 0.99 
threshold (Fig. 5f). Of the 36 genes 
classified as ASD-predominant, 18 
were expressed in these cell types; and, 
of the 82 classified as DD-predominant 
genes, 51 were expressed. Using odds 
ratio to reflect the strength of signal, 
we observed that both DD- and ASD-
predominant genes were enriched 
in both interneurons and excitatory 
neurons compared to glial and progenitor 
cells (Fig. 6b, Supplementary Fig. 
9, Supplementary Tables 4.12-
4.13). While the enrichment was 
broadly distributed, the signal for 
DD-predominant enrichment tended 
to be found for cell types appearing 
early in the lineages of neurons. DD-
predominant genes highlight four cell 
types, namely intermediate progenitors 
(IP), precursors of interneurons from 
the caudal ganglionic eminence 
(InCGE), migrating excitatory neurons 
(ExN3), and maturing excitatory 
neurons (ExM2). By contrast, ASD-
predominant genes are strongly 
enriched in only one cell type, maturing 
excitatory neurons (ExMU1) and its 
clade. In keeping with a more mature 
neuron type, the ASD-predominant 
genes play roles in cytoskeleton 
organization, synaptic signaling, and 
activity-dependent programs. Our 
results regarding ASD agree with 
the conclusion of Polioudakis et al.65, 
which was based on a subset of these 
data. If we judge enrichment solely by 
significance after Bonferroni correction 
for 21 cell types, these conclusions still 
hold: ExMU1 remained significant for 
enrichment of ASD-predominant genes; 
likewise ExN3 remained significant for 
enrichment of DD-predominant genes. 
Our results are consistent with DD-predominant genes being expressed 
earlier in development and in less mature cells than ASD-predominant 
genes.

Emergence of shared ASD schizophrenia risk genes
The genetic risk for ASD has also been suggested to overlap with that 
of other neuropsychiatric disorders, especially schizophrenia68, such 
that the joint study of ASD and schizophrenia might reveal additional 
insights into both disorders. The Schizophrenia Exome Meta-Analysis 
(SCHEMA) Consortium recently analyzed exome sequencing from 
24,248 schizophrenia cases and 97,322 controls, identifying 10 genes 
where ultra-rare coding variants were associated with schizophrenia after 
Bonferroni correction, and 244 genes at p < 0.0113. We compared our 
ASD- and NDD-associated genes to the SCHEMA findings to determine 
if there was any overlap between ASD and schizophrenia at the level 
of individual risk genes and, if so, whether it was related to ASD-DD 
overlap. Among the 71 ASD genes we discovered at an FDR ≤ 0.001, 
we found that 63 show an association with DD (using FDR ≤ 0.05, based 
on TADA-DD), and 8 show an association with schizophrenia (using p ≤ 
0.01, based on values reported by Singh et al.). If the two associations 
were independent, we would expect ~7 of the 8 ASD-schizophrenia 
genes to also show an association with DD (based on 63/71 = ~88% 
of the ASD genes overlapping DD). However, we find 4 of the ASD-
schizophrenia genes (NRXN1, ANK2, BRSK2, and DSCAM) lack an 
association with DD, which is a significant overrepresentation compared 
to random chance alone (p = 0.008, binomial test). This suggests that 
one subset of ASD risk genes may overlap DD, while a different subset 
overlaps schizophrenia.

We also analyzed these findings with an alternative approach: the distribution 
of genes in Fig. 5e (the 464 genes with FDR ≤ 0.05 for ASD and/or DD in our 
heterogeneity analysis) gives 36 ASD-enriched genes and 82 DD-enriched 
genes. Of the 244 genes identified by SCHEMA as schizophrenia-associated 
at p ≤ 0.01, 6 genes (ANK2, ASH1L, BRSK2, CGREF1, DSCAM, and NRXN1) 
overlap the 36 ASD genes, while only 3 (ATP2B1, GRIN2A, and HIST1H1E) 
overlap the 82 DD genes. If we compare to the null hypothesis that each of 
the genes in our TADA model has an equal chance of being schizophrenia-
associated, then the ASD-schizophrenia overlap is significantly enriched (p = 
8.5x10-6, binomial test), while the DD-schizophrenia overlap is not (p = 0.10, 
binomial test). The two outcomes (6/36 vs. 3/82) are also significantly different 
when compared to each other (p = 0.023, Fisher’s exact test), reinforcing the 
idea that the shared genetic risk between ASD and schizophrenia may be 
distinct to that observed between ASD and DD. 

Discussion
We report here a gene discovery effort in ASD that integrates coding 
SNVs, indels, and exome-based  CNVs in ASD. These analyses revealed 
an allelic spectrum associated with ASD that was dominated by de novo 
PTVs, damaging missense variants, and deletions within genes that 
display evidence of intolerance to loss-of-function variation in the general 
population. Nonetheless, of the 71 genes identified as associated at FDR 
≤ 0.001, all included association evidence from multiple inheritance classes 
and 10 displayed the strongest evidence from de novo missense variants 
and duplications, including one gene (PLXNA1) with domain-specific 
transmission distortion. The proportion of log BF evidence arising from PTVs 
and DELs steadily decreased from 69.2% among the 71 TADA-ASD risk 
genes to 51.1% and 41.0% for FDR ranges of (0.001, 0.01) and (0.01, 0.05) 

Fig. 6 | Single-cell data reveals differential neuronal layers impacted by ASD and DD genes
a, A UMAP plot visualization after integrating two studies (Nowakowski et al. 2017; Polioudakis et al. 2019) that 
provided single-cell gene expression of human fetal brains consisting of 37,000 cortical cells 6-27 weeks post-
conception. Similar cell types from the two batches group together while preserving cells unique to either study. 
b, Both ASD- and DD-predominant genes (right and left, respectively) were found to be enriched in interneurons 
and excitatory neurons compared to glial cells. Compared to DD-predominant genes, ASD-predominant genes 
are relatively more neuron-enriched than progenitor-enriched. 
Abbreviations: UMAP: Uniform Manifold Approximation and Projection Statistical tests: b: Fisher’s exact 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 21, 2021. ; https://doi.org/10.1101/2021.12.20.21267194doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.20.21267194
http://creativecommons.org/licenses/by/4.0/


8 Fu et al., medRxiv (2021)

Preprint
ours continue to demonstrate the pleiotropic consequences of many genes 
implicated in ASD and NDD risk. To identify the key neurobiological features 
of ASD will likely require convergence of evidence from many ASD genes 
and studies. Careful selection of candidates among the genes implicated 
here based on their mutational and functional features could inform these 
future studies.
 
We have taken a step in that direction with this study. First, we asked which of 
the ASD and DD genes had a predominance of mutations in the ASD versus 
DD cohorts. Gene lists identified from cohorts ascertained for ASD and DD 
show substantial overlap, with roughly 70 to 90% of genes contributing 
risk for both disorders. This genetic result matches clinical experience with 
individuals who carry damaging DNA variants in conserved, developmentally 
important genes. This population tends to show substantial comorbidity 
between the two diagnoses, as well as phenotypic data, with higher rates 
of cognitive impairment and walking delay in individuals with ASD10,11,15,22. 
We would predict elevated rates of social impairment in those with DD who 
carry ASD risk-mediating variants, although this remains to be assessed. 
Such an assessment is important because, while overlap between genes 
identified in ASD and DD is substantial, the risk mediated to each disorder 
is not equal for many of the genes. Broadly, genes expressed at earlier 
stages of cortical development, such as progenitor genes, display greater 
DD enrichment, while those expressed later, such as maturing neurons, 
lean towards ASD. This is consistent with the expectation that earlier and 
more generalized impairment leads to severe global developmental delay, 
and later, neuron-specific impairments affect more isolated developmental 
domains such as social communication. This is supported by our analyses 
incorporating single-cell genomic data, where we identify ExMu1 among 
maturing excitatory neurons as preferentially perturbed among ASD-
predominant risk genes, while highlighting ExN3, a migrating excitatory 
neuron, in DD-predominant risk genes.

In conclusion, we have greatly expanded the rare variant information that is 
simultaneously accounted for in our statistical framework, including the use 
of accurate WES-based CNVs, to significantly increase the number of genes 
we can implicate for ASD and NDD risk. We have also used our framework 
to study the shared and distinct genetic risks between ASD and related 
NDDs, highlighting differential enrichment of associated genes at different 
neuronal timepoints. Importantly, much of the work presented in this study 
was powered by the large-scale collection of ASD datasets from the SPARK, 
ASC, SSC, and NHGRI Centers for Common Disease Genetics, and the 
commitment of these programs to make these data rapidly accessible to 
all qualified individuals. These studies have catalyzed a rapid evolution in 
genetic architecture studies in ASD, including a number of recent preprints 
that have leveraged these data for analyses of de novo, ultra-rare, and rare 
inherited variants in ASD, the combined impact of rare and common variant 
polygenic risk across males and females, and combined gene discovery 
from ASD and DD datasets15,70–72. As sample sizes continue to grow rapidly, 
we expect that the framework presented here will continue to yield returns 
in both gene discovery and improved understanding of the differential risks 
to the disorders on the neurodevelopmental and neuropsychiatric spectrum 
posed by variants within the same genes.
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respectively, while inherited evidence increased from 4.5% to 10.1% and to 
20% for the same FDR ranges, indicating that future discoveries are likely 
to arise from the more subtle effects associated with missense and inherited 
variation as sample sizes continue to increase. 

This study also presents the largest exploration to date of individual 
gene and multi-exon resolution CNVs from exome sequencing and their 
contributions to ASD architecture. In a subset of the SSC quartets in this 
study, we demonstrated that >80% of all CNVs discovered by WGS and 
spanning three or more exons could be recaptured by exome-based 
CNV detection, while >90% of all predicted de novo CNVs from exome 
sequencing at this resolution were confirmed by WGS and/or molecular 
validation. We readily recapitulated the observed excess of CNVs in known 
GD regions characterized from microarray studies, and quantified the 
relative effect size of CNVs outside of GD regions in comparison to PTVs. 
Prior studies have reported an enrichment of CNVs of maternal origin in 
ASD probands57. Here, we found a strong bias in the gamete-of-origin giving 
rise to de novo CNVs based on the mechanism of formation. Most NAHR-
mediated CNVs across all GDs arose on the maternal chromosome (e.g., 
95% of 16p11.2 CNVs), whereas the majority of all CNVs, which are driven 
by non-homologous or microhomology mediated repair, were preferentially 
paternal in origin and consistent with WGS analysis in controls48. We further 
highlighted the relative value of gene-level CNV analyses, as disruption 
of one or more highly constrained genes conferred comparable risk to 
alteration of dosage-sensitive GD loci. Overall, approximately 8% of the 
BF association evidence in ASD risk genes was derived from CNVs, 
while 0.95% of all cases and 0.02% of unaffected siblings harbored a de 
novo CNV that altered one of the 373 broadly defined NDD risk genes. 
These results emphasize the value of routine joint analysis of all classes 
of genomic variation in gene discovery analyses, and the relative impact of 
gene level CNV analyses in diagnostic testing. 

By analyzing both the DD and ASD datasets under the same framework, 
we were also able to directly quantify the overlapping and distinct genetic 
architectures across these datasets. We showed the increased rate of de 
novo PTVs and damaging missense variants in the DD cohort in both raw 
variant enrichments as well as in association statistics. Applying the same 
statistical model to both the DD and ASD datasets independently reinforced 
that the analytic framework and statistical thresholds used were robust 
and highly correlated with the permutation-based approach applied in the 
DDD study. Integrating the two cohorts together with TADA, we implicated 
373 genes associated with risk across a spectrum of syndromic and non-
syndromic NDDs at FDR ≤ 0.001 (662 risk genes at FDR ≤ 0.05). Among 
these 373 genes, 54 genes were unique to the joint analyses and were not 
captured by either dataset alone. 

We expect these gene sets to shed light on the neurobiological origins of 
ASD, including its key features, namely deficits in social interaction and 
the presence of repetitive behaviors and/or interests, versus broader DD 
phenotypes. One might reasonably ask that if there is substantial overlap 
between the genes implicated in NDDs writ large and those implicated 
directly in ASD, why is it important to focus on ASD at all? To see how a 
larger set of risk genes and one originating from analysis of an ASD cohort 
could be important, consider two of the 183 genes, specifically ARID1B and 
DSCAM. While both are highly associated with ASD, with FDRs of 5.5x10-

12 and 3.7x10-4 respectively, statistical evidence for ARID1B’s association 
with ASD is stronger. Nine of 15,036 ASD probands carry PTV or misB 
de novo mutations in ARID1B, while 4 of 15,036 carry such mutations in 
DSCAM. These genes, however, are also distinguished by their association 
with broader phenotypes. Individuals with mutations in ARID1B are often 
given a diagnosis of Coffin-Siris syndrome and, according to recent work69, 
they typically have “ID, feeding difficulties, laryngomalacia, speech delay, 
motor delay, hypertrichosis, and cryptorchidism.” While some individuals 
with mutations in ARID1B also have comorbid ASD, it is only one of a wide 
range of rarer phenotypes69. ARID1B’s profound impact on development is 
apparent by the contrast of de novo mutations in the DD and ASD cohorts: 
132 carriers out of 31,058 DD probands versus 9 carriers out of 15,036 
ASD probands, a sevenfold higher rate in DD. This raises a challenge for 
neurobiologists. If they perturb ARID1B and identify neurodevelopmental 
features associated with that perturbation, are those features relevant to 
ASD or are they non-specific features of DD? One might instead select 
DSCAM because its evidence for association arose solely from the ASD 
cohort; no PTV or misB mutations were reported from 31,058 DD probands. 
Yet, as we develop here, there is evidence DSCAM is also involved in risk 
for schizophrenia, so it is not uniquely an “autism gene” and studies such as 
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