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Abstract  11 

Physical activity is correlated with, and effectively treats various forms of psychopathology. 12 

However, whether biological correlates of physical activity and psychopathology are shared 13 

remains unclear. Here, we examined the extent to which the neural and genetic architecture of 14 

physical activity and mental health are shared. Using data from the UK Biobank (N=6,389), 15 

canonical correlation analysis was applied to estimate associations between the amplitude and 16 

connectivity strength of sub-networks of three major neurocognitive networks (default mode, 17 

DMN; salience, SN; central executive networks, CEN) with accelerometer-derived measures of 18 

physical activity and self-reported mental health measures (primarily of depression, anxiety 19 

disorders, neuroticism, subjective well-being, and risk-taking behaviors). We estimated the 20 

genetic correlation between mental health and physical activity measures, as well as putative 21 

causal relationships by applying linkage disequilibrium score regression, genomic structural 22 

equational modeling, and latent causal variable analysis to genome-wide association summary 23 

statistics (GWAS N=91,105-500,199). Physical activity and mental health were associated with 24 

connectivity strength and amplitude of the DMN, SN, and CEN (r’s≥0.12, p’s<0.048). These 25 

neural correlates exhibited highly similar loading patterns across mental health and physical 26 

activity models even when accounting for their shared variance. This suggests a largely shared 27 

brain network architecture between mental health and physical activity. Mental health and 28 

physical activity (including sleep) were also genetically correlated (|rg|=0.085-0.121), but we 29 

found no evidence for causal relationships between them. Collectively, our findings provide 30 

empirical evidence that mental health and physical activity have shared brain and genetic 31 

architectures and suggest potential candidate sub-networks for future studies on brain 32 

mechanisms underlying beneficial effects of physical activity on mental health. 33 
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1. Introduction  42 

Mental health and physical activity have both been linked to emotion, cognition, and brain 43 

correlates1–4. Furthermore, physical activity is known to improve various psychiatric conditions5–
44 

7. Yet, it remains elusive whether mental health and physical activity overlap in neural and 45 

genetic architectures. Here, in a large population sample (n=6,389 from the UK Biobank 8), we 46 

estimate the extent to which physical activity and general mental health share patterns of resting-47 

state functional MRI network measures and genetic architectures. 48 

 49 

1.1 Potential overlap between mental health and physical activity in neural networks 50 

Functional alterations in large-scale brain networks have been consistently implicated in a wide 51 

range of psychiatric disorders9. Dysfunctional configuration of neurocognitive networks such as 52 

the default mode, salience, and central executive networks has been hypothesized to characterize 53 

major psychiatric disorders including depression and anxiety (DMN, SN, CEN)10. In line with 54 

this hypothesis, findings from meta-analyses have shown that core cognitive and affective 55 

abnormalities in major depression can be accounted for by hypo-connectivity within the CEN 56 

and hyper-connectivity within the DMN11, together with hypo-connectivity between the control 57 

systems (i.e., CEN) and salience, emotion processing systems (i.e., SN)12. Similarly, a recent 58 

meta-analysis suggests that anxiety disorders are characterized by hypo-connectivity between 59 

subcortical limbic circuits that partially overlap with the SN, CEN, and DMN, as well as 60 

decoupling between the CEN and DMN13. Furthermore, the personality trait neuroticism, which 61 

is considered a risk marker for psychopathology, has also been linked to alterations in functional 62 

brain networks14. These same networks have also been linked to physical activity. Evidence from 63 

fMRI studies on physical activity demonstrated the changes in activity of and functional 64 

connectivity between these network hub regions including the hippocampus, parahippocampus, 65 

dorsal anterior cingulate cortex, and ventromedial prefrontal cortex that primarily subserve 66 

executive functions such as working memory, attention, and inhibition15–19. At the more system 67 

level, a 12-month aerobic walking intervention was found to increase resting-state functional 68 

connectivity between subnetworks of DMN, and between subnetworks of SN20, whereas 69 

connectivity in the CEN was found to increase after multiple sessions of high intensity interval 70 

training21. Interestingly, the intensity of physical exercise appeared to modulate functional 71 

connectivity changes in the hub regions of the CEN22, as well as in the DMN subsystems acutely 72 
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and after 3 months of training23. Additionally, although sleep might not be considered a type of 73 

physical activity for its inactive nature, it is closely connected to mental health such that sleep 74 

problems have been considered as a risk factor for subsequent development of depressive 75 

symptoms24,25, and disrupted sleep is often seen in patients with various types of mood and 76 

anxiety disorders26–28.  77 

Additionally, sleep disturbance can reduce physical activity levels and increase the risk of 78 

exercise-related injuries29. Although sleep has been largely overlooked in the literature for 79 

physical activity in relation to mental health, we included it in the current study for its close 80 

relationships with both mental health and physical activity. Sleep duration can be accurately 81 

measured with ecological sampling approaches such as wrist-worn accelerometers, which have 82 

been adopted in medical and mental health research30,31. At the neural network level, sleep 83 

deprivation has been linked to reduction in functional connectivity within the DMN 32–34, 84 

whereas increased sleep duration has been linked to strengthened connectivity within the DMN 85 

but reduced connectivity between DMN and SN35. Fluctuations in arousal (i.e., indication of 86 

drowsiness) during resting-state scan acquisitions have also been linked to the fMRI signal 87 

amplitude in sensorimotor networks36. These studies together highlight the engagement of the 88 

DMN, SN and CEN in both mental health and physical activity and demonstrate that the 89 

interplays between these large-scale intrinsic networks and subnetworks are coupled with 90 

changes in mental health symptoms and physical exercises. Yet, it remains unclear whether 91 

similar connectivity patterns or signal changes of these networks are shared by mental health and 92 

physical activity. 93 

 94 

1.2 Potential overlap between mental health and physical activity in genetic variance 95 

Physical activity is known to promote resilience to various psychiatric conditions, alleviating 96 

symptoms of depression, anxiety, and negative mood37,38.  This buffering effect may be rooted in 97 

the shared genetic variance between mental health and physical activity. For instance, recent 98 

research employing summary statistics from independent genome-wide associate studies (GWAS) 99 

showed that higher polygenic risk scores for depression are associated with increased odds of 100 

incident depression, whereas self-reported physical activities such as walking, jogging, running, 101 

dancing and yoga appeared to reduce the odds with similar magnitude 39. This effect has also 102 

been observed using more objective measurement of physical activity such that reduced activity 103 
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levels measured by accelerometer were found to associate with diagnoses of schizophrenia, 104 

bipolar disorder, depression, or autism spectrum disorders (ASD) and that healthy participants 105 

without disorder diagnoses were observed to perform less physical activity if they had a higher 106 

polygenic risk score f or schizophrenia, depression, and ASD 40.  107 

Additionally, overlapping genetic architectures may exist across various psychiatric disorders 108 

including anxiety and depression41–43 as psychiatric phenotypes are highly polygenic 44. Thus, 109 

latent genetic factors capturing shared variance across clusters of psychiatric symptoms may 110 

improve identification of associations between mental health and physical activity. For instance, 111 

genomic contributions to disorders such as depression and anxiety are captured by a genetic 112 

factor for internalizing disorders that are primarily characterized by these two disorders as 113 

indicated by a confirmatory factor analysis, and this genetic factor is positively genetically 114 

associated with various adverse health outcomes and negatively genetically associated with 115 

physical movement patterns45. These findings point to the possibility that the genetic 116 

architectures of mental health and physical activity may overlap. The degree and phenotypic 117 

specificity of overlap remains to be tested. 118 

 119 

1.3 Shared brain and genetic architectures? 120 

Together, the studies reviewed above show that mental health and physical activity both involve 121 

large-scale brain networks such as the DMN, SN and CEN. Additionally, mental health and 122 

physical activity may have partially overlapping genetic architectures, with evidence showing 123 

associations between genetic liabilities of psychiatric disorders and physical activity, as well as 124 

genetic associations between latent factors of psychopathology and physical activity. As mental 125 

health and physical activity are also tightly related at the behavioral level (e.g., emotion, 126 

cognition), it is reasonable to speculate that these two constructs may partially overlap in the 127 

underlying neurobiological mechanisms. In this study, we aim to determine whether mental 128 

health and physical activity have shared variance in brain and genetic architectures, using brain 129 

network measures and genomic summary statistics.  130 

 131 

  132 
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2. Methods and Materials  133 

2.1 Participants 134 

The UK Biobank is an openly accessible population dataset with neuroimaging data collection, 135 

in addition to extensive demographic, behavioral, lifestyle, and cognitive measures8,46. An initial 136 

sample of N=8,378 participants from the UK Biobank (UKB) was considered for this study. 137 

These participants had participated in accelerometer-based physical activity evaluations and 138 

visited the assessment center, where the resting-state fMRI and mental health data were acquired. 139 

Data quality assurance resulted in exclusion of N=64 participants for insufficient accelerometer 140 

data (see details below in section 2.2.2), and N=1,925 participants with considerable missing 141 

data in the mental health questionnaire (see details below in section 2.2.1). The final sample had 142 

N=6,389 participants with 2,994 (46.9%) females (sample mean age=63.74 ± SD 7.53). All 143 

participants provided informed consent. UK Biobank has ethical approval from the North West 144 

Multi-Centre Research Ethics Committee (MREC). Data access was obtained under UK Biobank 145 

application ID 47267. 146 

 147 

2.2 Data Acquisition and Preprocessing 148 

2.2.1 General mental health measures 149 

The UKB general mental health questionnaire consisting of 41 items was conducted on the same 150 

day as fMRI data acquisition (https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=100060). 151 

This self-reported questionnaire primarily measured depression, anxiety, and neuroticism, as 152 

well as subjective well-being. These variables had varying degrees of missing data points partly 153 

due to responses such as “do not know”, “prefer not to answer”, or “none of above,” and partly 154 

due to question dependencies. To ensure robust model estimation while maximizing statistical 155 

power, individual variables or questions that had more than 30% missing values were excluded 156 

(N=10; see full descriptions for each included individual question in Table S1). A multivariate 157 

imputation procedure was then leveraged to handle the missingness in the remaining data. By 158 

default, this procedure implements multiple imputations with separate imputation models for 159 

each incomplete variable47. Predictive mean matching (PMM) approach was employed for 160 

imputing continuous variables, which first estimates a linear regression model for the target 161 

variable (e.g., Y) from all other variables in the data (e.g., non-Y variables) with complete 162 

observations. New coefficients are then drawn from the posterior predictive distribution of the 163 
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estimated regression coefficients and used to calculate the predicted values for the missing 164 

entries in Y. The predictive values for the observed Y are also calculated using the estimated 165 

regression coefficients. Finally, a small set of candidate donors is formed from the observed Y 166 

(i.e., usually 3 or 5 donors) that have the closest predicted values to the missing Y, and the 167 

observed value from one donor will be randomly selected to replace the missing value47. Using 168 

PMM, 20 iterations was performed for each incomplete variable of mental health, and the final 169 

imputed value for any given missing entry was averaged across all iterations. 170 

As the current mental health questionnaire covers a broad range of multiple constructs, including 171 

depression and anxiety symptoms, neuroticism, and subjective well-being, we performed data 172 

decomposition using principal component analysis (PCA) on the imputed data to extract the most 173 

relevant information about general psychopathology, using a R package (see details below in 174 

section 2.4). We retained the top principal components that collectively explained more than 50% 175 

variance of the data in the subsequent statistical analyses. PCA loadings of each individual 176 

question per component can be found in Table 1. 177 

 178 

 179 

2.2.2 Physical activity measures 180 

Accelerometer data were acquired for a subset of UKB participants during a seven-day 181 

monitoring period (https://biobank.ndph.ox.ac.uk/ukb/label.cgi?id=1008). This enabled real-time 182 

measuring of physical activity for the participants throughout the entire week. Following a 183 

recommendation for quality control 48, data from participants who had less than 72h device 184 

wearing time or had no data in each one-hour period of the 24h cycle were excluded (N=64). 185 

Using a publicly available machine learning algorithm, we extracted measures of five types of 186 

physical activity including sleep, sedentary, walking, light task, and moderate activities48. This 187 

algorithm applied random forest and hidden Markov models to a 126-dimental vector that 188 

represented a range of time and frequency domain features for every non-overlapping 30-sec 189 

epoch. The resulting probability of each physical activity was then defined as the count of 190 

predicted activity type per 30-sec epoch divvied by the number of epochs48. In addition to these 191 

probability measures, the average acceleration magnitude, and metabolic equivalents of task 192 

(MET) were included to indicate overall activity intensity. The mean values of these features 193 

were calculated across weekdays and weekends, respectively, as well as across the entire 194 

monitoring period (i.e., average over weekdays and weekends). To account for variation in each 195 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 6, 2022. ; https://doi.org/10.1101/2021.12.28.21268486doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.28.21268486
http://creativecommons.org/licenses/by-nc-nd/4.0/


Zhang et al., 7 

 

 

individual physical activity measure at different time points, all mean values were standardized 196 

by standard deviations for each participant. In total, 21 standardized physical activity measures 197 

were included in our analyses.  198 

 199 

2.2.3 Resting-state fMRI data and brain network measure 200 

Resting-state fMRI was acquired using a multiband sequence with an acceleration factor of 8 201 

(TR=0.735; voxel size=2.4x2.4x2.4mm3). Preprocessing steps included motion correction, 202 

grand-mean intensity normalization, high-pass temporal filtering, unwarping and ICA-FIX 203 

denoising (Alfaro-Almagro et al., 2018). Full details can be found in UK Biobank Brain Imaging 204 

Documentation (https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf).  205 

For this study, we used IDPs (imaging-derived phenotypes) that were generated and released by 206 

the UKB 46. Specifically, partial connectivity matrices and network amplitudes from ICA with 207 

dimensionalities of 100 (ICA100) were considered (see Supplementary Results for the 208 

comparison with ICA25). ICA is a data-driven approach that can estimate the resting-state brain 209 

networks reliably and reproducibly, including the three networks of interest. It further helps 210 

eliminate noise in the data by separating noise and signal components 49. These advantages of 211 

ICA make it an unbiased and powerful technique to study the resting-state networks. The 212 

mapping of the DMN, SN and CEN onto the ICA components and the calculation of partial 213 

connectivity matrices and network amplitudes are described below. 214 

 215 

2.2.3.1 Mapping the networks of interest  216 

We used the Stanford FIND atlas 50 to construct canonical spatial maps as the reference to 217 

identify the three brain networks of interest, namely the DMN, SN and CEN in our sample. 218 

Notably, the FIND atlas is a functional connectivity-based parcellation atlas, from which we 219 

selected seven functional parcels that are all part of these three intrinsic, including dorsal (i.e. 220 

posterior cingulate cortex and medial prefrontal cortex) and ventral default mode networks (i.e., 221 

retrosplenial cortex and medial temporal lobe), precuneus network, anterior (i.e., anterior insula 222 

and dorsal anterior cingulate cortex) and posterior salience networks (i.e.,  posterior insula), as 223 

well as left and right executive control networks (i.e., dorsolateral prefrontal cortex and parietal 224 

cortex in the left and right hemispheres respectively). These selected parcels well represent the 225 

subsystems of the three intrinsic networks that have been associated with physical exercises (e.g., 226 
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via cognitive and interoceptive processing) 5,6 and various psychiatric disorders including 227 

depression and anxiety 7–9. We therefore selected them as our reference networks. To identify 228 

ICA components that can be mapped onto these networks of interest, we examined fifty-five 229 

signal components that were generated from ICA100 and detected the best matching components 230 

corresponding to each of seven selected network parcels, based on spatial correlations. Seven 231 

ICA components showing the highest spatial correlations with the FIND atlas were identified 232 

(mean r = 0.37). We refer to these ICA components as ‘subnetworks’ from the large-scale DMN, 233 

SN and CEN as they represented the subsystems of the three intrinsic networks. 234 

 235 

2.2.3.2 Extracting subnetwork edges  236 

Dual regression was performed to obtain timeseries for each ICA component or subnetwork at 237 

the individual level 56. These extracted subnetwork timeseries were then used to calculate the 238 

partial connectivity matrix and amplitude measures of interest. As described in Miller et al.46, 239 

pairwise partial correlation coefficient were estimated using L2-regularized partial correlations 240 

between all 55 signal components from ICA100, which are deemed to be non-artifactual. This 241 

analysis resulted in a 55x55 partial correlation matrix, from which we selected the correlation 242 

coefficients corresponding to our seven components of interest (i.e., subnetwork edges). In total, 243 

21 subnetwork edges were extracted and included in the subsequent analyses.   244 

 245 

2.2.3.3 Calculating subnetwork amplitudes 246 

In additional to pairwise partial correlations between these 7 subnetworks, we further considered 247 

the signal amplitude of each subnetwork as the brain network variables. The amplitude is defined 248 

as the standard deviation of the ICA component timeseries 36. Previous work has shown that 249 

amplitudes capture the overall signal fluctuations within each subnetwork and can offer 250 

complementary information in relation to behavioral measures. For example, a recent study using 251 

the UK Biobank dataset demonstrated independent associations between network amplitudes and 252 

behavioral measures in addition to connectivity strength 46. Thus, we also included seven 253 

subnetwork amplitudes in the subsequent analyses.  254 

 255 

2.2.3.4 Overview of resting state measures 256 
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In summary, subnetwork edges from the partial connectivity matrix indicate the connection 257 

strength between each pair of 7 subnetworks while controlling for all other ICA components, 258 

whereas subnetwork amplitudes capture the variance of signal changes within each subnetwork. 259 

In total, 28 brain measures including 21 partial connectivity strength measures (i.e., subnetwork 260 

edges) and 7 amplitudes were included (see the overlayed subnetworks in Figure 1; also see 261 

subnetwork selection in Figure S1). All of these resting-state imaging measures are available 262 

from the UK Biobank showcase (bulk field IDs 25753 and 25755).  263 

 264 

 265 

2.3 Statistical Analysis 266 

Separate statistical analyses were performed to examine the shared brain network architecture 267 

and genetic architecture between mental health and physical activity (see Figure 1 for an 268 

overview for the relevant variables and analyses). 269 

 270 

2.3.1 Shared variance between mental health and physical activity 271 

Pearson’s correlation was used to identify the shared variance between phenotypes of mental 272 

health and physical activity. As we decomposed the data of mental health into principal 273 

components, all correlations were performed using the individual-specific component scores. We 274 

further calculated the false discovery rate (FDR) to account for multiple testing on all pairwise 275 

correlations between mental health and physical activity phenotypes. 276 

 277 

2.3.2 Brain Associations with mental health and physical activity 278 

Canonical Correlation Analysis (CCA) has been recognized as a key tool for population 279 

neuroimaging that allows for investigating associations between imaging and non-imaging 280 

variables57. Here in this study, CCA was performed to investigate the associations of brain 281 

measures with physical activity and with mental health separately (i.e., simple CCA models). 282 

Specifically, CCA finds a linear combination of brain measures that is maximally correlated with 283 

a linear combination of mental health or physical activity variables respectively, as defined in Y * 284 

A = U ~ V = X * B58 where Y is the set of brain measures, X the set of mental health or physical 285 

activity measures, A and B are the linear weights, and U and V the canonical variables or 286 

canonical variate pair. The canonical correlation for each pair of canonical variates is defined as 287 
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the correlation between U and V. Canonical loadings that indicate the shared variance between 288 

the original observations and canonical variables are calculated as the correlations between Y and 289 

U, or between X and V. 290 

To further identify unique brain associations with physical activity and with mental health 291 

respectively, variance in brain network data explained by one set of variables was partialled out 292 

in the CCA model for the other set of variables (i.e., the unique CCA model included physical 293 

activity measures as covariates in the model for assessing brain-mental health associations and 294 

vice versa). Confounding variables were included in all four CCA models and statistical 295 

inference for CCA results was made via 1,000 permutations (i.e., breaking correspondence of 296 

participant identity with brain measures and mental health/physical activity measures), as 297 

implemented in the permCCA package57. Notably, the CCA model with the largest number of 298 

non-confounding variables included 28 brain measures and 21 physical activity measures, 299 

resulting in a ratio of approximately 130 observations (i.e., individuals) per feature. This is 300 

expected to ensure sufficient stability for our study59. 301 

To further investigate whether the patterns of brain measures in relation to mental health and 302 

physical activity overlap, post-hoc analyses were carried out to test the significance of canonical 303 

loadings for each individual brain variable. Specifically, we aimed to determine whether the 304 

same brain measures contributed significantly to the canonical associations both with mental 305 

health and physical activity, and thus could indicate a shared brain basis. These analyses were 306 

conducted only for significant canonical variates within each individual CCA model using 307 

permutation testing, where correspondence between brain measures and mental health/physical 308 

activity measures for each individual participant is shuffled. Canonical loading for each brain 309 

variable was recorded per permutation, which resulted in separate null distributions of loadings 310 

for each brain variable. The loadings from the true (unpermuted) CCA were then compared 311 

against the matching null distributions for each individual brain variable. Statistical significance 312 

was determined as the proportion of permuted loadings equal or higher than the observed 313 

loadings from the unpermuted analysis, divided by the total number of 1,000 permutations. 314 

These permutation-derived p values were further corrected for the number of significant 315 

canonical variates within each model ( i.e., record the permuted loadings across canonical 316 

variates). To compare brain variable patterns across different CCA models, we matched the first 317 

significant canonical variates from each model based on the correlations between the canonical 318 
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variate for the brain measures (i.e., correlating the vector U obtained from the mental health 319 

CCA models with the vector U obtained from the physical activity CCA models). 320 

To characterize the individual mental health questions and physical activity types in relation to 321 

the tested brain associations, we further examined the loading patterns of each individual 322 

question and physical activity type for the first canonical variate from all models, without testing 323 

for statistical significance.  324 

 325 

2.3.3 Shared genetic architecture between mental health and physical activity 326 

Genetic correlations between mental health and physical activity were examined by leveraging 327 

GWAS summary statistics for the relevant phenotypes.  328 

 329 

2.3.3.1 Summary statistics 330 

The mental health questionnaire used in this study includes items that measure neuroticism, 331 

anxiety, subjective well-being, depression, and risk taking. We therefore sought to obtain 332 

summary statistics for these psychopathological phenotypes. First, we extracted summary 333 

statistics for Neuroticism from a GWAS meta-analysis of self-reported neuroticism in the UKB 334 

(using the same questions as in our study) and Psychiatric Genetics Consortium (using the NEO-335 

FFI personality inventory)60. For Generalized Anxiety Disorder, we leveraged summary statistics 336 

from a GWAS of self-reported Generalized Anxiety Disorder 2-item scale scores in the Million 337 

Veteran Program61. We further obtained summary statistics for Subjective Well-Being from a 338 

GWAS meta-analysis of life satisfaction, positive affect, or both life satisfaction and positive 339 

affect across 59 cohorts62. For Major Depressive Disorder, we meta-analyzed summary statistics 340 

from case-control GWAS in the UK Biobank and Psychiatric Genomics Consortium63 and the 341 

Million Veteran Program64 (see Supplementary Results for further details). Lastly, we obtained 342 

summary statistics for Risk Taking from a GWAS study using the UKB data, which included the 343 

same question of risk taking as in our study65. Although these psychopathological phenotypes 344 

obtained from the independent GWAS studies were not directly equivalent to the phenotypes 345 

derived from mental health questionnaire in our brain association analyses due to different 346 

measurements, the underlying constructs of depression, anxiety disorders, and neuroticism, 347 

subjective well-being and risk-taking are identical. The phenotypes obtained to conduct genetic 348 

association analyses are therefore similar to those in the brain association analyses. 349 
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Summary statistics for accelerometer data-derived physical activity phenotypes, including 350 

moderate activity, overall activity, sedentary activity, walking, and sleep duration were derived 351 

from a GWAS of N=91,105 participants of European ancestry in the UK Biobank48. The exact 352 

phenotypes were also included in our brain association analyses. 353 

Please refer to Table 2 for an overview for all the summary statistics used in this study, including 354 

sample size and SNP heritability. 355 

 356 

2.3.3.2 Genetic correlations 357 

We used linkage disequilibrium score regression (LDSR) and genomic structural equation 358 

modeling (gSEM) to test whether the genomic architecture associated with general mental 359 

health is shared with physical activity. LDSR leverages GWAS summary statistics to estimate 360 

genetic correlations by regressing the SNP statistics on the SNP linkage disequilibrium (LD) 361 

scores, or correlations between nearby genomic loci due to population stratification (i.e., 362 

systematic differences in allele frequencies due to differences in ancestry). gSEM characterizes 363 

the latent genetic architecture across phenotypes based on the LDSR-derived genetic correlation 364 

matrices 66. To this end, we first applied LDSR to existing GWAS summary statistics of 365 

psychopathological phenotypes (i.e., neuroticism, generalized anxiety disorder, subjective well-366 

being, major depressive disorder, and risk taking) and physical activity phenotypes (i.e., overall 367 

activity, moderate activity, sedentary activity, sleep duration, and walking), respectively, to 368 

estimate pairwise genetic correlations within each construct (i.e., within mental health and within 369 

physical activity respectively). We also examined genetic correlations between mental health 370 

phenotypes and physical activity phenotypes adjusted for sex and BMI. We then applied gSEM 371 

to the covariance matrix of psychopathology and that of physical activity separately, allowing 372 

one single latent factor to load freely within each model. Metrics indicating model fit (i.e., CFI, 373 

comparative fit index; SRMR, standardized root mean squared residual) and factor loadings from 374 

each of these models were used to determine whether one common genetic factor fit the physical 375 

activity and mental health data well, respectively.  376 

Because our results indicated poor model fit for some gSEM analyses (see details below in 377 

Results section 3.3), we focused on the model of mental health, where “risk-taking” was 378 

excluded to generate a latent factor of “negative affect” across other phenotypes. Specifically, we 379 

explored genetic correlations between the latent factor of “negative affect” (i.e., without risk-380 
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taking) and each of the five physical activity phenotypes. In addition, we examined genetic 381 

correlations between “risk-taking” alone and each individual physical activity phenotype, using 382 

LDSR. False discovery rate correction was used to correct for multiple testing (N=10 tests). We 383 

also repeated analyses that returned significant results, with adjustment for sex and BMI. 384 

Adjusted summary statistics from Doherty and colleagues (2018) were used in these analyses.   385 

 386 

2.3.3.3 Causal relationships 387 

To examine plausible causal associations between physical activity phenotypes and negative 388 

affect, we conducted Latent Causal Variable Analysis (LCV). This approach finds a latent 389 

variable that mediates the genetic correlation between two traits, such as negative affect and 390 

sleep duration. Generally, if the latent variable has a stronger genetic correlation with trait 1 (e.g., 391 

sleep duration) than with trait 2 (e.g., negative affect), part of the genetic component of trait 1 is 392 

thought to be causal for trait 2. This partial causality can be quantified using the genetic causality 393 

proportion (GCP) of trait 1 (sleep duration) on trait 2 (negative affect), which can range between 394 

0 (no partial genetic causality) and 1 (full genetic causality) 67. The advantages of using LCV 395 

over the more traditional Mendelian Randomization for causal inference include increased power 396 

by leveraging SNPs across the genome and less susceptibility to confounding by horizontal 397 

pleiotropy 67. 398 

 399 

2.4 Confounding variables  400 

Based on the literature, BMI, smoking and drinking status were included as confounding factors 401 

in all statistical analyses for brain associations68,69. Age, sex, head motion during rs-fMRI 402 

acquisition (i.e., mean frame-wise displacement), time difference in days between accelerometer 403 

recording (i.e., start date) and assessment center visit date (i.e., acquisition date for both mental 404 

health questionnaire and rs-fMRI), as well as the scanning site were further included. Due to 405 

varying degrees of missingness in the confound variables (i.e., up to 22%), the same imputation 406 

procedure, as described in Section 2.2.2, was performed except that additional usage of 407 

multinomial logistic regression was employed to impute categorical data with more than two 408 

levels (i.e., smoking and drinking status). Complete observations from all variables including the 409 

confounding variables were used in the imputation procedure. When calculating the final 410 

predicted values to replace missing data, the predicted values for continuous variables were 411 
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averaged across 20 iterations and the level with the highest count across iterations was selected. 412 

All categorical variables after imputation were dummy coded for subsequent statistical analyses. 413 

In the genetic correlation analyses, to ensure robust test effects, we repeated models with 414 

significant results including sex and BMI as covariates.  415 

 416 

 417 

2.5 Data and Code Availability 418 

The UK Biobank data used in this study can be accessed by researchers upon application 419 

(https://www.ukbiobank.ac.uk/register-apply). A machine learning algorithm shared on github 420 

was used to extract physical activity measures 421 

(https://github.com/activityMonitoring/biobankAccelerometerAnalysis). The Matlab code for 422 

running permutation inference for CCA are also available on github, including the new extension 423 

for testing canonical variable loadings (https://github.com/andersonwinkler/PermCCA). We 424 

performed Pearson’s correlations and imputations in R (version 4.1.0) 70, using basic stat 425 

function and MICE package 47, respectively. Genetic analyses including LDSR and gSEM were 426 

performed using the GenomicSEM package also in R 66, with code available on github 427 

(https://github.com/GenomicSEM/GenomicSEM). LCV was performed using the open-source 428 

LCV software (https://github.com/lukejoconnor/LCV). We also shared the derived data from 429 

statistical analyses and code for producing the figures on the Open Science Framework 430 

(https://osf.io/p3fzv/). To note, the GWAS summary statistics used in the current study are hosted 431 

elsewhere, for which we only shared the downloading links. 432 

 433 

  434 
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3. Results (1,054 words) 435 

3.1 Correlations between mental health and physical activity measures 436 

In this sample, phenotypic measures of mental health and physical activity demonstrated overall 437 

small but significant correlations, with coefficients ranging between –0.08 and 0.11 (FDR-438 

corrected p-values ≤ 0.045). As shown in Table 1, the mental health measures (i.e., principal 439 

component scores of the seven principal components) were broadly associated with all physical 440 

activity measures. In particular, sleep showed the strongest association with the first principal 441 

component (PC1) of mental health such that greater sleep duration was associated with poorer 442 

overall mental health (i.e., loadings of PC1 were mostly negative as shown in Table S1) and 443 

walking had the greatest association with the fifth principal component (PC5) of mental health 444 

such that higher depression scores was linked to reduced walking time. The overall coefficient 445 

patterns were largely consistent for correlations between physical activity and mental health 446 

measures despite of minor differences across different time windows (i.e., overall, weekdays, 447 

weekend; see full correlations  in Table 1). 448 

 449 

 450 

3.2 Shared neural correlates of mental health and physical activity 451 

3.2.1 Brain associations with mental health and physical activity 452 

In simple CCA models (i.e., without accounting for the potentially shared variance in brain 453 

measures between physical activity and mental health), 2 and 3 significant canonical variate pairs 454 

were observed respectively for brain-mental health (r1=0.16, p1=0.001; r2=0.12, p2=0.001) and 455 

brain-physical activity associations (r1=0.23, p1=0.001; r2=0.15, p2=0.001; r3=0.13, p3=0.047). 456 

When controlling for the shared variance in brain measures between mental health and physical 457 

activity (i.e., unique models), we found 2 significant canonical variates for both brain-mental 458 

health (r1=0.14, p1=0.001; r2=0.12, p2=0.002) and brain-physical activity associations (r1=0.21, 459 

p1=0.001; r2=0.15, p2=0.001), with slightly decreased canonical correlation coefficients 460 

comparing to those from the simple models. The canonical variates for brain measures after 461 

accounting for the shared variance (i.e., from the unique models) mapped well with those from 462 

the simple models, as indicated by correlation coefficients between brain canonical variables (i.e., 463 

�; all r’s > 0.96; see full results in Table S2). These results are in line with our expectations that 464 

both mental health and physical activity are closely associated with the functional networks 465 

under investigation and that mental health and physical activity have shared variance in the 466 
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functioning of these networks, as indicated by the reduced canonical correlation coefficients 467 

from the unique models.  468 

 469 

3.2.2 Canonical loadings of brain measures  470 

Findings from the post-hoc analyses on the significant canonical variates showed considerable 471 

overlap between the brain measures with significant loadings associated with mental health and 472 

with physical activity. Overall, the amplitude of subnetworks that indicates the overall signal 473 

fluctuations in each subnetwork over time loaded higher than the edges, with the highest 474 

loadings on the amplitude of dorsal DMN or left CEN for the first canonical variates in both the 475 

mental health and physical activity models (permuted p-values ≤ 0.001; Figure 2). This 476 

suggested that the magnitude of fluctuations of intra-network signal (i.e., amplitude) had higher 477 

contributions to the observed canonical associations with both mental health and physical 478 

activity than the inter-network connectivity strength. The similar loading pattern of all brain 479 

measures were largely retained even when the shared variance was partialled out for mental 480 

health and for physical activity, respectively, in the unique models (permuted p-values ≤ 0.035). 481 

In addition to amplitude, connectivity between the dorsal DMN and left CEN (i.e., subnetwork 482 

edge) also exhibited statistically significant loadings in the first canonical variates of both the 483 

mental health and the physical activity models (simple and unique models; permuted p-values ≤ 484 

0.001; Figure 2). The brain variable loadings for the second canonical variate were highly 485 

similar between simple and unique models for either the mental health or physical activity 486 

models, with the amplitude and subnetwork edges showing evenly important involvement. Yet, 487 

the patterns of these loadings differed between the mental health and physical activity model 488 

(Figure S2).  489 

      490 

3.2.3 Canonical loadings of mental health questions and physical activities 491 

Canonical loadings of both individual mental health questions and physical activity types for the 492 

first canonical variate also exhibited similar patterns between the simple and unique models 493 

(Figure S3). In the models for brain-mental health associations, “risk taking” and “ever irritable/ 494 

argumentative for 2 days” had the highest loadings in both simple and unique models, whereas in 495 

the models for brain-physical activity associations, “walking” in all time windows (i.e., overall, 496 

weekdays, weekend) showed the greatest importance across models. Interestingly, among all 497 
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physical activity types, only “sleep” showed the opposite direction in canonical loadings (Figure 498 

S3). 499 

 500 

3.3 Genetic correlations 501 

3.3.1 Genetic correlations for individual phenotypes 502 

Pairwise LDSR was performed separately for psychopathological phenotypes and physical 503 

activity phenotypes. All results were significant after controlling for multiple comparisons, 504 

except for the genetic correlations between neuroticism and risk-taking (rg = 0.039, p = 0.075), 505 

and between subjective well-being and risk-taking (rg = 0.054, p = 0.146; Figure 3). Specifically, 506 

among psychopathological phenotypes, the smallest significant genetic correlation was observed 507 

for generalized anxiety disorder and risk-taking (rg = 0.151, p = 2.69e-05, FDR-corrected p-508 

value = 3.36e-05), and the largest effect was observed for MDD and generalized anxiety disorder 509 

(rg = 0.768, p = 2.62e-90, FDR-corrected p-value = 1.31e-89). For physical activity, genetic 510 

correlations ranged from -0.217 (p = 1.03e-04, FDR-corrected p-value = 1.03e-04) for sleep 511 

duration and walking to 0.796 (p = 1.77e-31, FDR-corrected p-value = 8.85e-31) for moderate 512 

and overall activity (Figure 3). Physical activity phenotypes adjusted for sex and BMI largely 513 

recapitulated these results, with genetic correlations ranging from -0.209 (p = 2.49e-04, FDR-514 

corrected p-value = 2.49e-04) for sleep duration and walking, to 0.780 (p = 2.12e-23, FDR-515 

corrected p-value = 1.06e-22) for moderate and overall activities.  516 

 517 

3.3.2 Genetic correlations for latent factors 518 

Analyses using gSEM across all mental health phenotypes returned results indicating suboptimal 519 

estimations with a low factor loading on risk taking from the model for a general 520 

psychopathology latent factor (standardized loading = 0.065), which likely reflected its 521 

conceptually distinct construct from all other phenotypes (i.e., depression, anxiety, neuroticism, 522 

and subjective well-being). Additionally, initial gSEM results for physical activity phenotypes 523 

indicated overall poor model fit (CFI = 0.569, SRMR = 0.160; Figure S4). Thus, we performed 524 

gSEM for psychopathological phenotypes grouped as one “negative affect” latent factor after 525 

excluding “risk-taking”, with an effective sample size of 571,170 and good model fit (CFI = 526 

0.987, SRMR = 0.0535; Figure S5). After correction for multiple testing, genetic variance in 527 

negative affect was significantly and positively correlated with sleep duration (rg = 0.121, p = 528 
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1.25e-05, FDR-corrected p = 1.25e-04), and negatively correlated with moderate (rg = -0.117, p 529 

= 1.33e-03, FDR-corrected p = 4.43e-03) and overall activity (rg = -0.085, p = 7.70e-04, FDR-530 

corrected p = 3.85e-03; Figure 4; also see the results for a latent negative affect factor including 531 

“risk-taking” in the Supplementary Results). No significant genetic correlation was observed 532 

between negative affect and sedentary activity or walking after multiple comparison corrections 533 

(|rgs| ≤ 0.062, p-values ≥ 0.036, FDR-corrected p-values ≥ 0.060; Table 3). Post-hoc analyses 534 

revealed that after adjustment for sex and BMI, only the genetic correlation between negative 535 

affect and sleep duration remained significant (rg = 0.122, p = 9.38e-06). Using LDSR, risk-536 

taking was genetically correlated with both overall activity and walking (|rgs| ≥ 0.074, ps ≤ 0.020, 537 

psFDR ≤ 0.040) but not moderate or sedentary activity or sleep duration (|rgs| ≤ 0.081, ps ≥ 538 

0.092). 539 

      540 

3.3.3 Latent Causal Variable Analysis. 541 

Results from the LCV analyses did not indicate causal relationships between any physical 542 

activity phenotypes and negative affect, in either direction (|GCPs| < 0.425; ps > 0.163). 543 

 544 

 545 

 546 

  547 
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4. Discussion (1,107 words) 548 

In this study, we investigated whether mental health and physical activity have shared brain and 549 

genetic architectures using the UK Biobank cohort. Our findings showed significant associations 550 

of mental health and physical activity separately with a set of brain measures that represent the 551 

connectivity strength and amplitude of subnetworks from the DMN, SN and CEN. Critically, 552 

these significant associations exhibited highly similar patterns of brain variable loadings across 553 

mental health and physical activity models even when the shared variance between these two 554 

constructs was accounted for, suggesting a potential overlap in brain network architecture 555 

between these two constructs. Further analyses examining genetic correlations for mental health 556 

and physical activity showed that negative affect exhibited significant genetic correlations with 557 

several physical activity types, of which sleep duration demonstrated the strongest genetic 558 

correlation that remained significant after controlling for BMI and sex effects. Together, these 559 

results support the presence of shared multivariate brain and genetic architectures between 560 

mental health and physical activity.  561 

The three intrinsic brain networks, namely the DMN, SN and CEN, have been consistently 562 

implicated in a wide range of psychiatric disorders including major depression and anxiety10. 563 

Interestingly, connections between or the configurations of these networks have also been 564 

associated with physical exercises71,72. The current study therefore focused specifically on the 565 

subnetworks from these large-scale networks and used the amplitude and connectivity strength 566 

(i.e., subnetwork edge) to examine the associations of these networks with mental health and 567 

with physical activity, respectively. In line with the literature, we observed significant 568 

multivariate associations for all three networks with either mental health or physical activity, and 569 

significant loadings on most of the subnetworks. In particular, the dorsal DMN and left CEN 570 

showed the greatest involvement in the observed brain associations with both mental health and 571 

physical activity (Figure 2). In this study, the dorsal DMN subnetwork primarily consisted of the 572 

posterior cingulate cortex (PCC) and the ventromedial prefrontal cortex (vmPFC), the two brain 573 

areas that are commonly considered as the core subsystem of the DMN73. Similarly, the 574 

subnetwork of the CEN here included two most typical hub regions: the dorsolateral prefrontal 575 

cortex (dlPFC) and posterior parietal cortex (PPC) for each individual hemisphere (Figure S1). 576 

These major hubs of the DMN and CEN have been implicated in various mental illnesses 577 

including depression and anxiety. For example, the PCC and mPFC have been suggested to 578 
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collectively support multiple cognitive functions including decision making and memory74, the 579 

impairment of which has often been reported in patients with major depression and anxiety 580 

disorders75–77. Additionally, the dlPFC is known to be involved in emotion regulation 78–80 and 581 

dysfunction of this region is often seen in abnormal processing of emotional experiences in 582 

patients with depressive and anxiety symptoms81,82. As for physical activity, increased dlPFC 583 

activity has been observed after acute physical exercises in participants with higher scores in the 584 

Stroop test83, whereas the involvement of the DMN subsystems in the medial temporal lobe 585 

(MTL) including the hippocampus and its connection with the medial PFC are often observed in 586 

relation to enhanced memory after physical exercises20,84,85. In our findings, the amplitude of 587 

dorsal DMN and left CEN that indicated the magnitude of fluctuations of intra-network signal 588 

(i.e., variance in the connections between PCC and vmPFC or between dlPFC and PCC), as well 589 

as the connectivity strength between these two subnetworks, showed significantly high loadings 590 

for the most critical association between brain measures and mental health measures (i.e., the 591 

first canonical variate). These observations are in line with separate literature on mental health 592 

and physical activity, and provide empirical evidence that mental health and physical activity 593 

may share brain architecture involved in major cognitive functions. 594 

Interestingly, mental health and physical activity also appear to have partially overlapping 595 

genetic architectures. In line with previous reports that internalizing problems are negatively 596 

genetically correlated with physical movement45, we showed that a latent negative affect factor 597 

capturing genetic covariance between subjective well-being, neuroticism, major depressive 598 

disorder, and generalized anxiety disorder was negatively genetically correlated with overall 599 

physical activity as well as a more fine-grained phenotype of moderate activity, and positively 600 

genetically correlated with sleep duration. Protective effects of physical activity on mental health 601 

have long been documented, as have negative health consequences of psychiatric disorders5–7,86. 602 

Here, we demonstrate that these relationships can be partially explained by shared genetic 603 

p redisposition, although results from our latent causal variable analysis indicate that these 604 

associations do not reflect causal influences. Interestingly, with the adjustment of sex and BMI, 605 

only the correlation with sleep duration remained significant. Sleep duration also showed the 606 

lowest loading onto a latent physical activity genetic factor (Figure S4). These results suggest 607 

that the sleep phenotype is somewhat distinct from the remaining physical activity phenotypes 608 

and that the shared genetic architecture between negative affect and sleep duration is more 609 
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pronounced than that between negative affect and the degree of daily physical or sedentary 610 

activity. This is in line with the frequent documentation of symptomatic sleep disturbances 611 

across forms of psychopathology, including depression and anxiety87,88, even in children89. 612 

Specifically, this aligns well with the literature showing reduced sleep duration in older adults 613 

with depression and anxiety disorders 
90–92

.   614 

Despite being the first to jointly investigate the shared brain network architecture and genetic 615 

basis of mental health and physical activity in a large population cohort, our study has some 616 

limitations. First, the brain measures in our study are derived from resting-state fMRI measures. 617 

Although our choice reflected a rich literature that has implicated these measures in both mental 618 

health and physical activity, addressing smaller-scale brain structures (e.g., specific regions) with 619 

relevant hypotheses and inclusion of multimodal brain measures such as structural gray matter 620 

volume, cortical thickness, and white matter integrity can provide complementary insights into 621 

brain architecture in relation to mental health and physical activity, and thus may be of interest 622 

for future investigations. Second, although the accelerometer recording took place prior to the 623 

acquisition of resting-state fMRI and mental health assessment for most of the participants in our 624 

study (i.e., 96%), the degrees of time difference between these measurements varied greatly at 625 

the individual level (i.e., ranging between -473 to 2281 days). This time discrepancy was 626 

accounted for in all CCA models as a covariate and cautions should be taken when interpreting 627 

the observed brain associations with reference to time effects. It should also be noted that the 628 

mean age of the current sample is relatively high as the UKB cohort comprises predominantly 629 

middle-to-late aged individuals. Our findings therefore should be interpreted carefully in the 630 

relevant context. Lastly, socioeconomic variables including education attainment can be relevant 631 

to mental health and physical activity phenotypes and inclusion of these variables as 632 

confounding factors may be considered in future investigations. 633 

 634 

In conclusion, our study jointly analyzed resting-state network measures and genetic correlations 635 

in a large cohort to test the hypothesis of a shared neurobiological basis of mental health and 636 

physical activity. Our findings revealed that multivariate patterns of brain correlates were highly 637 

similar between mental health and physical activity and highlighted genetic correlations between 638 

mental health (negative affect) and overall physical activity, moderate activity levels, and sleep 639 
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duration. Taken together, these findings point towards neural and genetic mechanisms that may 640 

subserve the protective influence of physical exercise and sleep on mental health.  641 

  642 
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Figure Legends 913 

 914 

Figure 1.      Overview of variables and analyses. Separate analyses were conducted for brain (left panel) and 915 

genetic associations (right panel). For brain associations, canonical correlation analysis (CCA) was employed for 916 

mental health (MH) and physical activity (PA) separately. Simple and unique CCA models only differed in whether 917 

the shared variance between MH and PA was accounted for. For genetic associations, GWAS summary statistics for 918 

5 mental health phenotypes (MHP1-MHP5) and for 5 physical activity phenotypes (PAP1-PAP5) were leveraged into 919 

pairwise linkage disequilibrium score regression (LDSR) analyses in MHP and PAP models separately. Genomic 920 

structural equation modeling (gSEM) was also employed to identify genetic associations between a latent factor 921 

from MH phenotypes and each of PA phenotype, followed by latent causal variable analysis (LCV) that allows for 922 

inferring causal genetic relationships among MH and PA phenotypes. 923 

 924 

 925 

Figure 2. Canonical loadings of brain measures on the first canonical variates. These loadings represent the 926 

linear correlation between the original brain measures (Y) and the first canonical variate (U) per model. Color 927 

coding was made for brain variable names along the Y axis (i.e., subnetwork edges in gray with “-” between 928 

subnetwork names and amplitude in orange), and for the bars representing canonical loadings (i.e., significance in 929 

cyan, insignificance in yellow). Simple and unique models differ in whether the model accounted for the shared 930 

variance in brain measures between mental health and physical activity. vDMN = ventral default mode network; R/L 931 

CEN = right/ left central executive network; PCu = precuneus; a/p SN = anterior/posterior salience network.  932 

 933 

 934 

Figure 3. Heatmap of bivariate genetic correlations. Pairwise genetic correlations were calculated separately for 935 

phenotypes of mental health (A) and those of physical activity (B). rg = genetic correlation coefficient, GAD = 936 

Generalized Anxiety Disorder, MDD = Major Depressive Disorder, Risk = Risk Tolerance, SWB = Subjective Well-937 

Being. 938 

 939 

 940 

Figure 4. Genetic correlations between negative affect and physical activity phenotypes. Significant genetic 941 

correlations with negative affect were observed for moderate (A), overall activities (B), and sleep duration (C). The 942 

latent negative affect factor loaded positively on neuroticism, major depression disorder (MDD) and general anxiety 943 

disorder (GAD) phenotypes, but negatively on the subjective well-being (SWB) phenotype. 944 

 945 

 946 

 947 

  948 
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Tables 949 

 950 

Table 1. Correlations between mental health and physical activity measures. 951 

Physical Activity 
Mental Health 

PC1 PC2 PC3 PC4 PC5 PC6 PC7 

Overall 

Sleep Duration -0.08* 0.04* 0.01 0.00 0.04* -0.01 0.03 

Sedentary -0.03* 0.07* 0.07* -0.02 -0.02 -0.03 0.03* 

Light Tasks 0.02 -0.02 0.01 -0.01 -0.04* -0.01 0.00 

Moderate -0.02 -0.06* 0.02 0.01 0.03* 0.04* 0.01 

Walking 0.01 -0.01 0.02 -0.03* -0.06* 0.00 0.04* 

Overall Activity  -0.06* 0.04* 0.03* -0.02 0.04* 0.01 0.08* 

MET -0.06* 0.10* 0.07* -0.03 -0.01 -0.05* 0.02 

Weekdays 

Sleep Duration -0.08* 0.04* 0.02 0.00 0.03* -0.01 0.03* 

Sedentary -0.05* 0.08* 0.08* -0.01 -0.04* -0.02 0.04* 

Light Tasks 0.01 -0.02 0.03 -0.03 -0.03* -0.01 0.01 

Moderate -0.02 -0.05* 0.03 0.01 0.02 0.03* 0.03 

Walking 0.02 0.00 0.04* -0.04* -0.09* -0.01 0.04* 

Overall Activity -0.05* 0.04* 0.06* -0.04* -0.01 0.00 0.07* 

MET -0.06* 0.11* 0.08* -0.03 -0.07* -0.04* 0.02 

Weekend 

Sleep Duration -0.06* 0.04* 0.00 0.00 0.02 -0.01 0.02 

Sedentary -0.02 0.05* 0.06* -0.02 -0.01 -0.02 0.02 

Light Tasks 0.02 -0.01 0.00 -0.01 -0.05* -0.02 -0.02 

Moderate -0.02 -0.04* 0.01 0.00 0.01 0.04* 0.00 

Walking 0.02 0.00 0.02 -0.03* -0.06* 0.00 0.04* 

Overall Activity -0.05* 0.04* 0.03 -0.02 0.03* 0.01 0.06* 

MET -0.05* 0.08* 0.05* -0.02 0.01 -0.04* 0.02 

Phenotypes of mental health were represented by the first seven principal components (i.e., PC1-PC7) 952 

that altogether explained 51.05% variance. Significant correlations are indicated by * after FDR 953 

corrections (i.e., all corrected p’s≤0.045) and negative correlation coefficients are highlighted with light 954 

grey shading 955 

 956 

 957 

Table 2. Summary statistics from GWAS studies. 958 

Reference Phenotype Dataset Sample Size SNP h2 

Nagel et al 201860 Neuroticism UK Biobank & PGC 390,279 0.10 

Levey et al 202061 GAD Million Veteran Program 199,611 0.056 

Okbay et al 201662 SWB Meta-analysis across 59 cohorts 298,420 0.040 

Howard et al 201963 
MDD 

UK Biobank & PGC 500,199 
0.11 

Levey et al 202164 Million Veteran Program 250,215 

Linnér et al 201965 Risk-taking UK Biobank 431,126 0.050 
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Doherty et al 201848 
Physical 

activities 
UK Biobank 91,105 0.10 – 0.21 

GAD = general anxiety disorder; SWB = subjective well-being; MDD = major depressive disorder; PGC 959 

= Psychiatric Genetics Consortium. 960 

 961 

Table 3. Genetic correlations between mental health and physical activity phenotypes. 962 

Mental Health Phenotype Physical Activity Phenotype rg p pFDR 

Risk Tolerance 

Sleep Duration -0.029 0.433 0.447 
Sedentary  -0.028 0.447 0.447 
Moderate  0.081 0.092 0.131 
Walking 0.115 4.95e-3 0.012 
Overall  0.074 0.020 0.040 

Negative Affect 

Sleep Duration 0.121 1.25e-5 1.25e-4 
Sedentary  -0.062 0.036 0.060 
Moderate  -0.117 1.33e-3 4.43e-3 
Walking -0.029 0.383 0.447 
Overall  -0.085 7.70e-4 3.85e-3 

Note, Significant results after FDR corrections were highlighted in bold. rg = genetic correlation, 963 

pFDR = FDR-corrected p-value. 964 

 965 

 966 

 967 
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