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Abstract

Tumor-Infiltrating Lymphocytes (TILs) have strong
prognostic and predictive value in breast cancer, but
their visual assessment is subjective. We present
MuTILs, a convolutional neural network architecture
specifically optimized for the assessment of TILs in
whole-slide image scans in accordance with clinical
scoring recommendations. MuTILs is a concept
bottleneck model, designed to be explainable and to
encourage sensible predictions at multiple
resolutions. Our computational scores match visual
scores and have independent prognostic value in
invasive breast cancers from the TCGA dataset.

Introduction

Tumor-Infiltrating Lymphocytes (TILs) are an
important prognostic and predictive biomarker in
basal and Her2+ breast carcinomas [1]. The stromal
TILs score is the fraction of stroma within the tumor
bed occupied by lymphoplasmacytic infiltrates (Fig 1).
TILs are assessed visually by pathologists through
examination of formalin-fixed paraffin-embedded,
hematoxylin and eosin (FFPE H&E) stained slides
from tumor biopsies or resections. They are subject to
considerable inter- and intraobserver variability, and
hence a set of standardized recommendations was
developed by the international Immuno-Oncology
Working Group [2,3]. Nevertheless, observer
variability remains a critical limiting factor in the
widespread clinical adoption of TILs in research and
clinical settings. Therefore, a set of recommendations
was published for developing computational tools for
TILs assessment [4]. This brief report describes the
development and validation of MuTILs, an explainable
deep-learning model for the evaluation of TILs.

Methods

MuTILs jointly segments tissue regions and cell nuclei
and extends our earlier work on this topic (Fig 2) [5]. It
comprises two parallel U-Nets (each with a depth of
5) for segmenting regions and nuclei at 1 and 0.5
microns-per-pixel (MPP), respectively [6]. Inspired by

the HookNet architecture, information is passed from
the region branch down to the nucleus branch to
provide low-power context [7]. Additionally, we
employed a series of constraints to promote
compatible, biologically sensible predictions.

We relied on images from 125 infiltrating ductal
breast carcinoma patients from the BCSS and NuCLS
datasets [8,9]. Additionally, we supplemented the
training set with annotations from 85 slides from the
Cancer Prevention Study II cohort [10]. The slides
were separated into training and testing sets using
5-fold internal-external cross-validation, using the
same folds as the NuCLS modeling paper [9,11]. For
training, we extrapolated the nuclear labels from the
small ~256x256 pixel high-power fields to large
1024x1024 pixel regions of interest (ROIs) by using
NuCLS models to perform inference on the same
slides they were trained on to obtain bootstrapped
“weak” labels. Generalization results presented here
use manual labels (Fig 3).

For whole-slide image (WSI) inference, we relied on
data from 305 breast carcinoma patients for
validation, 269 of whom were infiltrating ductal
carcinomas, and 156 were Her2+. Visual scores were
assessed by one pathologist (RS) and used as the
baseline. The WSI accession and tiling workflow used
the histolab and large_image packages and included:
1. Tissue detection; 2. Detection and exclusion of
empty space and markers/inking; 3. Tiling the slide
and scoring tiles at a very low resolution (2 MPP); 4.
Analyzing the top 300 tiles [12,13]. Fixing the number
of analyzed ROIs ensured a near-constant run time of
less than two hours per slide. Low-resolution tiles with
a high composition of cellular (hematoxylin-rich) and
acellular (eosin-rich) regions received a higher
informativeness score. This favored tiles with more
peritumoral stroma. Color deconvolution was
performed using the Macenko method from the
HistomicsTK package [14,15]. Each of the top
informative tiles was assigned one of the trained
MuTILs models in a grid-like fashion. This scheme
acted as a form of ensembling without increasing the
overall inference time.
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Trained MuTILs models were then used to segment
tissue and nuclear components. A euclidean distance
transform was applied to detect stroma within 32
microns from the tumor boundary. The fraction of
image pixels occupied by this peritumoral stroma was
considered a saliency score. We assessed the
following variants of the TILs score (Fig 1):
1. Number of TILs / Stromal area (nTSa)
2. Number of TILs / Number of cells in stroma (nTnS)
3. Number of TILs / Total Number of cells (nTnA)

We obtained these score variants both globally
(aggregating region and nuclear counts from all ROIs)
and through saliency-weighted averaging of scores
obtained for each ROI independently. A simple linear
calibration was then used to ensure the scores
occupied a similar range as the visual scores.

Results

Table 1 shows the region segmentation and nucleus
classification accuracy on the testing sets. MuTILs
achieves high accuracy for stromal region
segmentation (DICE=80.8±0.4), as well as the
classification of fibroblasts (AUROC=91.0±3.6),
lymphocytes (AUROC=93.0±1.1), and plasma cells
(AUROC=81.6±6.6) — all contributors to the
computational TILs score. This accuracy is also
supported by qualitative examination of model
predictions on both the ROIs from BCSS and NuCLS
datasets (Fig 3) and the full WSI (Fig 4).
Computational TILs score variants had a
modest-to-high correlation with the visual scores
(Spearman R ranges between 0.55 - 0.58) (Fig 5).
Some slides were outliers with discrepant visual and
computational scores; the causes for this discrepancy
are discussed below. Both global and ROI
saliency-weighted scores were significantly correlated
with the visual scores (p<0.001).

We examined the prognostic value of MuTILs on
infiltrating ductal carcinomas and Her2+ carcinomas.
While we had access to visual scores from the basal
cohort, the number of outcomes was limited, and
neither visual nor computational scores had
prognostic value. Progression-free interval (PFI) is the
endpoint used per recommendations from Liu et al.
for TCGA, with progression events including local and
distant spread, recurrence, or death [16]. First, we
examined the Kapan-Meier curves for patient
subgroups using a TILs-score threshold of 10% for
stromal TILs score and the median value for the nTnA
computational score variant (Fig 6). Both visual and
computational scores had good separation within the
infiltrating ductal cohort, although only the nTnS and
nTnA computational scores had significant log-rank

p-values (p=0.009 and p=0.006, respectively). Within
the Her2+ cohort, all metrics had good separation on
the Kaplan-Meier, although the visual score had a
borderline p-value. All computational scores were
significant within this cohort (p=0.018 for nTSa,
p=0.002 for nTnS, and p=0.006 for nTnA).

We also examined the prognostic value of the
continuous (untresholded) TILs scores using Cox
proportional hazards regression, with and without
controlling for clinically-salient covariates including
patient age, AJCC pathologic stage, histologic
subtype, and basal status (Table 2). Within the
infiltrating ductal cohort, the only metric with
significant independent prognostic value on
multivariable analysis was the nTnS computational
score. Within the Her2+ cohort, the visual score was
not independently prognostic (p=0.158), while the
computational scores all had independent prognostic
value, with the most prognostic being the nTnS
variant (p=0.003, HR<0.001). Saliency-weighted ROI
scores almost always had better prognostic value
than global computational scores.

Discussion

MuTILs is a concept bottleneck model; it learns to
predict the individual components that contribute to
the TILs score (i.e., peritumoral stroma and TILs cells)
and uses those to make the final predictions [17]. This
setup makes its predictions explainable and helps
identify sources of error.

The region constraint helped provide context for
the nuclear predictions at high resolution, which
helped reduce misclassification of immature
fibroblasts and plasma cells as cancer (Fig 7). A
qualitative examination of slides with discrepant visual
and computational TILs scores shows there are three
major contributors to discrepancies:
1. Misclassifications of some benign or low-grade
tumor nuclei as TILs.
2. Variations in TILs density in different areas within
the slide, which causes inconsistencies in visual
scoring. This phenomenon is also a well-known
contributor to inter-observer variability in visual TILs
scoring [3].
3. Variable influence of tertiary lymphoid structures on
the WSI-level score.

Our results show that the most prognostic TILs
score variant (nTnS) is derived from dividing the
number of TILs cells by the total number of cells
within the stromal region. The visual scoring
guidelines rely on the nTSa, which is reflected in the
slightly higher correlation of the nTSa variant with the
visual scores compared to nTnS [2]. So why is nTnS
more prognostic than nTSa? There are two potential
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explanations. First, it may be that nTnS is better
controlled for stromal cellularity since it would be the
same in low- vs. high-cellularity stromal regions as
long as the proportion of stromal cells that are TILs is
the same. Second, nTnS may be less noisy since it
relies entirely on nuclear assessment at 20x objective,
while stromal regions are segmented at half that
resolution.

Finally, we note that this validation was done only
using the TCGA cohort, and future work will include
validation on more breast cancer cohorts. In addition,
we note that MuTILs has limited ability to distinguish
cancer from normal breast tissue at low resolution,
which may necessitate manual curation of the
analysis region, especially for low-grade cases.

Conclusion

MuTILs is a lightweight deep learning model for
reliable computational assessment of TILs scores in
breast carcinomas. It jointly classifies tissue regions
and cell nuclei at different resolutions and uses these
predictions to derive patient-level TILs scores. We
show that MuTILs can produce predictions that have
good generalization for the predominant tissue and
cell classes relevant for TILs scoring. Furthermore,
computational scores are significantly correlated with
visual assessment and have strong independent
prognostic value in infiltrating ductal carcinoma and
Her2+ breast cancer.
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Table 1. Generalization accuracy for region segmentation and nucleus classification using manual ground truth. Results are
on testing sets from the internal-external 5-fold cross-validation scheme (separation by hospital). Fold 1 contributed to
hyperparameter tuning, so it is not included in the mean and standard deviation calculation. MuTILs achieves a high classification
performance for components of the computational TILs score. Region segmentation performance is variable and class-dependent,
with the predominant classes (cancer, stroma, and empty) being the most accurate. The region constraint improves nuclear
classification accuracy by ~2-3% overall, mainly by reducing misclassification of immature fibroblasts and large TILs/plasma cells as
cancer (see qualitative examination figure).
* Classes that contribute to the computational TILs score.
† Performance for Necrosis/Debris and TILs-dense regions is modest, primarily because of the inherent subjectivity of the task and
variability in the ground truth. For example, how dense should the infiltrate be to be considered “dense”? Necrotic regions also often
have TILs infiltrates at the margin or adjacent areas of fibrosis, which are inconsistently labeled as necrosis, stroma, or TILs-dense
in the ground truth. Nonetheless, the classification of cells/material that comprise necrotic regions (neutrophils, apoptotic bodies,
debris, etc.) is reasonable at higher magnification.
‡ From the table, it is clear that the model essentially fails to segment normal breast acini at 10x magnification. This failure is likely
caused by: 1. The low representation of normal breast tissue in the validation data from NuCLS and BCSS datasets; 2.
Inconsistency in defining “normal,” which is sometimes used in the sense of “non-cancer” (including benign proliferation), and
sometimes only refers to terminal ductal and lobular units (TDLUs). At high resolution, the distinction between cancer versus
normal/benign epithelial nuclei is reasonable.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean Std

Regions at 10x objective (DICE)

Cancer 84.4 82.1 83 82.8 82.8 82.7 0.4

Normal ‡ 1.6 2.3 2.1 2.3 2.3 2.3 0.1

Stroma * 81.3 80.2 81 80.8 81 80.8 0.4

TILs-dense † 64.8 64 65.3 65.6 65.6 65.1 0.8

Necrosis/Debris † 64.1 55.6 56.7 57.3 57.1 56.7 0.8

Empty 83.5 83.5 84 84.2 84.3 84.0 0.4

Nuclei at 20x objective (AUROC)

Cancer 96.5 97.2 98 97.4 91.1 95.9 3.2

Normal ‡ 84.6 89.3 80 74.7 82.2 6.3

Fibroblast * 90.4 93 91.8 93.5 85.8 91.0 3.6

Lymphocyte * 93.3 92.3 93.6 91.9 94.2 93.0 1.1

Plasma Cell * 80.9 73.5 88 78.9 85.8 81.6 6.6

Debris † 82.8 84.9 80.1 93.9 57.1 79.0 15.7

Micro-avg. 91.9 92.2 95.6 93.5 88.9 92.6 2.8

Macro-avg. 85.4 83.9 86.3 85.2 75.3 82.7 5.0

Nuclei without region constraint (AUROC)

Micro-avg. 90.5 91.1 95.4 91.9 86.2 91.2 3.8

Macro-avg. 84.5 78.1 86.9 81.5 73.1 79.9 5.8
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Table 2. Cox regression survival analysis of the predictive value of visual and computational TILs scores for breast cancer progression. The analysis was restricted to slides
where visual TILs scores were available for a fair comparison. In the multivariable setting, each metric was part of an independent model along with clinically-salient covariates. We
controlled all multivariable models for patient age and AJCC pathologic stage I and II status. Additionally, we controlled models using the infiltrating ductal carcinoma subset for basal
genomic subtype status, and we controlled models using the Her2+ subset for infiltrating ductal histologic subtype status. Significant p-values are outlined in bold, using a significance
threshold of 0.05. The * symbol indicates values < 0.001. Abbreviations used: HR, Hazard Ratio; 95%CI, upper and lower bounds of the 95% confidence interval; C-index,
concordance index; No., number; Avg, weighted average.

Metric Type
Univariable Multivariable

HR 95% CI P-value C-index HR 95% CI P-value C-index

Infiltrating ductal carcinoma (N=269)

Visual score 0.466 0.074 2.951 0.418 0.520 0.334 0.039 2.881 0.318 0.681

No of TILs / Stromal area Global * * 0.287 0.548 * * * 0.321 0.667

No of TILs / No of cells in stroma Global 0.098 0.004 2.711 0.170 0.546 0.081 0.002 3.428 0.188 0.670

No of TILs / Total No of cells Global 0.078 * 16.98 0.353 0.526 0.073 * 29.87 0.393 0.667

No of TILs / Stromal area ROI avg. * * 0.159 0.577 * * * 0.192 0.668

No of TILs / No of cells in stroma ROI avg. 0.005 * 0.832 0.042 0.600 0.002 * 0.722 0.038 0.675

No of TILs / Total No of cells ROI avg. 0.001 * 11.56 0.151 0.579 0.001 * 18.33 0.164 0.679

Her2+ carcinoma (N=156)

Visual score 0.073 0.001 3.919 0.198 0.581 0.029 * 3.952 0.158 0.725

No of TILs / Stromal area Global * * 0.039 0.644 * * * 0.011 0.816

No of TILs / No of cells in stroma Global * * 0.201 0.015 0.673 * * 0.057 0.007 0.813

No of TILs / Total No of cells Global * * 0.719 0.045 0.621 * * 0.001 0.007 0.800

No of TILs / Stromal area ROI avg. * * 0.020 0.679 * * * 0.010 0.837

No of TILs / No of cells in stroma ROI avg. * * 0.010 0.005 0.704 * * 0.002 0.003 0.837

No of TILs / Total No of cells ROI avg. * * 0.014 0.021 0.660 * * * 0.006 0.833
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Figure 1. Components of various variants of the computational TILs score.

Figure 2. MuTILs model architecture. a. The MuTILs architecture utilizes two parallel U-Net models to segment regions at 1 MPP
and nuclei at a 0.5 MPP resolution. Inspired by HookNet, we passed information down from the low-resolution branch to the
high-resolution branch by concatenation. Additionally, region predictions from the low-resolution branch are upsampled and used to
constrain the nucleus predictions in the high-resolution branch. The model was trained using a multi-task loss that gives equal
weight to ROI and HPF region predictions, unconstrained HPF nuclear predictions, and region-constrained nuclear predictions. b.
Region predictions are used to constrain nucleus predictions to enforce compatible cell predictions through class-specific attention
maps. Attention maps are derived by modeling the nucleus class prior probability as a linear combination of the corresponding
region probability vector. User-defined manual compatibility kernels mask out incompatible predictions.
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Figure 3. Reconciliation of manual region and nucleus ground truth for model validation. Each high power field from the
pathologist-corrected single-rater NuCLS dataset was padded to 1024x1024 at 0.5 MPP resolution (20x objective). As a result, each
ROI had region segmentation for the entire field (from the BCSS dataset) and nucleus segmentation and classification for the central
portion (from the NuCLS dataset). Note that the nucleus ground truth contains a mixture of bounding boxes and segmentation. The
fields shown here are from the testing sets.
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Figure 4. Sample whole-slide predictions from trained MuTILs models. The predictions show full WSI inference for illustration.
Our analysis, however, only admitted the 300 most informative ROIs to the MuTILs model to ensure a constant run time of less than
two hours per slide for practical applicability. ROI “informativeness” was measured at a very low resolution (2 MPP) during WSI tiling
and favored ROIs with more peritumoral stroma.
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Figure 5. Correlation between visual and computational TILs assessment scores. Visual scores were obtained from one
pathologist using clinical scoring recommendations from the TILs Working Group. MuTILs is a concept bottleneck model with a
strong emphasis on explainability; it segments individual regions and nuclei, which are then used to calculate the computational
scores. Two variants of computational scores were obtained: either the number of stromal TILs was divided by the stromal region
area, or the number of TILs was divided by the total number of cells within the stromal region. We then calibrated these numbers to
the visual scores for easy comparison. While this scatter plot shows the calibrated scores, the correlation coefficients were obtained
using the raw scores to avoid optimistic results. Each point represents a single patient. Points in red are outliers that contributed to
the correlation metric but not to the calibration. a. Computational scores are computed globally by aggregating data from all ROIs. b.
Computational scores are computed independently for each ROI, and the slide-level score is calculated by weighted averaging.

Figure 6. Kaplan-Meier analysis of visual and computational TILs assessment in predicting breast cancer progression. A
threshold of 10% was used for visual and calibrated computational scores consistent with some of the research literature. Note that
there is no recommended threshold for stromal TILs scoring, and so these results should be considered along with continuous
results used in Cox regression modeling. For comparison, we also included a metric that looks into the predictive value of TILs when
the denominator includes all cells, not just those in the stromal compartment. All metrics were obtained by weighted averaging of
computational scores from 300 ROIs.
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Figure 7. Qualitative examination of sample testing set predictions and sources of misclassification. The training dataset
contained several subclassifications for region and nuclear data with unreliable or variable ground truth. Hence, we assessed
performance at the level of grouped classes with reliable ground truth (tumor, stroma, TILs) at evaluation. The low
representativeness of normal breast acini in training makes raw MuTILs predictions unreliable for differentiating normal and
cancerous epithelial tissue (bottom row). This issue can be mitigated by expanding the training set or downstream modeling of
architectural patterns, which is beyond the scope of this work. Note how the region constraint improves nuclear classifications (third
vs fourth column). This improvement is most notable for large TILs (first row) and immature fibroblasts (second row), which are
misclassified as cancer without the region constraint.
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