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Abstract  
 
Schizophrenia (SZ) is associated with an increased risk of life-long cognitive impairments, age-

related chronic disease, and premature mortality. We investigated evidence for advanced brain 

ageing in adult SZ patients, and whether this was associated with clinical characteristics in a 

prospective meta-analytic study conducted by the ENIGMA Schizophrenia Working Group. The 

study included data from 26 cohorts worldwide, with a total of 2803 SZ patients (mean age 34.2 

years; range 18-72 years; 67% male) and 2598 healthy controls (mean age 33.8 years, range 18-

73 years, 55% male). Brain-predicted age was individually estimated using a model trained on 

independent data based on 68 measures of cortical thickness and surface area, 7 subcortical 

volumes, lateral ventricular volumes and total intracranial volume, all derived from T1-weighted 

brain magnetic resonance imaging (MRI) scans. Deviations from a healthy brain ageing trajectory 

were assessed by the difference between brain-predicted age and chronological age (brain-

predicted age difference [brain-PAD]). On average, SZ patients showed a higher brain-PAD of 

+3.64 years (95% CI: 3.01, 4.26; I2 = 55.28%) compared to controls, after adjusting for age and sex 

(Cohen’s d = 0.50). Among SZ patients, brain-PAD was not associated with specific clinical 

characteristics (age of onset, duration of illness, symptom severity, or antipsychotic use and dose). 

This large-scale collaborative study suggests advanced structural brain ageing in SZ. Longitudinal 

studies of SZ and a range of mental and somatic health outcomes will help to further evaluate the 

clinical implications of increased brain-PAD and its ability to be influenced by interventions. 
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Introduction  
 

Schizophrenia (SZ) is associated with an increased risk of premature mortality, with an average 

decrease in life expectancy of approximately 15 years [1–3]. This is partially accounted for by 

suicidal behaviour or accidental deaths, as well as poor somatic health, including cardiovascular 

and metabolic disease [4–6]. The high prevalence of physical morbidity, long-term cognitive decline, 

and excess mortality seen in SZ may partly be the result of “accelerated” ageing (i.e., a biological 

age which “outpaces” chronological age) [7–9]. An increasing number of studies report systemic, 

age-related biological changes in SZ patients, including elevated levels of oxidative stress, 

inflammation and cytotoxicity [10, 11]. There is also evidence for progressive brain changes in gray 

and white matter structures that may begin around or after illness onset [12–18], which may, in part, 

reflect deviations from normal brain ageing trajectories.  

 

Although chronological age can be predicted accurately with neuroimaging data using machine 

learning, discrepancies can occur between brain-predicted age (also known as “brain age”) and 

chronological age [19]. This can be referred to as brain-predicted age difference (brain-PAD). A 

brain-PAD larger than zero indicates a brain that appears “older” than the person’s chronological 

age, whereas a brain-PAD lower than zero reflects a “younger” brain than expected at a given 

chronological age. Higher brain-PAD scores have been associated with a wide range of health-

related lifestyle factors and outcomes, including smoking, higher alcohol intake, obesity (or higher 

BMI), cognitive impairments, major depression, type 2 diabetes, and early mortality [20–25].  

 

To our knowledge, only a few studies have investigated brain age in adults with SZ using various 

machine learning algorithms or imaging (gray and/or white matter) measures. A higher brain-PAD 

was consistently shown in SZ patients relative to healthy individuals, with reported scores varying 

from +2.6 to 7.8 years across studies [26–31]. Furthermore, a greater brain-PAD was observed in 

first-episode SZ patients [26], and longitudinal data suggests that this gap widens predominantly 

during the first years after illness onset [29]. As these prior studies were performed with relatively 
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small to moderate sample sizes (range: 43-341 patients), it is important to examine whether brain 

age findings in SZ can be generalised through large-scale studies consisting of many independent 

samples worldwide. Two recent mega-analyses with up to 1110 SZ patients across multiple cohorts 

found a moderate increase in brain-PAD derived from structural T1-weighted MRI (Cohen’s d=0.51) 

[32] and diffusion tensor imaging (Cohen’s d=0.29) [33], respectively. Validation of those findings, 

as well as identifying which clinical characteristics or other factors may underlie advanced brain 

ageing in SZ, could have diagnostic and prognostic implications for patients. 

 

Here, we set out to investigate brain age in over 5000 individuals from the Schizophrenia Working 

Group within the Enhancing Neuro-Imaging Genetics through Meta-analysis (ENIGMA) consortium 

(26 cohorts, 15 countries), covering almost the entire adult lifespan (18-73 years). We employed a 

recently developed multisite brain ageing algorithm based on FreeSurfer-derived gray matter 

regions of interest (ROIs) [24] to examine brain-PAD differences between SZ patients and healthy 

controls in a prospective meta-analysis. We hypothesised significantly higher brain-PAD in SZ 

patients, compared to controls. In addition, we assessed whether a higher brain-PAD in SZ patients 

was associated with clinical characteristics, such as age of onset, length of illness, symptom 

severity, and antipsychotic treatment.  

 
 
Methods 
 

Study samples  
 

Twenty-six cohorts from the ENIGMA SZ working group with cross-sectional data from SZ patients 

(N=2803) and healthy controls (N=2598) were included in this study (18-73 years of age). Details 

of demographics, location, clinical characteristics (including methods for data harmonization), and 

inclusion/exclusion criteria for each cohort may be found in Supplementary Information 

(Supplementary Tables S1-3, Supplementary Figure S1, and Supplementary Material). All sites 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.10.21267840doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.10.21267840
http://creativecommons.org/licenses/by-nc-nd/4.0/


Constantinides et al. Brain ageing in SZ (ENIGMA) 

 7 

obtained approval from the appropriate local institutional review boards and ethics committees, and 

all study participants provided written informed consent.  

 

Image acquisition and pre-processing  
 

Structural T1-weighted brain MRI scans of each participant were acquired at each site. We used 

standardized protocols for image analysis and feature extraction (Nfeatures = 153) across multiple 

cohorts (http://enigma.ini.usc.edu/protocols/imaging-protocols/). FreeSurfer [34] was used to 

segment and extract volumes bilaterally for 14 subcortical gray matter regions (nucleus accumbens, 

amygdala, caudate, hippocampus, pallidum, putamen, and thalamus), 2 lateral ventricles, along 

with 68 regional cortical thickness and 68 regional cortical surface area measures, and total 

intracranial volume (ICV). Cortical parcellations were based on the Desikan/Killiany atlas [35]. 

Segmentations were visually inspected and statistically examined for outliers. Further details of 

image acquisition parameters, software descriptions, and quality control may be found in 

Supplementary Table S4 and Supplementary Material.  

 

Brain age prediction  
 

We used the publicly available ENIGMA brain age model (https://www.photon-

ai.com/enigma_brainage). As described and discussed in Han et al. [24], brain age models were 

developed separately for males and females. The training samples were based on structural brain 

measures from 952 males and 1236 female healthy individuals (18-75 years of age) from the 

ENIGMA Major Depressive Disorder (MDD) group. There is no known participant overlap between 

the training samples and the participant data used in this work. Briefly, FreeSurfer measures from 

the left and right hemispheres were combined by calculating the mean ((left + right)/2)) of volumes 

for subcortical regions and lateral ventricles, and thickness and surface area for cortical regions, 

resulting in 77 features. The 77 average structural brain measures were used as predictors in a 

multivariable ridge regression to model chronological age in the healthy training samples 

(separately for males and females), using the Python-based sklearn package [36]. Model 

performance was originally validated in training samples (through 10-fold cross-validation) and out-
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of-sample controls. For more detailed information on the training samples, model development, 

and validation, see Supplementary Material and Han et al. [24]. Here, the parameters from the 

trained model were applied to our test samples of healthy controls and SZ patients to obtain brain-

based age estimates for each cohort. To assess the model’s generalization performance in the test 

control samples, we calculated the (1) mean absolute error (MAE) between predicted brain age 

and chronological age, the (2) Pearson correlation coefficients between predicted brain age and 

chronological age (r), and (3) the proportion of chronological age variance explained by the model 

(R2).  

 
Statistical analyses 
 

Brain-PAD (predicted brain-based age minus chronological age) was calculated for each 

participant and used as the outcome variable. While different prediction models were built for males 

and females, the generated brain-PAD values were pooled across sex for subsequent statistical 

analyses within each cohort. Each dependent measure of the ith individual was modelled as follows:  

 

(1) brain-PADi = intercept + β1(Dxi) + β2(sexi) + β3(agei) + β4(agei
2

) + εi  

 

Where Dx represents diagnostic status for SZ. We corrected for the well-documented systematic 

age bias in brain age prediction (see Supplementary Material for brief explanation of this issue) 

[37, 38], as well as for potential confounding effects of age and sex in our test samples, by adding 

age, quadratic age (age2), and sex as covariates to our statistical models. We included both linear 

and quadratic age covariates in the same model as this provided a significantly better model fit to 

previous data compared with models including a linear age covariate only [24]. 

  
Within SZ patients, we also used linear models to examine associations between brain-PAD and 

clinical characteristics (CC): 

(2) brain-PADi = intercept + β1(CCi) + β2(agei) + β2(agei
2

) + εi 
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where “CC” represents either age of onset, illness duration (time from age-of-onset to time of 

scanning), SZ symptomatology at study inclusion (including Scale for the Assessment of Negative 

Symptoms – SANS Global, Scale for the Assessment of Positive Symptoms – SAPS Global, and 

Positive and Negative Syndrome Scale – PANSS Total), antipsychotic (AP) medication use at time 

of scanning (typical/atypical/both/none) or chlorpromazine (CPZ) dose equivalents (mg per day). 

All analyses were also repeated while covarying for handedness (right/left/ambidextrous). Cohorts 

with less than 5 healthy controls or SZ patients with respect to each clinical characteristic were 

excluded from the main or additional analyses (for exclusions, see Supplementary Material). 

 
Cohort-specific results were then meta-analysed using the rma function in the metafor package 

[39]. Random (or mixed) effects models were fitted using restricted maximum likelihood estimation 

and inverse-variance weighting. Statistical tests were two-sided, and results for the effects of 9 

clinical characteristics among SZ patients were false discovery rate (FDR) corrected (using the 

Benjamini-Hochberg procedure) and considered statistically significant at α < 0.05. In addition, as 

some cohorts were on average younger (or older) than others, or collected through multiple 

scanning sites (ASRB, FBIRN, Huilong, MCIC, MPRC, PAFIP) or different MRI scanners, post-hoc 

meta-regressions were performed to explore between-study heterogeneity in effect size with 

respect to the number of scanning sites (i.e., single vs. multi-site status), scanner field strength 

(i.e., 1.5T vs. 3T MRI), or mean sample age (across cases and controls). 

 
Finally, to better understand the contribution or importance of individual structural brain measures 

for making brain age predictions, we calculated Pearson’s correlation coefficients between brain-

predicted age and each of the 77 FreeSurfer features in each cohort. A weighted average by 

sample size across cohorts was then calculated for each correlation coefficient and plotted on 

cortical maps for illustrative purposes only. Correlation analyses were also conducted separately 

for SZ patients and healthy controls.  
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Results 
 

Sample characteristics 
 
Demographics and clinical characteristics across cohorts can be found in Table 1. Mean age 

weighted by sample size (range) across SZ patient and healthy control cohorts was 34.22 (18.36-

43.66) and 33.82 (22.58-41.41) years, respectively. Patient and control cohorts were on average 

67.32% (43.75-100) males and 54.89% (38.46-100) females, respectively. Weighted mean age of 

onset and duration of illness across patient cohorts were 24.75 (17.55-29.99) and 10.83 (0.62-

18.87) years. Mean symptom severity (PANSS total) was 62.41 (33.38-93.12). For cohorts where 

current antipsychotic medication type information was available, the weighted mean percentage of 

patients on first-generation (typical), second-generation antipsychotics (atypical), both typical and 

atypical, or no antipsychotic medication was 10.05%, 67.65%, 14.73% and 7.57%, respectively. 

 

Brain age prediction performance  
 

In controls, the weighted average MAE across cohorts was 7.60 (SE = ± 0.40) and 8.45 (SE = ± 

0.46) years for males and females, respectively (Supplementary Figs. S2a-b). Within the SZ group, 

the MAE was 10.14 (SE = ± 0.52) and 9.61 (SE = ± 0.54) years for males and females, respectively 

(Supplementary Figs. S2c-d). Correlations between chronological age and predicted brain age 

were moderate to large in controls (males r = 0.64, and females r = 0.63; both R2 = 0.41), and in 

SZ patients (males r = 0.58, and females r = 0.62; both R2 = 0.33) (Supplementary Figs. S3a-d).  

 

Table 1. Participant characteristics for patients and controls across cohorts.  

 
Characteristic 

Weighted mean (range) 1 
 

K 

 SZ HC  

Mean % males 67.32% (43.75-100) 54.89% (38.46-100) 26/25  

Mean age in (years) 34.22 (18.36-43.66) 33.82 (22.58-41.41) 26/25 

Mean age of onset (in years) 24.75 (17.55-29.99) - 21/- 

Mean duration of illness (in years) 10.83 (0.62-18.87) - 21/- 

Mean symptom severity (PANSS total) 62.41 (33.38-93.12) - 20/- 

Mean SANS global 7.94 (3.64-14.06) - 22/- 

Mean SAPS global 6.72 (1.41-12.53) - 21/- 

Antipsychotic medication 2    21/- 

Mean % Atypical 67.65% (0.00-93.00) -  
Mean % Typical 10.05% (0.00-90.24) -  
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Mean % Both atypical & typical 14.73% (0.00-100) -  

Mean % None 7.57% (0.00-53.62) -  
Mean CPZ-equivalent dose 414.30 (167.88-1367.94) - 19 

Handedness   20/19 

   Mean % Right 91.15% (81.16-100) 91.05% (81.82-100)  

   Mean % Left 6.00% (0.00-14.49) 6.45% (0.00-18.18)  

  Mean % Ambidextrous 2.85% (0.00-11.1) 2.49% (0.00-11.67)  

Notes: 
1 Unless otherwise specified, means are weighted by the number of participants per group (SZ or HC) per cohort. 
For continuous variables, range indicates the smallest and largest mean value across cohorts . For categorical 
variables (percentages), range indicates the smallest and largest proportion of participants in each category across 
cohorts. 
2 Mean percentages are weighted based on the number of SZ patients with recorded antipsychotic type at each 
cohort.  
SZ: patients; HC: healthy controls; K: data available for K number of cohorts; SANS: Scale for the Assessment of 
Negative Symptoms; SAPS: Scale for the Assessment of Positive Symptoms; PANSS: Positive and Negative 
Syndrome Scale; CPZ: chlorpromazine 

 
 
 

Brain age differences between SZ and controls  
 
Weighted mean brain-PAD scores were +4.39 years (SE= ±0.84) in the control group and +7.74 

years (SE= ±0.94) in the SZ group. On average, brain-PAD was higher by +3.64 years (95% CI 

3.01, 4.26; p <0.0001) in individuals with SZ compared to controls (Cohen’s d=0.50; 95% CI 0.34, 

0.65; p<0.0001) adjusted for age, age2, and sex (Figure 1). Post-hoc sensitivity analysis excluding 

cohorts in which the model generalised less well (based on MAE > 10.00 or R2<0.1 in healthy 

controls) returned similar results (see Supplementary Fig. S4). Effect sizes were heterogeneous 

across individual cohorts (Q (24) = 52.52, p<0.0007; I2 =55.28%). A significant effect was seen in 

22 out of 25 cohorts, with a positive direction of mean effect size observed in all but one cohort. 

Across cohorts, mean brain-PAD did not differ between single versus multi-site cohorts 

(QM(1)=0.061, p=0.805), nor between 1.5T versus 3T scanners (QM(1)=0.053; p=0.818) or with 

respect to mean age (QM(1)=0.248, p= 0.619). We also found a weak linear, yet not significant 

effect for age on brain-PAD scores (bage = -0.24, 95% CI -0.48, 0.00, p=0.054; bage2 = -0.00, 95%CI 

-0.03, 0.03, p=0.855). Additional adjustment for handedness in a smaller pool of 16 cohorts did not 

meaningfully change our main finding for the effect of SZ (+3.64 years; 95% CI 2.84, 4.44; 

p<0.0001).  
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Figure 1.  Case-control differences in brain-PAD. Forest plot of differences in mean brain-PAD scores (predicted brain 

age - chronological age) between patients with schizophrenia (SZ) and controls across (26 -1) 25 cohorts (a total of 

2792 cases and 2598 controls; excluding 1 cohort that contributed data for patients only), controlling for sex, age and 

age2. Regression coefficients (in years) are denoted by black boxes. Black lines indicate 95% confidence intervals. The 

size of the box indicates the weight the cohort received (based on inverse variance weighting). The pooled estimate 

for all cohorts is represented by a black diamond, with the outer edges of the diamond indicating the confidence interval 

limits.  

 

Brain age and clinical characteristics in SZ 

 
Among SZ patients, we found no statistically significant effects on brain-PAD of clinical 

characteristics, including age-of-onset, length of illness, symptom severity (PANSS total, SAPS 

global), antipsychotic use, and CPZ-equivalent dose after adjusting for age and age2 (Table 2 and 

Supplementary Figs. S5a-i). A weak, positive effect for negative symptom severity (SANS global) 

on Brain-PAD was observed, although it did not reach significance (b=0.18, 95% CI -0.01, 0.38, 

PFDR=0.62). In addition, no significant effects were found for typical versus atypical and both 

atypical and typical versus atypical medication groups (Supplementary Table S5). Further 

adjustment for handedness returned similar results (Supplementary Table S6). 
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Table 2. Clinical characteristics and brain-PAD in individuals with SZ 

Clinical parameter N K beta SE 95% CI PFDR value 

Age of onset (years) 2053 21  -0.06 0.09 -0.22, 0.11 0.84 

Length of illness (years)  2056 21 0.05 0.09 -0.12, 0.22 0.84 

PANSS total 1437 20  0.05 0.06 -0.06, 0.17 0.77 

SANS global 1911 22 0.18 0.10 -0.01, 0.38 0.62 

SAPS global 1892 21 0.14 0.12 -0.09, 0.38 0.70 

AP use – atypical vs. unmed 642 (486/156) 7 1.71 1.27 -0.77, 4.19 0.70 

AP use – typical vs. unmed 117 (42/72) 3 -0.13 1.00 -2.10, 1.84 0.90 

AP use – both vs. unmed 266 (184/82) 4 -0.33 1.08 -2.43, 1.77 0.90 

CPZ-equivalent dose 1698 19  0.00 0.01 -0.02, 0.02 0.90 

Associations between clinical characteristics and brain-PAD (predicted brain age – chronological age) in SZ. For 
continuous variables (age of onset, length of illness, PANSS total and CPZ), the regression coefficient beta indicates 
a mean change in brain-PAD per unit increase in each clinical variable across cohorts. For categorical variables (AP 
use – typical/atypical/both atypical and typical), beta indicates the mean brain-PAD difference between each 
treatment group and unmedicated (unmed) individuals. Effects were adjusted for age and age2. K: number of cohorts; 
N: total number of participants included in each meta-analysis (where applicable, total group size for AP type 
use/unmedicated is given in brackets); SE: standard error; CI: confidence intervals. P values are false discovery rate 
(FDR) adjusted. SANS: Scale for the Assessment of Negative Symptoms; SAPS: Scale for the Assessment of 
Positive Symptoms; PANSS: Positive and Negative Syndrome Scale; AP: Antipsychotics; CPZ: chlorpromazine. 

 
 
Correlations between brain imaging features and brain age 
 
All imaging features, except mean lateral ventricle volume, were negatively correlated with 

predicted brain age (Figure 2); thickness features correlated more strongly with brain age (mean 

Pearson r [SD]: −0.46 [0.13]), especially in medial frontal and temporo-parietal regions, than 

subcortical volumes (−0.32 [0.30]) or surface area features (−0.22 [0.06]). We also visualized these 

associations separately for controls and SZ patients with similar results, suggesting comparable 

structure coefficients in both groups (for more details see Supplementary Material). 

 
Figure 2. Correlation coefficients of predicted brain 
age and FreeSurfer features across control and 
schizophrenia (SZ) groups. Bivariate correlations are 
shown to provide an indication of the relative 
contribution of features in brain age prediction. The 
figure shows Pearson correlations between predicted 
brain age and cortical thickness features (top row), 
cortical surface areas (middle row) and subcortical 
volumes (bottom row), from both the lateral (left) and 
medial (right) view. Features were averaged across the 
left and right hemispheres. The negative correlation 
with ICV was excluded from this figure for display 
purposes. 
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Discussion  
 

We assessed brain ageing in 2803 individuals with SZ and 2598 healthy controls using a novel 

brain age algorithm based on FreeSurfer ROIs. Results indicate that, at a group level, patients with 

SZ show a greater discrepancy between their brain-predicted age and chronological age compared 

to healthy individuals (+3.64 years), with a moderate increase in brain-PAD (Cohen’s=0.50). The 

greater brain-PAD in the SZ group was not driven by any of the specific clinical characteristics 

assessed here (age of onset, length of illness, symptom severity, and antipsychotic use and dose). 

This study has two major strengths. Firstly, through a prospective meta-analytic approach within 

the ENIGMA consortium, we were able to assess brain age differences between SZ patients and 

healthy controls using standardised analysis methods across multiple independent cohorts 

worldwide, providing a generalised mean effect size. Second, the overall large sample size and 

harmonisation of data across cohorts allowed for a more reliable assessment of the relationship 

between clinical variables and brain-PAD among SZ patients.  

 
The mean brain-PAD difference between patients and controls was +3.64 years (Cohen’s d=0.50) 

in our study. Overall, this finding is aligned with previously reported brain-PAD scores in SZ patients 

vs. healthy controls (range: +2.6-7.8 years) [26–33]. Schnack et al. [29] and a recent mega-analysis 

by Kaufmann et al. [32] found similar effect sizes (+3.4 years and Cohen’s d = 0.51, respectively) 

in largely non-overlapping/independent samples from this current study. On the other hand, our 

brain-PAD difference is smaller relative to that reported in earlier work by Koutsouleris et al. [27] 

and Shahab et al. [30] showing respectively +5.5 to +7.8 years of brain age in smaller samples of 

SZ patients. Several methodological differences may explain the variability in magnitude of brain 

age effects in SZ across studies, including the type of neuroimaging features (e.g., voxel-wise vs. 

ROI-based morphometric data; and/or single vs. multiple imaging modalities) [40], the machine 

learning algorithm used for brain age estimation [41], the size of training and test data samples, and 

differences in patient characteristics.  
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Relative to healthy controls, brain-PAD scores in SZ suggest more advanced brain ageing than in 

MDD (+1.12 years) [42] and bipolar disorder (BP; +1.93 years) [42], that may reflect more 

pronounced structural brain abnormalities in SZ [24]. This aligns with previous reports from the 

ENIGMA consortium, showing largest effect sizes of cortical and subcortical gray matter alterations 

in SZ (highest Cohen’s d effect size=0.53) [16, 17], followed by BD (highest Cohen’s d=0.32) [43, 

44] and MDD (highest Cohen’s d=0.14) [45, 46]. Hence, sensitivity of brain-PAD to SZ at the group 

level appears to be quantitively similar to that of leading cortical thickness and subcortical volume 

measures. A further key advantage of the “brain age” paradigm is that it captures multivariate age-

related structural brain patterns into one (or more) composite measure(s), thereby simplifying 

analyses and aids interpretation with respect to normative patterns of brain ageing. 

 

Consistent with previous reports [27, 31], we did not observe significant associations between 

brain-PAD and age of onset, length of illness, and antipsychotic treatment or dose among SZ 

patients. This suggests that a greater brain-PAD in SZ may not be primarily driven by disease 

progression or treatment-related effects on brain structure that have been reported elsewhere [12, 

14, 18, 47, 48]. This is in keeping with previous studies showing a greater brain-PAD already 

present in first-episode SZ and first-episode psychosis patients [26, 49]. Using a longitudinal 

design, Schnack et al. investigated brain age acceleration (i.e., annual rate of change in brain-

PAD) over the duration of illness in SZ (N=341; mean follow up period: 3.48 years). Brain-PAD 

started increasing by about 2.5 years (per year) just after illness onset, though this acceleration 

rate slowed down to a normal rate over the first 5 years of illness [29]. Lastly, in contrast to previous 

findings in SZ [27] and first-episode psychosis [49] we did not find strong evidence for a positive 

association between negative symptom severity and brain-PAD. An explanation for this could be 

that negative symptoms are more specifically linked to brain age differences at the regional level 

(i.e., temporal or parietal brain-PAD) than at the global level (i.e., ‘whole-brain’ brain-PAD), as 

reported previously [32].   
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The biological mechanisms underlying advanced brain ageing in SZ remain elusive. These may 

involve interrelated biochemical abnormalities that accompany both schizophrenia and brain 

ageing, including increased inflammation and oxidative stress [10, 50]. Elevated levels of 

inflammatory markers (e.g., pro-inflammatory cytokines in blood and central nervous system) have 

been observed by multiple studies in individuals with schizophrenia [11, 51]. Moreover, there has 

been evidence for peripheral inflammation markers being associated with structural brain 

abnormalities in schizophrenia and related outcomes (e.g., first episode psychosis), including but 

not limited to abnormal cortical thickness of the bilateral Broca’s area and temporal gyrus [52, 53], 

as well as with greater brain-PAD scores [54]. Abnormal levels of multiple oxidative stress markers 

have also been observed in SZ, both peripherally and in brain tissue [11, 55]. Oxidative stress and 

inflammation may reciprocally induce one another via a positive feedback loop in SZ, resulting in 

cellular damage [56].  

 

Several methodological issues require further consideration. First, while a brain-PAD score (that is 

not equal to zero) is conceptually a prediction error that could reflect physiological deviations from 

normal ageing trajectories, it could be partly attributed to lack of model accuracy due to noise or 

unwanted variation [32, 57, 58]. Potential sources of unwanted variation include the use of multiple 

scanners and/or image acquisition protocols across (or within) participating cohorts that may affect 

the overall generalization performance of the brain age model applied here. Nevertheless, while our 

model fit is lower than some previous studies, this would only increase noise, not a bias towards 

finding an effect of SZ on brain-PAD, as each cohort included in the primarily analysis had data on 

both cases and healthy controls that were collected in a similar, if not identical, manner (e.g., same 

site/scanner and/or image acquisition protocol). Second, although our meta-analytic approach 

allowed us to combine information across multiple cohorts, the summary-level data reported here 

does not adequately capture the considerable inter-individual variability in brain-PAD among SZ 

patients, as has been documented elsewhere [32]. As some individuals with SZ are not 

characterised by a greater brain-PAD, it would be important to further investigate both clinical as 

well as biological and lifestyle factors that are linked to SZ (e.g., inflammation, smoking, body mass 
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index) potentially accounting for inter-individual variability. Given that greater brain-PAD has been 

associated with poorer health outcomes, such as an increased mortality risk [23], understanding 

the extent to which various factors may contribute to brain ageing in SZ could help prioritize targets 

for interventions aiming to halt (or reverse) advanced brain ageing. Third, although the sample size 

of our main analysis (SZ versus controls) was very large for a neuroimaging study, the size of patient 

groups categorised by status of antipsychotic use was relatively small (particularly that of 

unmedicated individuals with SZ) and sample differences include the use of different assessments 

or processes to ascertain medication use and dose. This may have precluded detection of some 

associations. Lastly, given the cross-sectional design of the current study, we were not able to 

assess brain age acceleration more directly and how that may be related to clinical characteristics. 

Longitudinal large-scale studies are better suited for examining brain ageing per se [59] and for 

evaluating the clinical relevance of brain-PAD in SZ. 

 

In conclusion, we found evidence of advanced brain ageing in SZ patients compared to healthy 

controls, which does not seem to be driven by the effects of medication or other clinical 

characteristics. Deviations from normative brain ageing trajectories in SZ may at least in part reflect 

increased risk of premature mortality and age-related chronic diseases commonly seen in SZ. 

Future longitudinal studies with more in-depth clinical characterization - including information on 

mental and somatic health outcomes - will be needed to elucidate whether a brain age predictor 

such as brain-PAD can provide a clinically useful biomarker to inform early prevention or 

intervention strategies in SZ.  
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