
1 
 

Clustering-based COPD Subtypes Have Distinct Longitudinal Outcomes and Multi-omics 1 

Biomarkers 2 

Andrew Gregory1, Zhonghui Xu1, Katherine Pratte2, Sool Lee1, Congjian Liu3, Robert Chase1, 3 

Jeong H. Yun1,3, Aabida Saferali1, Craig P. Hersh1,3, Russell P. Bowler4, Edwin K. Silverman1,3, 4 

Peter J. Castaldi1,5*, Adel Boueiz1,3*.  5 

*Contributed equally 6 

1Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical 7 

School, Boston, MA; 2Department of Biostatistics, National Jewish Health, Denver, CO; 8 

3Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical 9 

School, Boston, MA; 4Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish 10 

Health, Denver, Colorado; 5General Medicine and Primary Care, Brigham and Women’s 11 

Hospital, Harvard Medical School, Boston, MA  12 

Abstract  13 

Introduction: Chronic obstructive pulmonary disease (COPD) can progress across several 14 

domains, complicating the identification of the determinants of disease progression. In our 15 

previous work, we applied k-means clustering to spirometric and chest radiologic measures to 16 

identify four COPD-related subtypes: “Relatively resistant smokers (RRS)”, “mild upper lobe 17 

predominant emphysema (ULE)”, “airway-predominant disease (AD)”, and “severe emphysema 18 

(SE)”. In the current study, we examined longitudinal spirometric and radiologic emphysema 19 

changes and prospective risks of COPD exacerbations, incident comorbidities, and mortality of 20 

these clusters. We also compared their associations to protein and transcriptomic biomarkers.    21 
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Methods: We included 8,266 non-Hispanic white and African-American smokers from the 1 

COPDGene study. We used linear regression to investigate associations to five-year prospective 2 

changes in spirometric and radiologic measures and to plasma protein and blood gene expression 3 

levels. We used Cox-proportional hazard modeling to test for associations to prospective 4 

exacerbations, comorbidities, and mortality.  5 

Results: The RRS, ULE, AD, and SE clusters represented 39%, 15%, 26%, and 20% of the 6 

studied cohort at baseline, respectively. The SE cluster had the greatest 5-year FEV1 and 7 

emphysema progression, and the highest risks of exacerbations, cardiovascular disease (CVD), 8 

and mortality. The AD cluster had the highest diabetes risk. After adjustments, only the ULE and 9 

AD clusters had elevated CVD mortality risks, while only the ULE cluster had the highest 10 

cancer-related mortality risk. These clusters also demonstrated differential protein and gene 11 

expression biomarker associations. 12 

Conclusion: COPD k-means subtypes demonstrate varying rates of disease progression, 13 

prospective comorbidities, mortality, and associations to proteomic and transcriptomic 14 

biomarkers.  15 
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Introduction 1 

Chronic obstructive pulmonary disease (COPD) is a heterogeneous disorder, with a wide 2 

variety of clinical manifestations 1. Additionally, disease progression in COPD occurs across 3 

multiple domains, such as lung function decline, worsening of emphysema, and development of 4 

comorbidities 2-4. These challenges complicate COPD subtyping and the identification of the 5 

determinants of COPD progression.  6 

Several reports have shown that factors, such as COPD exacerbation history, reduced 7 

pulmonary function, and a low BMI, are associated with an elevated risk of respiratory 8 

exacerbations, accelerated spirometric decline, and emphysema changes 2 5 6. Additionally, 9 

studies which have subtyped subjects with COPD based on spirometry, respiratory symptoms 10 

and other characteristics have revealed that these subgroups differ in their risks for 11 

exacerbations, hospital admissions, and FEV1 and emphysema changes 7-11. However, many of 12 

these studies have modest sample size and limited longitudinal follow-up. Furthermore, while 13 

comorbid conditions such as cardiovascular disease (CVD) and type 2 diabetes mellitus are 14 

common in subjects with COPD, the specific COPD-related characteristics associated with the 15 

risk of developing these comorbidities have not been fully described 12 13. Moreover, different 16 

protein biomarkers have been identified in subjects with COPD, but few studies have assessed 17 

subtype-specific proteomic signatures 14. Similarly, while transcriptomic signatures have been 18 

identified in COPD, the differences in such patterns between COPD subtypes have not been 19 

thoroughly investigated 15-17.  20 

In our previous work, we applied k-means clustering to spirometric and chest radiologic 21 

measures and identified four COPD-related subtypes: “Relatively resistant smokers (i.e. no/mild 22 

airflow obstruction and minimal emphysema despite heavy smoking) (RRS)”, “mild upper lobe 23 
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predominant emphysema (ULE)”, “airway-predominant  disease (AD)”, and “severe emphysema 1 

(SE)”, which had differing cross-sectional profiles and genetic associations 18. In the current 2 

study, we included up to 12.7 years of prospective data to investigate subtype-specific rates of 3 

progression in spirometric measures and radiologic emphysema and to quantify the risks of 4 

prospective COPD exacerbations, CVD events, diabetes, and mortality. We also investigated 5 

cross-sectional associations between subtypes and plasma protein and blood transcriptomic 6 

biomarkers. We hypothesized that these subtypes would have different disease progression 7 

profiles and associations to biomarkers. Some of these results have been previously reported as 8 

an abstract 19. 9 

Methods 10 

Study description  11 

The COPDGene study is a prospective, multicenter, longitudinal study investigating the 12 

genetic and epidemiological characteristics of COPD across 21 centers in the U.S.   13 

(NCT00608764, www.copdgene.org) 20. Institutional review board approval was obtained at 14 

each study center. Patients or the public were not involved in the design, conduct, reporting, or 15 

dissemination plans of our research. All data produced in the present study are available upon 16 

reasonable request to the authors. This study enrolled non-Hispanic whites and African-17 

Americans, who were 45-80 years old and had at least 10 pack-years of lifetime smoking history. 18 

Subjects were recruited across the full spectrum of disease severity as defined by the Global 19 

Initiative for Chronic Obstructive Lung Disease (GOLD) spirometric grading system 20. 20 

COPDGene conducted two study visits (Visit 1 and Visit 2) approximately 5 years apart. 21 

Subjects were also contacted every 3-6 months through the COPDGene Longitudinal Follow-up 22 
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program via phone or online surveys to collect data on incident COPD-related events, 1 

comorbidities, and mortality. COPD-related events and comorbidities included self-reported 2 

COPD exacerbations (defined as the acute worsening of respiratory symptoms that required 3 

systemic steroids and/or antibiotics 21), CVD events (defined as a composite endpoint of stroke, 4 

heart attack, coronary artery disease, coronary artery bypass graft surgery, peripheral artery 5 

disease, and/or cardiac angina), and type 2 diabetes mellitus. All-cause mortality was determined 6 

through a combination of longitudinal follow-up and a search of the social security death index. 7 

Cause-specific mortality was categorized as respiratory-related, CVD-related, cancer-related 8 

(any type) or due to other causes and determined through systematic adjudication process based 9 

on the methods used in the Towards a Revolution in COPD Health (TORCH) trial 22.  10 

Demographics, spirometry, imaging, smoking burden, respiratory symptoms, and 11 

comorbidities were collected at Visits 1 and 2.  In addition to GOLD grades 0-4, we included 12 

subjects with Preserved Ratio Impaired Spirometry (PRISm), defined as FEV1/FVC ≥ 0.70 but 13 

with FEV1 < 80% predicted 21. Thirona software (www.thirona.eu) was used to quantify 14 

emphysema as the percentage of lung voxels with an attenuation of < -950 HU at maximal 15 

inspiration (%LAA-950) 23. The Hounsfield units at the 15th percentile of the computed 16 

tomography (CT) density histogram at end-inspiration corrected for the depth of inspiratory 17 

variation (adjusted Perc15 density) were used for longitudinal changes in emphysema 24 25.  Per 18 

convention, adjusted Perc15 density values are reported as HU + 1000. The levels of 1,305 19 

protein biomarkers (SOMAscan Human Plasma 1.3K assay) were obtained from plasma samples 20 

collected at Visit 1 26. Total blood RNA was collected at Visit 2. 21 

Cluster Generation  22 
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We used the k-means clusters that were generated in our previously published work 18. 1 

FEV1 percent predicted, CT-quantified emphysema, percent airway wall thickness, and apico-2 

basal emphysema distribution (log of the lung upper third to lower third ratio of emphysema) 3 

were the input features that were used for clustering at Visit 1. Using the same approach, we also 4 

performed k-means clustering at Visit 2 to assess cluster assignment stability between the two 5 

visits and to conduct differential gene expression analyses using RNA-Seq data available at Visit 6 

2.  7 

Statistical analyses  8 

Data distributions were reported as medians with interquartile ranges or counts with 9 

percentages, where appropriate. We calculated FEV1 and emphysema changes as either absolute 10 

or relative annualized changes. We computed absolute annualized changes by subtracting Visit 1 11 

from Visit 2 values and dividing the difference by the time in years between visits for each 12 

subject. Relative annualized changes were obtained by dividing the absolute annualized changes 13 

by Visit 1 values and multiplying by 100. Negative values indicate worsening of the disease 14 

between visits. We used the Kruskal-Wallis and chi-square tests for continuous and categorical 15 

variables, respectively. We subsequently performed post-hoc pairwise comparisons between the 16 

clusters using the Nemenyi and chi-square tests for continuous and categorical variables, 17 

respectively. Additionally, we constructed univariable and multivariable linear regression models 18 

to relate changes in FEV1 and emphysema as well as plasma proteins to cluster assignment. We 19 

assessed risks of incident COPD exacerbations, CVD events, diabetes, and mortality using Cox 20 

proportional hazards models and obtained survival curves using the Kaplan-Meier method. For 21 

the analyses of incident CVD events and diabetes, we excluded subjects who had a history of 22 

CVD or diabetes at Visit 1. We used the RRS cluster as the reference group. Linear regression 23 
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and Cox models were adjusted for relevant baseline physiological, clinical, and demographic 1 

characteristics. We additionally adjusted for metabolic syndrome in the CVD multivariable Cox 2 

models and for body mass index, airflow obstruction and exercise capacity (BODE index) in the 3 

mortality models. For the protein analyses, we adjusted for age, sex, race and current smoking 4 

status. To ensure that cluster associations to emphysema changes are not confounded by CT 5 

scanner type, a sensitivity analysis was performed by adding scanner type as a covariate in a 6 

subgroup analysis limited to subjects who underwent scans with the same scanner type between 7 

visits.  8 

To test for differential gene expression between clusters, we used the linear modeling 9 

approach implemented in the limma R package (v3.38.3) 27 adjusting for age, sex, current 10 

smoking, white blood cell count proportions, and library prep batch. Gene ontology (GO) 11 

functional enrichment of the gene sets was calculated using the weighted Fisher test in the 12 

topGO Bioconductor package that accounts for the dependency between terms in the GO 13 

topology 28. We reported only the GO pathways with at least 3 significant genes.  14 

All tests for the clinical outcomes were two-tailed with a significance threshold of P-15 

value < 0.05. For the protein and RNA-Seq analyses, we corrected for multiple comparisons 16 

using the Benjamini-Hochberg method and applied a threshold of significance of false discovery 17 

rate (FDR) of 10% 29. Significantly enriched GO pathways were identified using the weighted 18 

Fisher P-value < 0.005.  19 

Additional methods are available in the Supplement. 20 

Results 21 
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The overview of the study is shown in Figure 1 and the study flow diagram is outlined in 1 

Figure S1. Subjects who were not included in the analyses of longitudinal changes in FEV1 and 2 

emphysema, 935 of whom died between the first and second study visit, had a higher proportion 3 

of GOLD spirometric grade 4 disease (Table S1).  4 

Cluster characteristics at baseline and stability of cluster assignments between visits  5 

The RRS cluster represented 39% of the studied population at the baseline visit and was 6 

characterized by a history of heavy smoking without significant airflow obstruction, emphysema, 7 

or airway wall thickness compared to the other clusters (P-values < 0.05) (Table S2). 8 

Additionally, subjects in the RRS cluster had predominantly GOLD 0-1 spirometry. At Visit 2, 9 

RRS cluster membership was stable as 76.3% of subjects were still assigned to this cluster 10 

(Figure S2). The ULE cluster consisted of 15% of all subjects and had moderate airflow 11 

obstruction and mild emphysema predominantly in the upper lung lobes. The ULE cluster was 12 

relatively unstable, with only 38% of subjects remaining within this cluster at their follow-up 13 

visits. The AD cluster, 26% of all participants, was characterized by high BMI and had the 14 

highest proportion of subjects with PRISm (P-values < 0.05). The AD cluster was more stable 15 

than the ULE cluster with 53% of subjects staying within this cluster at their follow-up visits. 16 

The SE cluster, 20% of the studied cohort, exhibited high emphysema and gas trapping and had 17 

the highest proportion of GOLD 3-4 smokers (P-values < 0.05). The SE cluster was very stable 18 

as 92.2% of subjects remained within the SE cluster at Visit 2. For subsequent analyses of 19 

longitudinal outcomes and protein data by k-means clusters, subjects were analyzed according to 20 

their cluster assignment at Visit 1. 21 

Cluster-specific rates of spirometric and emphysema progression 22 
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 The 5-year change values for FEV1 (measured as absolute change in FEV1 and percent 1 

change relative to baseline) and emphysema are shown in Figure 2, and the results from the 2 

univariable and multivariable models are shown in Table 1. The RRS cluster, which has the least 3 

impaired spirometry and emphysema at baseline, had the greatest loss in absolute FEV1. The AD 4 

cluster had the lowest absolute loss in FEV1, significantly less than the RRS cluster in both 5 

univariable and multivariable models. Both the ULE and SE clusters had similar absolute FEV1 6 

changes relative to the RRS cluster. However, when adjusted for relevant covariates, the SE 7 

cluster had significantly less absolute FEV1 decline than the RRS cluster. While absolute FEV1 8 

changes were notably higher in the RRS cluster, percent changes in FEV1 relative to baseline 9 

were most pronounced in the SE cluster. Pairwise comparisons between all clusters showed that 10 

both emphysema-related clusters (ULE and SE) had significantly larger relative changes in 11 

percent FEV1 relative to baseline than both the RRS and AD clusters (P-values < 0.05, Table 12 

S3). 13 

Compared to FEV1 changes, the pattern of CT-quantified emphysema progression was 14 

less sensitive to the metric being used (absolute vs. relative). The SE cluster had the most rapid 15 

while the RRS cluster had the least rapid relative progression in both univariable and 16 

multivariable models. The ULE and AD clusters had significantly greater absolute and relative 17 

emphysema changes than the RRS cluster. The ULE cluster had significantly greater relative 18 

emphysema progression than the AD cluster (Pairwise P-value: 0.03, Table S3). We noted 19 

similar cluster associations to both absolute and relative emphysema changes when we added 20 

scanner type as a covariate in the subgroup analysis limited to subjects who underwent scans 21 

with the same scanner type between visits (Table S4).   22 

Cluster-specific risk of incident co-morbidities and COPD-related events 23 
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Starting from Visit 1, the median follow-up time was 9.2 years for prospective CVD and 1 

diabetes, 5.3 years for respiratory exacerbations, 9.5 years for all-cause mortality, and and 7.8 2 

years for cause-specific mortality. When we analyzed prospective risks of various health 3 

outcomes by subtype, we observed that the SE cluster had the highest risk for prospective COPD 4 

exacerbations and incident CVD (Figure 3). After multivariable adjustment, the SE cluster had a 5 

3 times higher likelihood of having a COPD exacerbation when compared to the RRS cluster 6 

(HR 2.98 (SE: 0.05), P-value < 0.001) (Table S5). The AD cluster had the highest risk of 7 

incident diabetes (HR 1.97 (SE: 0.09), P-value < 0.001) and this association remained significant 8 

after correcting for age, sex, race, BMI, and smoking pack-years. COPD exacerbation and CVD 9 

risks were higher in the ULE cluster compared to the RRS cluster (P-values < 0.05).  10 

Survival curves by subtype are shown for all-cause mortality (Figure 3) and for cause-11 

specific mortality (Figure S3). Results of the survival models are presented in Table S6. In the 12 

univariable models, subjects in the SE cluster had the highest risks of all-cause, respiratory-13 

related, CVD-related, cancer-related and other causes-related mortality relative to the RRS 14 

cluster (6, 50, 3, 3, and 2 times higher, respectively, P-values < 0.0001). The risks for all-cause, 15 

respiratory, and CVD mortality were also elevated for the ULE and AD clusters relative to RRS 16 

(P-values < 0.05). In multivariable models adjusting for age, sex, race, smoking pack-years, and 17 

BODE, statistical significance was maintained for the associations of the ULE, AD and SE 18 

clusters with all-cause mortality, the association of the SE cluster with respiratory mortality, the 19 

associations of the ULE and AD clusters with CVD mortality, and the association of the ULE 20 

cluster with cancer mortality (P-values < 0.05). 21 

Clusters associations to protein and gene expression biomarkers 22 
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Using SOMAscan plasma protein measurements at baseline from 1,047 subjects, we 1 

tested for differential protein associations between clusters. Using the RRS group as the 2 

reference, we identified significant associations in adjusted models to 16, 65, and 219 proteins 3 

for the ULE, AD, and SE clusters, respectively (FDR 10%) (Table S7). The most strongly 4 

associated proteins for the ULE cluster were related to mitochondrial function (ATP synthase 5 

peripheral stalk subunit OSCP and glucokinase regulatory protein) and cytoskeleton 6 

rearrangement (serine/threonine-protein kinases MRCK beta and PAK 6) (Table 2). Top proteins 7 

associations for the AD cluster were primarily involved in fatty acid metabolism, such as 8 

elevated fatty acid-binding protein, leptin, and retinoic acid receptor responder protein 2 and 9 

decreased apolipoprotein M. For the SE cluster, top associated proteins were related to innate 10 

immunity, such as bactericidal permeability-increasing protein, complement component C9, and 11 

protein S100-A12. The overlap of the protein associations between subtypes is shown in Figure 12 

S4.  13 

Using blood RNA sequencing data from 2,072 subjects at Visit 2, we identified 14 

significant associations to 3, 2,105, and 148 genes for the ULE, AD, and SE clusters, 15 

respectively with the RRS group as the reference. The Bland-Altman plots are shown in Figure 4 16 

and the complete set of association results is reported in Table S8. Compared to the RRS cluster, 17 

the ULE cluster was associated with up-regulation of the GPR15, AHRR and GPR55 genes, and 18 

GO pathway enrichment analysis results did not identify any significantly enriched pathways 19 

(Table 3). The AD cluster had particularly strong differences in gene expression with 22 and 34 20 

enriched pathways relative to the RRS and SE clusters, respectively. Compared to the RRS 21 

cluster, the AD cluster showed significant associations to pathways involved in innate immunity, 22 

cellular defense response and NF-kB signaling. Relative to the SE cluster, the AD cluster 23 
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demonstrated associations to processes involved in both innate and adaptive immunity (adjusted 1 

P-values < 0.005). The SE cluster also had many differentially expressed genes, with significant 2 

pathway enrichment for positive regulation of synapse assembly and cell adhesion. The complete 3 

set of pathway enrichment results is reported in Table S9. 4 

Discussion 5 

In this study, we demonstrated that k-means subgroups of smokers enriched for COPD 6 

have varying disease progression patterns, development of prospective comorbidities, and 7 

distinct associations to plasma protein and blood transcriptomic biomarkers. The two clusters at 8 

the extremes of the lung health spectrum (the RRS and SE clusters) showed high cluster 9 

assignment stability between the two visits. Spirometric progression was sensitive to the 10 

progression metric being used (absolute vs. relative) with the SE subtype showing the most rapid 11 

rate of FEV1 decline relative to baseline FEV1 level. Emphysema progression however was less 12 

sensitive to the use of absolute versus relative metrics of progression. In general, the SE cluster 13 

had the highest risk for prospective adverse health events, though the AD cluster had the highest 14 

risk of incident diabetes and the most distinct gene expression patterns. 15 

A wide array of risk factors have been associated with spirometric decline, such as low 16 

BMI, higher baseline FEV1 and FVC, smoking exposure, bronchodilator reversibility, African-17 

American race, female sex, previous history of exacerbations, CT-quantified emphysema, upper 18 

lobe predominant emphysema and small airway abnormalities 1 2 30-34. Whereas previous studies 19 

have shown that mild-to-moderate COPD (GOLD 1-2) is associated with an increased loss in 20 

absolute FEV1  
2 30, our study also investigated changes in FEV1 relative to baseline values, and 21 

found that the SE cluster, which represents a subset of subjects with advanced disease, is 22 

associated with more rapid relative FEV1 decline. To our knowledge, such differences in the 23 
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metrics of progression used to assess COPD progression have not been previously reported. This 1 

finding emphasizes the fact that disease activity and disease severity are distinct concepts that 2 

should be considered when assessing COPD patients 1 35.  3 

In contrast to FEV1 changes, less is known about the factors that are associated with 4 

emphysema progression 36-38. In our study, we evaluated emphysema changes by COPD subtype, 5 

investigated both absolute and relative changes, and adjusted the analysis for age, sex, race, 6 

BMI, smoking pack-years, and CT scanner types. We showed that relative changes were the 7 

highest in the SE cluster, which has more advanced baseline emphysema, low BMI, and more 8 

COPD exacerbations. 9 

In regard to prospective COPD events, prior reports have indicated that more severe 10 

airflow obstruction and COPD exacerbation history are associated with higher risks of COPD 11 

exacerbations and CVD 7 39-41. We demonstrated that, when adjusted for covariates including 12 

airflow limitation and COPD exacerbation history, the SE cluster had a 3 times higher risk of a 13 

COPD exacerbation, while the AD and ULE clusters had a hazard ratio of ~1.35 relative to the 14 

RRS group. The SE cluster was also associated with the highest risk of incident CVD, which 15 

may be explained by atherosclerosis or arterial stiffness mediated by inflammatory markers 42. 16 

Another novel finding from our study was that the AD cluster had the highest risk for the 17 

prospective development of diabetes, even after adjusting for BMI. This adds to the finding from 18 

the study by Hersh et al., which revealed that COPD with limited emphysema and high airflow 19 

obstruction is associated with diabetes in cross-sectional data 43. Our study provides further 20 

evidence linking airway-predominant COPD to diabetes and metabolic syndrome.  21 

The age, dyspnea, and airflow obstruction (ADO) and BODE indices have been 22 

classically used to predict mortality in COPD, but less is known about the COPD characteristics 23 
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that contribute to cause-specific mortality 44 45. CVD, airflow obstruction, low BMI, emphysema, 1 

and poor exercise capacity were found to be associated with a high risk of all-cause mortality in 2 

COPD 39 46-48. We similarly observed that the SE cluster, which had these risk factors at baseline, 3 

had the highest risk of all-cause mortality. With regards to the CVD mortality, high MMRC 4 

dyspnea score, exacerbation history, low FEV1, and accelerated lung function decline have been 5 

shown to be contributors 49 50. In our paper, we showed that the SE, AD, and ULE clusters had 6 

elevated risks of CVD-related mortality in unadjusted models, but when correcting for age, sex, 7 

race, BODE, and smoking pack-years, only the AD and ULE clusters had significant risks, which 8 

indicates that airway disease and lobular emphysema distribution may be additional contributors 9 

to this risk. While most previously published COPD studies have examined the association with 10 

prospective cancer rather than  prospective mortality due to cancer, some reports have indicated 11 

that COPD is associated with an elevated risk of both lung and extra-pulmonary cancer 12 

mortalities 51 52. In our study, similar to CVD mortality, the ULE, AD, and SE clusters had 13 

elevated cancer mortality risks, but after adjustments, only the ULE cluster had a significantly 14 

increased cancer mortality risk. Differential genetic susceptibility, delayed clearance of inhaled 15 

carcinogens, and chronic inflammation may be potential mechanisms underlying these 16 

associations 52. 17 

COPD subtype-specific associations to protein and transcriptomic biomarkers have only 18 

been studied in a few studies of relatively small size 14. In our analysis, the AD cluster had 19 

elevated plasma levels of leptin, supporting a previous report which showed that pro-20 

inflammatory adipokines leptin and adiponectin are implicated in COPD 53. While many 21 

previous studies have shown that innate immunity is related to COPD 54 55, we observed that it 22 

was the SE cluster that demonstrated the strongest association to proteins involved in the innate 23 
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immune response. At the transcriptomic level, COPD has been associated with inflammation and 1 

sphingolipid metabolism 15-17, and our study demonstrates that it is the AD subtype that has the 2 

most distinct gene expression signature that is enriched for these pathways.  3 

This study has a number of strengths. Compared to previous publications, our study 4 

included a larger sample size and longer follow-up, and investigated incident comorbidities in 5 

addition to lung health outcomes. Additionally, we included a well-phenotyped cohort of 6 

smokers across the full spectrum of disease severity, and we were able to test the association of 7 

subtypes to clinical, radiologic, and multi-omic molecular markers. When studying progression, 8 

we considered both absolute and relative changes in lung function and CT-quantified 9 

emphysema. Furthermore, this is to our knowledge the first study demonstrating that airway-10 

predominant COPD is independently associated with incident diabetes risk and has particularly 11 

strong associations to inflammatory biomarkers.  12 

One of the limitations of our study is that because of its observational design, the 13 

statistical associations observed may not reflect causal relationships. Our study sample was 14 

limited to subjects who survived the five-year observation period and as a result, our findings are 15 

not representative of subjects with very advanced COPD and limited life expectancy. Analyses 16 

that jointly model death and other aspects of disease progression would provide additional useful 17 

information. As further follow-up data from COPDGene is obtained, our hypotheses from this 18 

study can be validated over longer follow-up. 19 

  20 

Conclusions 21 

 COPD-related subtypes defined by spirometric and radiologic measures at baseline have 22 

different rates of disease progression and are differentially associated to prospective health 23 
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outcomes. They also exhibit distinct biomarker profiles indicative of underlying biological 1 

differences. In the future, these subtypes could be used as the basis for targeted drug 2 

development, studies of differential treatment response, or the enrollment of specific subgroups 3 

in clinical trials.  4 

  5 

 6 

 7 

 8 

Figure legends: 9 

Figure 1. Study design. The goal of the study was to analyze COPD progression, differential 10 

plasma protein associations and blood gene expression, and gene ontology (GO) enrichment 11 

characteristics of the four clusters that we identified in our previous k-means clustering analysis 12 

in the COPDGene study (Castaldi et al, Thorax 2014). 13 

Figure 2. Disease progression by k-means cluster. (A) Absolute change in FEV1 (mL/year). (B) 14 

Relative change in FEV1 (change as % of baseline value/year). (C) Absolute change in 15 

emphysema measured as adjusted Perc15 density change/year. (D)  Relative change in 16 

emphysema measured as adjusted Perc15 density change (% of baseline value/year). P-values < 17 

0.05 are indicated by an asterisk. Abbreviations: RRS = Relatively resistant smokers; ULE = 18 

Upper lobe predominant emphysema; AD = Airway-predominant disease; SE = Severe 19 

emphysema. 20 

Figure 3. Kaplan-Meier plots of COPD-related events by k-means cluster. (A) COPD 21 

exacerbation, defined as the acute worsening of respiratory symptoms that required antibiotics 22 
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and/or systemic steroids. (B) Cardiovascular disease (CVD) event, defined as a composite 1 

endpoint of stroke, heart attack, coronary artery disease, coronary artery bypass graft surgery, 2 

peripheral artery disease, and/or cardiac angina. (C) Diabetes. (D) All-cause mortality. For CVD 3 

events and diabetes, subjects who had a history of CVD or diabetes at Visit 1 were excluded 4 

from the analysis. Abbreviations: RRS = Relatively resistant smokers; ULE = Upper lobe 5 

predominant emphysema; AD = Airway-predominant disease; SE = Severe emphysema. 6 

Figure 4. Bland-Altman (MA) plots of the log ratio versus mean gene expression for the 7 

differential expression analysis results between k-means clusters. The cluster following the “vs.” 8 

is the reference group. (A) ULE vs. RRS. (B) AD vs. RRS. (C) SE vs. RRS. (D) AD vs. ULE. (E) 9 

SE vs. ULE. (F) SE vs. AD. Abbreviations: RRS = Relatively resistant smokers; ULE = Upper 10 

lobe predominant emphysema; AD = Airway-predominant disease; SE = Severe emphysema. 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 
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Table 1. Associations of k-means clusters with absolute and relative annualized FEV1 and emphysema changes  
 

 K-means 
cluster 

Univariable models Multivariable models 

Beta (Std Err) P-value Beta (SE) Beta (Std Err) 

Absolute annualized FEV1 (mL/year) changes 

ULE 3.07 (2.21) 0.2 3.63 (2.23) 0.1 

AD 11.64 (1.86) < 0.0001 8.84 (1.90) < 0.0001 

SE 2.84 (2.17) 0.2 4.98 (2.25) 0.03 

Relative annualized FEV1 changes (percent changes from 
baseline) 

ULE -0.27 (0.11) 0.01 -0.18 (0.11) 0.1 

AD 0.09 (0.09) 0.3 0.004 (0.09) 1.0 

SE -1.35 (0.10) < 0.0001 -1.24 (0.11) < 0.0001 

Absolute annualized emphysema (adjusted Perc15 density) 
changes 

ULE -0.99 (0.11) < 0.0001 -0.89 (0.11) < 0.0001 

AD -0.69 (0.09) < 0.0001 -0.82 (0.09) < 0.0001 

SE -0.89 (0.11) < 0.0001 -0.77 (0.11) < 0.0001 

Relative annualized emphysema (adjusted Perc15 density) 
changes (percent changes from baseline) 

ULE -1.15 (0.16) < 0.0001 -1.01 (0.16) < 0.0001 

AD -0.82 (0.13) < 0.0001 -0.99 (0.14) < 0.0001 

SE -1.19 (0.16) < 0.0001 -1.07 (0.16) < 0.0001 

Absolute annualized changes were computed by subtracting Visit 1 values from Visit 2 values and dividing by the time in years between both visits for each subject. Relative 
annualized changes were calculated by dividing absolute annualized changes by Visit 1 values and multiplying by 100. Negative values indicate worsening of the disease 
between visits. 
 
Univariable linear regression models included only visit 1 k-means cluster assignment. Multivariable models also included adjustments for age, sex, race, BMI, and smoking 
pack-years. The reference group was the relatively resistant smokers cluster (RRS) cluster. P-values < 0.05 are italicized.  
 
Abbreviations: ULE = Upper lobe predominant emphysema; AD = Airway-predominant disease; SE = Severe emphysema. 
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Table 2. Top 5 unique significantly differentially associated proteins between k-means clusters 
 

 Protein Protein ID Beta coefficient (standard error) FDR  

ULE vs. RRS 

ATP synthase peripheral stalk subunit OSCP P48047 0.33 (0.07) 6.3*10-3 

Glucokinase regulatory protein Q14397 0.14 (0.04) 4.2*10-2 

Serine/threonine-protein kinase MRCK beta Q9Y5S2 0.09 (0.02) 4.2*10-2 

Serine/threonine-protein kinase PAK 6 Q9NQU5 0.37 (0.10) 4.6*10-2 

Membrane frizzled-related protein Q9BY79 0.14 (0.04) 5.5*10-2 

AD vs. RRS 

Fatty acid-binding protein, heart P05413 0.20 (0.03) 1.3*10-6 

Leptin P41159 0.34 (0.06) 4.8*10-6 

Renin P00797 0.25 (0.05) 1.6*10-4 

Retinoic acid receptor responder protein 2 Q99969 0.08 (0.02) 2.6*10-4 

Apolipoprotein M O95445 -0.15 (0.03) 3.9*10-4 

SE vs. RRS 

Bactericidal permeability-increasing protein P17213 0.40 (0.06) 1.8*10-11 

Complement component C9 P02748 0.15 (0.02) 1.9*10-11 

Troponin T, cardiac muscle P45379 0.20 (0.03) 2.1*10-10 

Protein S100-A12 P80511 0.19 (0.03) 3.4*10-10 

Oxidized low-density lipoprotein receptor 1 P78380 0.23 (0.04) 1.1*10-9 

SOMAscan plasma proteins significantly associated to visit 1 k-means cluster membership from multivariable linear regression modeling (FDR 10%). We 
used linear regression and adjusted for age, sex, race, and current smoking status. The top 5 significantly differentially associated proteins unique to each 
of the 3 comparisons (ULE vs. RRS, AD vs. RRS, and SE vs. RRS) are reported in this table. The cluster following the “vs.” is the reference group. The 
units of all proteins are relative fluorescence units.Abbreviations: RRS = Relatively resistant smokers; ULE = Upper lobe predominant emphysema; AD = 
Airway-predominant disease; SE = Severe emphysema. 
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Table 3. Top 10 significantly differentially expressed genes and enriched gene ontology (GO) terms between k-means clusters  

 

  

Top 10 significant genes 

 

 

Top 10 significant GO terms 

 

ULE vs. RRS 

 

↑ GPR15 

↑ AHRR 

↑ GPR55 

 

NS 

AD vs. RRS 

 

↑ GPR15 

↓ SNRK 

↑ PTPN13 

↓ ALG1L13P 

↑ CD36 

↓ MYLIP 

↓ EXTL3 

↓ IL18R1 

↓ ADPRHL2 

↑ PTPRA 

Innate immune response 

Mitotic chromosome movement towards spindle pole 

Negative regulation of NIK/NF-kappaB signaling 

Cellular defense response 

Cell proliferation 

Regulation of mitochondrial depolarization 

Negative regulation of defense response to virus 

Mitotic cytokinesis 

Fc-epsilon receptor signaling pathway 

Vascular endothelial growth factor receptor signaling pathway 
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SE vs. RRS 

 

↑ GPR15 

↑ MS4A2 

↑ TTLL7 

↑ GCSAML 

↑ AKAP12 

↑ LINC02458 

↓ COG2 

↑ HDC 

↓ DLEU1 

↑ ENSG00000261055 (LncRNA) 

 

 

Positive regulation of synapse assembly 

Cell adhesion 

For the gene expression analysis, covariates used were age, sex, race, current smoking status, white blood cell count proportions, and library batch effects. A 
false discovery rate (FDR) of 10% was used for multiple testing corrections.  

For the GO analysis, we only reported the pathways with at least 3 significant genes. Enriched GO terms between clusters were identified using the weighted 
Fisher’s test P-values < 0.005. The cluster following the “vs.” is the reference group.   

Abbreviations: RRS = Relatively resistant smokers; ULE = Upper lobe predominant emphysema; AD = Airway-predominant disease; SE = Severe 
emphysema. NS = Non-significant. ↑ = positive log fold change; ↓ = negative log fold change. 
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Figure 1 
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Figure 4 

MA plots for the differential expression analysis between k-means clusters 

(A) ULE vs. RRS. (B) AD vs. RRS. (C) SE vs. RRS. (D) AD vs. ULE. (E) SE vs. ULE. (F) SE vs. AD. 
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