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ABSTRACT 

Background: The effectiveness of SARS-CoV-2 vaccines has been a subject of debate, with 

varying results reported in different studies, ranging from 60-95% vaccine effectiveness (VE). 

This range is striking when comparing two studies conducted in Israel at the same time, as one 

study reported VE of 90-95%, while the other study reported only ~80%. We argue that this 

variability is due to inadequate accounting for indirect protection provided by vaccines, which 

can block further transmission of the virus 

Materials and Methods: We developed a novel analytic heterogenous infection model and 

extended our agent-based model of disease spread to allow for heterogenous interactions 

between vaccinated and unvaccinated across close-contacts and regions. We applied these 

models on real-world regional data from Israel from early 2021 to estimate VE using two 

common study designs: population-based and secondary infections 

Results: Our results show that the estimated VE of a vaccine with efficacy of 85% can range 

from 70-95% depending on the interactions between vaccinated and unvaccinated individuals. 

Since different study designs capture different levels of interactions, we suggest that this 

interference explains the variability across studies. Finally, we propose a methodology for 

more accurate estimation without knowledge of interactions 

Discussions and Conclusions: Our study highlights the importance of considering indirect 
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protection when estimating vaccine effectiveness, explains how different study designs may 

report biased estimations, and propose a method to overcome this bias. We hope that our 

models will lead to more accurate understanding of the impact of vaccinations and inform 

public health policy. 

 

INTRODUCTION 

 

Hundreds of millions of individuals have been infected with the SARS-CoV-2 virus, and 

millions of them died because of the infection since it was first detected in China at the end of 

2019. In response, several companies and research institutions developed vaccines to help 

suppress the pandemic, and less than a year after identifying of the virus, several clinical trials 

reported results of proven vaccine efficacy (1,2). The randomized clinical trials of the 

Pfizer/BioNTech and Moderna vaccines showed vaccine efficacy of around 95% in the first 

months after the second dose; however, the studies had relatively low numbers of infected 

individuals, and this level of efficacy can only be regarded as a proxy to the real-world vaccine 

effectiveness across divergent populations, demographics, and clinical features.  

 

By the end of 2020, many countries launched mass vaccination campaigns. The data collected 

through these mass vaccination campaigns was used to evaluate the effectiveness of the vaccines 

in a wide range of populations (3–15). Individual-level study designs for vaccine effectiveness 

evaluation can be split into two main approaches: (1) A population-based approach (PB), where 

the number of vaccinated and unvaccinated infections are counted after correcting for possible 

confounders (3); (2) A secondary infections approach (SI), which allows to overcome a major 

limitation of the first approach of unknown exposure. In this approach, infections are counted 

after a known exposure, such as secondary household infections (4). Interestingly, when 

examining the vaccine effectiveness estimations from studies that use each approach, there are 

major differences. In PB studies, vaccine effectiveness was usually estimated at 90%-95% (1–

3,5), while in SI studies, much lower vaccine effectiveness estimations are usually reported 

(60%-80%) (4,11,12). Moreover, observational studies in nursing home residents reported 

varying vaccine effectiveness levels ranging from 53% to 92% against SARS-CoV-2 infection 

(6,13,14). The difference between the two effectiveness levels is emphasized when we compare 
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the 90%-95% effectiveness of Dagan et al. (3) with the 80% effectiveness of Gazit et al. (4). 

Both studies evaluated the effectiveness of the same vaccine in a similar population in Israel at 

the same time, and only the study design differed. We hypothesize that the main reason for this 

gap can be explained by the proportion of interactions of vaccinated individuals with other 

vaccinated individuals that diverges between the two settings. Our hypothesis is based on one 

feature of the vaccines that has been broadly neglected in current vaccine effectiveness studies. 

While the vaccines were designed mainly to reduce symptomatic disease, severe disease, and 

death, studies from 2021 have shown that they also provide efficient transmission-blocking. A 

study from Sweden found that the number of immune members in a family was negatively 

correlated with the likelihood of incidence of infection of non-immune family members (16). 

Similarly, a study from Israel found reduced infection rates in communities as vaccination rates 

increased (17). Previous studies before COVID-19 have shown how interference, the potential 

outcomes of one individual are affected by the treatment assignment of other individuals, can 

affect vaccine effectiveness estimations (18). It seems that an underlying assumption made by 

the COVID-19 vaccine effectiveness studies is that there is no interference, which is an 

unfounded assumption. 

 

Previous studies presented causal inference frameworks with interference to deal with the effects 

of indirect protection on vaccine effectiveness estimations (18–23). The main novelty of this 

work stems from our attempt to use a numerical model that incorporates real-world data on 

vaccination and infection rates to demonstrate how different study designs may lead to divergent 

estimations of VE. Here, we developed both an analytical approach and a numerical approach 

which utilizes our Monte Carlo Agent-based Model (MAM) (24) to examine the influence of 

interference between vaccinated and unvaccinated individuals on data of COVID-19 

vaccinations and infections in Israel (25,26). Our analyses show that different assumptions may 

lead to significant under- or over-estimations and might explain the differences in estimations 

between the different study design approaches. We suggest that this divergence is inversely 

related to the rate of mixing between vaccinated and unvaccinated individuals, in line with 

previous studies on interference (19,20,23). Since it is not simple to estimate the level of mixing, 

which diverges across time and communities, we developed a simple approach that can 

overcome this issue and provide accurate estimations of vaccine effectiveness regardless of 

mixing levels. 
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MATERIALS and METHODS 
 

The main aim of this paper is to quantify vaccine effectiveness estimations in terms of 

interference between vaccinated and unvaccinated individuals. Interference occurs when the 

treatment received by other individuals influences the effects of an exposure or intervention on 

an individual. Because interference can affect the relationship between exposure and outcome, it 

can be harder to determine causality. In terms of this work, we define interference as the effect 

on the risk of infection for a vaccinated individual due to exposure to an unvaccinated 

individual.  

All the data and code for modelling and figures presented in this manuscript are available on: 

https://github.com/hdeleon1/Over-and-under-estimation- 

 

Analytical infection model 

First, we developed a simple heterogenous analytical infection model to find a quantifiable 

relationship between the amount of interference in a network and the effectiveness of vaccines 

(see Supplementary Methods; Table S1-2 for more information). Within the model, we define 

a network of ���� vaccinated and unvaccinated nodes. Each node is strongly connected to all the 

(��� � 1) nodes in its clique, and weakly contacted to all ���� other nodes (���� � ��� � ����) 

with � as the ratio between the number of infections that originate from the inner clique and the 

other infections.  

Using the model we can define the observed vaccine effectiveness, ��	 , as a function of the 

average fraction of edges with unvaccinated nodes to the vaccinated nodes, 
��: 

��	  � �� � ���

� � �1 � �� � �� � �� � � � ���� � �� � 
�� � ���

� � �1 � ��� 
�
��

� � �1 � �� � �� � �� � �� � ���� � 1� � �� � �1 � 
�� �1 � 1
���  � �

��

� �  �1 � ���
 (1) 

With � as the fraction of unvaccinated people in the total population, �� � � 	��
�

	���
	��

 and ���

� �

��� � 1. 
 

To summarize, this analytical model is a relatively simple model that simulates infections in a 

population with non-uniform vaccination rates and at heterogenous circuits of infection risks. It 

considers the risk of infection in vaccinated households and allows to quantify the population 

��	 , corrected by the interference, as opposed to the individual-level vaccine effectiveness. 
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MAM – A flexible Monte-Carlo Agent based Model 
 
To model the infections occurred in the real-world we use MAM, a flexible Monte-Carlo Agent 

based Model for modelling COVID-19 spread that accurately predicts infection dynamics in Israel 

(24). In this work, we expand this model to include complex interaction networks, such as 

differing between household interactions, which represent around half of infections in Israel 

(27), and other interactions. The spatial feature of MAM allows it to be used to predict both the local 

and global spread of COVID-19 by simultaneously modeling spatial interactions between families (high 

interaction), neighborhoods (medium interaction), and cities (low interaction). By applying MAM to 

public data from Israel, we could model the actual spread of COVID-19 during Israel’s first vaccination 

campaign for 9.2 million particles across 1,578 separate communities, where each community has its 

own vaccination rate. 

 

 

RESULTS 

 

Most transmissions of the virus leading to infection are in close interactions. These interactions 

are often cliques, where all individuals in the clique have close interaction with each other (i.e., 

households). Heterogenous vaccination rates between those cliques bias the estimations of 

vaccine effectiveness. Consider this simple example: two nursing homes, each with 60 people 

that all interact with each other. Assuming that in one home 50  people are vaccinated with a 

vaccine with 80% efficacy and the rest are unvaccinated, while in the other it is the opposite (10 

vaccinated). Both homes had an outbreak, in the first house one vaccinated and one 

unvaccinated were infected, which is what we expect with 80% protection. In the second home 

25 unvaccinated and one vaccinated were infected, again translates to 80% protection. However, 

if we calculate ��	  for both homes together (120 people in total), we substantially overestimate 

��	  at 92.3%, which is 2.6-fold risk reduction. Similar analysis can be performed with secondary 

infection models to show any desired level of observed ��	 . We present here an analytical 

framework to model this observation. 

 

Analytical infection model 

For illustration purposes, we present three possible mixtures described using three networks. In 

all networks, there is a similar amount of vaccinated and unvaccinated nodes, and there are 
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precisely four close connections for each node (��� � 5, ���� � 20) (Figure 1A-C). In each 

network all the nodes are numbered, such that for the ��� node we indicate with vector �� its 

vaccination status and the number of connections it has with the unvaccinated nodes in the 

network (see Supplementary Methods). The only difference between the three networks is the 

dispersal of the vaccinated and unvaccinated nodes: in network (A), there is complete 

segregation between vaccinated and unvaccinated nodes (��� � 0). This network might simulate 

nursing homes that were vaccinated early, while most of the rest of the population was not yet 

vaccinated. In network (B), for each vaccinated node, half of the edges are to vaccinated nodes 

and half to unvaccinated nodes (
�� � 0.5). In network (C), each vaccinated node is connected to 

one vaccinated node and three unvaccinated nodes (
�� � 0.75). Network (C) might simulate 

households where two members are vaccinated (e.g., parents) and three are not, e.g., children. 

The  ��  values for each node in the networks are provided in the Supplementary Methods 

(Table S3). 
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Figure 1. Infection networks with different types of interactions between vaccinated and unvaccinated nodes. 

A-C. Orange individuals are vaccinated nodes, blue nodes are unvaccinated nodes. Each circle is a tightly 

connected clique. Weak interactions with individuals outside of the clique. D. ���  as a function of ���, for � 	 1, 

and �� 	 0.85: Blue band: ���  ��� 0.2 � � � 2; Blue dashed line: � 	  1; Solid line: the input ��. 

For each of the networks we count the average fraction of edges with unvaccinated nodes to the 

vaccinated nodes, 
�� , and calculate ��	 �
��, ��  for  ��  = 0.85 and  � � 0.6  (proportion of the 

population that are unvaccinated), and � � 1 (ratio between inner clique and other infections, 

thus 1 represents that half of the infections are household infections). Using the equations 

described in the analytical infection model, we find that the risk of infection in (B) for 

vaccinated nodes is 0.072 and 0.52 for unvaccinated nodes, which translates to ��	 � 0.86, like 

��. However, in (A) and (C) we see a diversion from ��: in (A) risk for vaccinated is 0.046 and 

A 
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0.63 for unvaccinated, which translates to an overestimation of almost double reduced risk 

(��	 � 0.93), and in (C) these numbers are 0.1 and 0.4, respectively, which translate to an 

underestimation of VE (��	 � 0.75). Generally, we observed that for 
�� around 0.6 �� is similar 

to ��	  (Figure 1D and Eq (S- 18 ) in the Supplementary Methods); Figure 1D shows ��	 �
��, �� 

for 0 ) 
�� ) 1 and 0.2 * � *  2.  Lower 
�� levels produce overestimations of ��	  up to 95%, and 

higher 
�� levels produce underestimations towards 70%.  

 

Numerical analysis: using MAM to estimate vaccine effectiveness in Israel 

We next attempted to model the infections occurred in real-world and show how calculations of 

vaccine effectiveness can be skewed based on different assumptions regarding 
��. Using MAM, 

we simulated the spread of COVID-19 infections in Israel from the beginning of the vaccination 

campaign on December 20, 2020. The particles were numbered and represented by the vector ��, 

similarly to the analytical model. However, since this is a time-dependent model, and the model 

predicts the spread of infection while the population is actively being vaccinated, we use ���+� 
where the vaccination rate is determined by the actual vaccination rates across 1,578 

communities in Israel (25,26) (Figure S1). We created ten different mixing scenarios between 

vaccinated and unvaccinated individuals in each community. For each scenario, we created a 

different array of ���+� according to the real vaccination rates, which differ from each other in 

their ���+�, which represents the level of close interactions of a vaccinated individual �  with 

unvaccinated individuals as a function of time 
 (Supplementary Methods). 

We simulated different scenarios of infections throughout February 2021. In each date we 

calculated the observed vaccine effectiveness, ��	 , using both the population-based approach 

(PB) and the secondary infection approach (SI). In the PB-simulated analysis, we performed a 

simple adjustment to eliminate the heterogeneity in vaccination rates among communities by 

matching the number of vaccinated and unvaccinated in each community, which can be seen as 

1:1 matching. In the SI-simulated analysis we only considered infections within the close-

contact circuit, which is similar to a situation of � � 0 in the analytical model (Supplementary 

Methods). Thus, low 
�� represents a scenario where most close-contacts circuits are partially 

vaccinated (i.e., a family with only one parent vaccinated), and high 
�� represents a scenario 

where most close-contact circuits are either fully vaccinated or not vaccinated at all. In all 

analyses, we observed clear negative correlations between ��	  and 
��, and ��	  ranged between 
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~70% and ~95% (Figure 2A). We can see that the input �� was only obtained for 
�� at levels 

around 0.5-0.6 for both the PB and SI simulations. However, the PB-based Dagan et al. study (3) 

probably had an 
�� of ~0.25, which is in line with the lockdown that was imposed at this time, 

while the SI-based Gazit et al. study (4) probably had an 
�� of ~0.75, which is in line with the 

limited availability of vaccinations to adults only at this time. 

As we can see, even careful matching would be insufficient to retrieve the actual ��. This is due 

to the additional circuits we added in the modelling that aim to mimic household contacts. This 

creates heterogeneity of 
��  at the close contacts-level, not just at the community-level. To 

overcome this issue, we derived an additional analysis that considers the level of mixing. Since it 

is not simple to adjust for different 
�� levels in real-world data for PB analysis, we performed 

the analysis by including only close-contact circuits with over 50% vaccinated individuals. This 

analysis showed that for PB, it is possible to achieve relatively accurate estimations of �� with 

this relatively simple approach, regardless of 
�� and time (Figure 2A and Figure S2). Of note, 

in SI analysis, both 
�� and � can be theoretically obtained for each family (and � � 0� , 

therefore, ��	  can be adjusted more easily in real-world data (full analysis for ��	  for PB and SI 

is given in the Supplementary Methods).  
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Figure 2. Estimations of ���  in different levels of mixing between vaccinated and unvaccinated individuals. A. 

Estimations of ���  as a function of ���. Red line: Population-based (PB) simulations with matching of vaccinated 

and unvaccinated individuals in each region; Green line: Secondary infection-based (SI) simulations; Blue line: 

Matched PB with additional exclusion of individuals in close-contact circuits with more than 50% vaccination. B. 

���  estimations for matched-PB as a function of time. Estimations are shown from January 31 to end of February 

28 for three mixing scenarios. For both panels, Grey line – input VE =0.85; Grey band: VE  within a 5% 

uncertainty.  

Finally, we analyzed how ��	  changed over time in the different 
�� scenarios (Figure 2B). 

Interestingly, even for 
�� , 0.5, where the average ���  in February was ~85% (PB method; 

Figure 2A), we observed underestimation in early February and overestimation in late February. 

In general, we noticed that as vaccination rates increased with time, ���  estimations increased 

accordingly, in line with early assessments of vaccine effectiveness in Israel compared to later 

assessments. This temporal relationship between the distribution of ��� and the vaccination rate 

adds another layer to the complexity of vaccine effectiveness estimation and can explain 

divergent results across studies that were performed in different time points.  
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DISCUSSION and CONCLUSIONS 

We demonstrated here that vaccine effectiveness estimations are sensitive to the dispersion of 

vaccinations across the population. We found that the level of mixing between vaccinated and 

unvaccinated individuals can alter the observed vaccine effectiveness. High level of mixing 

creates indirect protection to unvaccinated individuals and on the other hand increases the risk of 

infection for vaccinated people, since they frequently interact with unvaccinated people, which 

in turn leads to underestimation of vaccine effectiveness, while low level of mixing leads to 

additional protection to the already protected individuals, and in turn to overestimation of 

vaccine effectiveness. Regardless of what is the real mixing between vaccinated and 

unvaccinated, which we assume is far from random, it is clear from our analyses that the 

observed vaccine effectiveness can significantly differ from the real individual-level protection 

offered by the vaccine. 

This study is subject to several limitations. First, this work did not consider that part of the 

population is protected by previous infection (i.e., recovered). However, the infections data from 

Israel indicates that by November 2020, a relatively low proportion of the population (no more 

than 5%) had been infected and recovered. It may affect the assumptions and calculations in this 

work, but this oversight should result in only a minor error, since we assume that some of the 

recovered population is also vaccinated. Second, it is not simple to estimate the level of mixing 

in the population. However, we note that during the time of first estimations of vaccine 

effectiveness coming from Israel (3), Israel was mostly under a lockdown that was imposed 

between January 8, 2021, and February 9, 2021. Under the lockdown there were limited 

interactions overall, which enable us to assume relatively low interaction within the population 

in Israel and especially low number of interactions between the vaccinated elderly population 

and the rest of the population which were vaccinated later. It is therefore safe to assume that ��� 

at the time of the study was trending towards 0, or at least much lower than later on. Based on 

this, we argue that the high vaccine effectiveness reported 95% for adults over 70 years old (3) is 

substantially overestimated. Furthermore, the lower vaccine effectiveness reported for the 40-69 

years old group in that study (90%) is a result of the higher mixing rate of that group. Later, 

Israel imposed “green passports”, which limit entrance of unvaccinated individuals to crowded 

places. This is another measure that reduces vaccinated-unvaccinated interactions and may again 

skew towards overestimation of vaccine effectiveness. 
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On the other hand, we argue that study designs of secondary household infections underestimate 

vaccine effectiveness. Gazit et al. used this approach to estimate vaccine effectiveness in Israel 

and found vaccine effectiveness to be 80% (4). In households, especially in a country with 

relatively big families as in Israel, most interactions of vaccinated individuals are with 

unvaccinated children that were not vaccinated at the time of the study. This translates to high 

��� levels, and as we show this leads to significant underestimation. We note that some of the 

lower vaccine effectiveness in household infections can be attributed to the prolonged exposure, 

and in theory, the vaccination is less effective in such scenario. We are aware that the number of 

family members in Israel is not uniform, however, since the average number of children in Israel 

is around 3 (26), assuming five people per household is a reasonable assumption.  

Our study is not the first to caution about vaccine effectiveness estimations confounded by 

indirect protection. Previous studies developed a causal inference framework with interference to 

deal with this issue (19–23). Interestingly, although this issue is well known, in our literature 

review of vaccine effectiveness studies for COVID-19, we did not identify any study that takes 

this issue into account. We believe that analytical model provides a novel and relatively simple 

framework for dealing with vaccine interference, and, as we show here, can be implemented in 

real-world settings. The analytical model is structured to differentiate between different types of 

interactions (close and remote), and therefore, better represents real-world infection networks. 

In conclusion, we argue here that observed vaccine effectiveness estimations of 90%-95% and 

80% stems from a vaccine that probably provides individual-level protection of around 85%. We 

suggest that by adjusting to the fraction of unvaccinated individuals in a household, in addition 

to demographic and clinical features, it is possible to reduce the bias when estimating vaccine 

effectiveness. We hope that future studies will consider the possible bias we highlight in this 

study and attempt to correct for it, as the rate of effectiveness of the vaccines have high impact 

on strategies for controlling the spread of the pandemic. 
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