Deep Learning Approaches to Identify Patients within the Thrombolytic Treatment Window
View ORCID ProfileJennifer S Polson, View ORCID ProfileHaoyue Zhang, View ORCID ProfileKambiz Nael, View ORCID ProfileNoriko Salamon, Bryan Y Yoo, View ORCID ProfileSuzie El-Saden, Sidney Starkman, View ORCID ProfileNamkug Kim, View ORCID ProfileDong-Wha Kang, View ORCID ProfileWilliam F Speier IV, View ORCID ProfileCorey W Arnold
doi: https://doi.org/10.1101/2022.01.26.22269260
Jennifer S Polson
1Computational Diagnostics Lab, University of California, Los Angeles, CA, USA
2Department of Bioengineering, University of California, Los Angeles, CA, USA
Haoyue Zhang
1Computational Diagnostics Lab, University of California, Los Angeles, CA, USA
2Department of Bioengineering, University of California, Los Angeles, CA, USA
Kambiz Nael
3Department of Radiology, University of California, Los Angeles, CA, USA
Noriko Salamon
3Department of Radiology, University of California, Los Angeles, CA, USA
Bryan Y Yoo
3Department of Radiology, University of California, Los Angeles, CA, USA
Suzie El-Saden
4Department of Radiology, VA Phoenix Healthcare System, Phoenix, AZ, USA
Sidney Starkman
5Departments of Emergency Medicine and Neurology, University of California, Los Angeles, CA, USA
Namkug Kim
6Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
Dong-Wha Kang
6Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
William F Speier IV
1Computational Diagnostics Lab, University of California, Los Angeles, CA, USA
3Department of Radiology, University of California, Los Angeles, CA, USA
Corey W Arnold
1Computational Diagnostics Lab, University of California, Los Angeles, CA, USA
2Department of Bioengineering, University of California, Los Angeles, CA, USA
3Department of Radiology, University of California, Los Angeles, CA, USA
7Department of Pathology, University of California, Los Angeles CA USA

Article usage
Posted July 04, 2022.
Deep Learning Approaches to Identify Patients within the Thrombolytic Treatment Window
Jennifer S Polson, Haoyue Zhang, Kambiz Nael, Noriko Salamon, Bryan Y Yoo, Suzie El-Saden, Sidney Starkman, Namkug Kim, Dong-Wha Kang, William F Speier IV, Corey W Arnold
medRxiv 2022.01.26.22269260; doi: https://doi.org/10.1101/2022.01.26.22269260
Deep Learning Approaches to Identify Patients within the Thrombolytic Treatment Window
Jennifer S Polson, Haoyue Zhang, Kambiz Nael, Noriko Salamon, Bryan Y Yoo, Suzie El-Saden, Sidney Starkman, Namkug Kim, Dong-Wha Kang, William F Speier IV, Corey W Arnold
medRxiv 2022.01.26.22269260; doi: https://doi.org/10.1101/2022.01.26.22269260
Subject Area
Subject Areas
- Addiction Medicine (349)
- Allergy and Immunology (668)
- Allergy and Immunology (668)
- Anesthesia (181)
- Cardiovascular Medicine (2648)
- Dermatology (223)
- Emergency Medicine (399)
- Epidemiology (12228)
- Forensic Medicine (10)
- Gastroenterology (759)
- Genetic and Genomic Medicine (4103)
- Geriatric Medicine (387)
- Health Economics (680)
- Health Informatics (2657)
- Health Policy (1005)
- Hematology (363)
- HIV/AIDS (851)
- Medical Education (399)
- Medical Ethics (109)
- Nephrology (436)
- Neurology (3882)
- Nursing (209)
- Nutrition (577)
- Oncology (2030)
- Ophthalmology (585)
- Orthopedics (240)
- Otolaryngology (306)
- Pain Medicine (250)
- Palliative Medicine (75)
- Pathology (473)
- Pediatrics (1115)
- Primary Care Research (452)
- Public and Global Health (6527)
- Radiology and Imaging (1403)
- Respiratory Medicine (871)
- Rheumatology (409)
- Sports Medicine (342)
- Surgery (448)
- Toxicology (53)
- Transplantation (185)
- Urology (165)