1	
2	Left ventricular hypertrophy subtype and long-term mortality in those with subclinical
3	cardiovascular disease: The Multi-Ethnic Study of Atherosclerosis (MESA)
4	
5	Edward T. Ha, MD, MSc ^a , Alexander Ivanov, MD ^b , Joseph Yeoboah, MD, MS ^b , Austin Seals,
6	MSc ^b , Stephen J. Peterson, MD ^{a,c} , Manish Parikh, MD ^{a,c} , Wilbert S. Aronow, MD ^d , William H.
7	Frishman, MD ^d
8	
9	^a Department of Internal Medicine and Cardiology, NewYork-Presbyterian Brooklyn Methodist
10	Hospital, Brooklyn, NY, USA
11	^b Department of Cardiology, Wake Forest School of Medicine, Winston-Salem, North Carolina,
12	USA
13	^c Department of Medicine, Weill Cornell Medical College, New York, NY
14	^d Department of Internal Medicine, New York Medical College, Valhalla, NY, USA
15	
16	
17	
18	
19	
20	
21	Corresponding author
22	Alexander Ivanov, MD
23	aivanov@wakehealth.edu

LVH and long-term outcomes in MESA

24 Abstract

25 The clinical and biochemical profile of differing LVH phenotypes and its effect on long term 26 outcomes is ill-defined. The study investigated the differences in risk profiles and prognostic 27 effect of concentric (CH) and eccentric hypertrophy (EH) on long-term adverse outcomes in a 28 contemporary, ethnically diverse cohort. We analyzed follow-up data over 15 years from the 29 Multi-Ethnic Study of Atherosclerosis study, an ongoing multicenter, prospective population-30 based study in the United States that enrolled 6,814 participants with subclinical cardiovascular 31 disease between 2000 and 2002. 4,979 participants with left ventricular mass and wall thickness, 32 derived from cardiac MRI at baseline enrollment were included. Descriptive statistics, Kaplan-33 Meier curves, and regression models were applied. Independent variables associated with CH 34 were Black and Hispanic race/ethnicity, systolic blood pressure, and metabolic syndrome. 35 Independent variables associated with EH were systolic blood pressure, urine creatinine, whereas 36 serum creatinine had an inverse association. The primary endpoint of all-cause death (n=1,137, 1)37 22.8%) occurred in 21.7%, 47.4%, and 56.6% of participants with no, concentric, or eccentric 38 hypertrophy, respectively (p < 0.001). Age (HR per year = 1.10 [1.09, 1.11], p < 0.001), male 39 gender (HR=1.48 [1.29, 1.69], p<0.001), Black race (HR=1.17 [1.005, 1.36], p=0.04), fasting 40 glucose (HR=1.005 [1.003, 1.007], p<0.001), baseline creatinine (HR per mg/dL = 1.29 [1.15-41 1.46], p<0.001), LVEF (HR per 1% = 0.98 [0.98, 0.99], p=0.005), IL-6 (HR per pg/mL = 1.17) 42 [1.12, 1.22], p<0.001), concentric hypertrophy (HR=1.84 [1.41-2.41], p<0.001), and eccentric 43 hypertrophy (HR=2.58 [1.77-3.76], p<0.001) were significant predictors of all-cause mortality. 44 We conclude that CH and EH are two distinct clinical phenotypes of left ventricular hypertrophy 45 with differing gender and racial predisposition, both associated with worse long-term adverse 46 outcomes.

47	
48	Keywords: left ventricular hypertrophy, MESA, subclinical cardiovascular disease,
49	cardiovascular risk, mortality, heart attack, congestive heart failure
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
61	
62	
63	
64	
65	
66	
67	
68	
69	

LVH and long-term outcomes in MESA

70 Introduction

71 Left ventricular hypertrophy (LVH) is an independent predictor of worse outcomes in those with hypertension and coronary artery disease $(CAD)^{1-3}$. The mechanisms by which LVH drives 72 73 adverse outcomes in heart disease is multifactorial. LVH is an independent predictor of advanced atherosclerosis, sudden cardiac death, incident heart failure, and development of arrythmias 4^{4-8} . It 74 75 may be useful to study LVH in a heterogenous group sub-divided into concentric (CH) and 76 eccentric hypertrophy (EH) to better elucidate the pathophysiologic pathways of development as 77 recent studies have shown differential clinical and biomarker phenotypes between CH and EH in those with heart failure with reduced ejection fraction⁹. Prior reports have shown an association 78 79 between inflammatory biomarkers and the presence of LVH in patients with hypertension, diabetes, and chronic kidney disease $^{10-12}$. The interplay between chronic inflammation and the 80 81 clinical and biochemical profile of differing LVH phenotypes and its effect on long term 82 outcomes in those free of clinical cardiovascular disease has not been well-characterized. 83 84 Historically, studies have relied primarily on M-mode and two-dimensional echocardiography to 85 identify LVH. Recently, cardiac MRI (CMR) has now widely been accepted as the standard of

86 reference for quantification of LV mass and has shown to be more precise and accurate when

87 compared to echocardiography. MESA includes a large and contemporary population of

88 participants with subclinical cardiovascular disease to study LVH subtypes adjudicated with

89 CMR. The purpose of this study was to investigate the clinical and biochemical risk profile and

90 prognostic effect of concentric (CH) and eccentric hypertrophy (EH) on long-term adverse

91 outcomes in a contemporary, ethnically diverse cohort.

92

LVH and long-term outcomes in MESA

93 Methods

94	The MESA study was approved by the institutional review boards of each of the participating
95	field sites in the United States (Wake Forest University, Winston-Salem, NC; Columbia
96	University, New York City, NY; Johns Hopkins University, Baltimore, Md; University of
97	Minnesota, Minneapolis, Minn; Northwestern University, Evanston, Ill; and University of
98	California, Los Angeles, Calif), and all participants provided written informed consent. All sites
99	were compliant with the Health Insurance Portability and Accountability Act. The design of
100	MESA (<i>ClinicalTrials.gov</i> : NCT00005487) has been previously described ¹³ . Briefly, we
101	analyzed follow-up data over 15 years from MESA: an ongoing multicenter, prospective
102	population-based study in the United States that enrolled 6,814 participants (age range, 45-84
103	years) with subclinical cardiovascular disease between 2000 and 2002. Those with known
104	cardiovascular disease was excluded. 4,979 participants whose left ventricular mass and wall
105	thickness was derived from cardiac MRI at baseline enrollment by using semi-automated
106	software at a central core laboratory was included in this analysis.
107	
108	Income was classified as total gross income in the past 12 months and assigned a number based
109	on the following income brackets: 1: < \$5,000, 2: \$5,000-7,999, 3: \$8,000-11,999, 4: \$12,000-
110	15,999, 5: \$16,000-19,999, 6: \$20,000-24,999, 7: \$25,000-29,999, 8: \$30,000-34,999, 9:
111	

111 \$35,000-39,999, 10: \$40,000-49,999, 11: \$50,000-74,999, 12: \$75,000-99,999, 13: \$100,000 +

112

LVH and long-term outcomes in MESA

113	Weight was measured to the nearest 0.5 kg, and height was measured to the nearest 0.1 cm. Body
114	surface area was calculated as sqrt ((height (cm) * weight (kg))/3600), and body mass index was
115	calculated as weight in kilograms divided by height in meters squared.

116

117 Electron-beam and multi-detector row CT was utilized for CAC scores. The standardized MESA

118 methodology for the acquisition and interpretation of CAC has been previously published 14 .

119

120 LV mass and LV volumes were assessed by using MRI with 1.5-T imaging units (Avanto and

121 Espree, Siemens Medical Systems, Erlangen, Germany; and Signa HD, GE Healthcare,

122 Milwaukee, Wis), as described previously¹⁵. In brief, a stack of short-axis images covering the

123 entire LV was acquired by using a cine fast gradient-echo sequence with temporal resolution less

124 than or equal to 40 msec. LV mass was calculated at end diastole as the sum of the myocardial

125 area (difference between endocardial and epicardial contour) times the section thickness plus the

126 intersection gap multiplied by the specific gravity of myocardium (1.05 g/mL). Left ventricular

127 mass index (LVMI) and relative wall thickness (RWT) was calculated as LV mass/body surface

128 area and 2 * median wall thickness/LV end diastolic volume.

129

An LVMI \geq 95 for females and \geq 115 g/m² for males was suggestive of LVH, whereas a RWT \geq 0.42 was suggestive of concentric adaptations¹⁶. Four phenotypes of cardiac geometry were identified: normal, concentric remodeling (grouped together as normal geometry), concentric hypertrophy (defined as LVMI \geq 95 AND RWT \geq 0.42) and eccentric hypertrophy (defined as LVMI \geq 95 and RWT < 0.42). Left ventricular ejection fraction (LVEF) was measured by

LVH and long-term outcomes in MESA

135	obtaining LV volumes at end diastole and systole utilizing similar techniques. The primary					
136	endpoint was incidence of all-cause mortality over a mean 14.2 year period after enrollment,					
137	which was verified in 9-12 month intervals by a telephone interview with participants, reviewing					
138	copies of death certificates and medical records for all hospitalizations, and annual National					
139	Death Index queries. The secondary endpoints of incidence of myocardial infarction, congestive					
140	heart failure, and all coronary heart disease (which was defined as composite of coronary heart					
141	disease mortality, non-fatal myocardial infarction, resuscitated cardiac arrest, definite angina,					
142	and probably angina (if followed by revascularization)) were verified in a similar manner.					
143						
144	Statistical Analysis					
145	Continuous and categorical variables are presented as mean with one standard deviation or					

146 median with interquartile range, as appropriate by skewness and kurtosis analysis, and were

147 compared with one-way t-test or ANOVA for means, Kruskal-Wallis ANOVA for medians, and

148 chi-square test for proportions. Multinomial logistic regression analysis was used to determine

149 the independent variables associated with presence of CH and EH. The following demographical

150 and clinical covariates were included in the model: age, gender, race/ethnicity, systolic blood

151 pressure, fasting glucose, serum creatinine, urine creatinine, metabolic syndrome (as per updated

152 NCEP guidelines), triglycerides, IL-6, and CRP^{17} . These covariates were chosen as univariate

analysis suggested independent associations with CH and/or EH.

154 Event rates were estimated using the Kaplan-Meier time-to-event methodology and compared

155 using log-ran k tests. Multivariable Cox proportional hazard regression was used to determine

156 the independent predictors of the primary and secondary outcomes. The following

157 demographical and clinical covariates were simultaneously included in the model for the primary

LVH and long-term outcomes in MESA

158	and secondary outcomes: age, gender, race/ethnicity, BMI, systolic blood pressure, fasting			
159	glucose, baseline creatinine, LDL, LVEF, IL-6, CRP, normal geometry (value = 0), concentric			
160	hypertrophy (value = 1), and eccentric hypertrophy (value = 2). The significance level was set at			
161	p<0.05 (two-sided). All analyses were performed with IBM SPSS Statistics for Mac, version 24			
162	(IBM Corp., Armonk, N.Y., USA) and GraphPad Prism 9 version 9.2.0 (283) for Mac, GraphPad			
163	Software, La Jolla California USA, <u>www.graphpad.com</u> ".			
164				
165	Results			
166	Between 2000 and 2002, 6,814 participants were enrolled into MESA. 4,988 underwent an			
167	additional MRI examination. Of those, 4,979 participants (4772 normal geometry, 154 CH, and			
168	53 EH) were included in this analysis.			
169	Baseline characteristics, by cardiac geometry, are displayed in Table 1. In summary, participants			
170	with normal geometry tended to be White, younger with fewer co-morbidities, whereas those			
171	with CH tended to be Black, older, with more co-morbidities. The EH group had relatively			
172	intermediate rates of co-morbidities and racial/ethnic distribution but had higher rates of smokers			
173	and lower serum triglyceride levels.			
174				
175	CH was associated with traditional risk factors for CV disease such as increased systolic BP			
176	(150±27 vs. 140±21 vs. 124±21, p<0.001), creatinine (1.0±0.28 vs. 0.82±0.38 vs. 0.92±0.28,			
177	p<0.001), urine albumin / creatinine ratio (16 \pm 52 vs. 8.2 \pm 13.5 vs. 5.1 \pm 6.6, p<0.001), and fasting			
178	glucose values (94±28 vs. 86±18 vs. 89±16, p<0.001) when compared to EH and normal cardiac			
179	geometry, respectively (Figure 1).			
180				

181	Both CH and EH were associated with increased serum inflammatory biomarkers such as TNF-a
182	(1401±678 vs. 1417±703 vs. 1268±413, p<0.001), CRP (3±4.7 vs. 2.1±3.92 vs. 1.8±3.23,
183	p<0.001), IL-2 (1046±578 vs. 1040±543 vs. 878±407, p<0.05), and IL-6 (1.5±1.36 vs. 1.4±1.4
184	vs. 1.1 ± 1.06) compared with normal geometry, respectively (Figure 2).
185	
186	Logistic regression modeling identified male gender, Black and Hispanic race/ethnicity, systolic
187	blood pressure, and metabolic syndrome as independent variables associated with presence of
188	CH, whereas age, fasting glucose, serum creatinine, urine creatinine, inflammatory cytokines,
189	and triglyceride levels were not (Table 2a). Independent associations of EH were systolic blood
190	pressure and urine creatinine, whereas serum creatinine had an inverse association. (Table 2b).
191	
192	The primary endpoint of all-cause death (n=1,137, 22.8%) occurred in 21.7%, 47.4%, and 56.6%
193	of participants with no, concentric, or eccentric hypertrophy, respectively (p<0.001) (Figure 3).
194	Age (HR per year = 1.10 [1.09, 1.11], p<0.001), male gender (HR=1.48 [1.29, 1.69], p<0.001),
195	Black race (HR=1.17 [1.005,1.36], p=0.04), fasting glucose (HR=1.005 [1.003, 1.007], p<0.001),
196	baseline creatinine (HR per mg/dL = 1.29 [1.15-1.46], p<0.001), LVEF (HR per 1% = 0.98 [0.98,
197	0.99], p=0.005), IL-6 (HR per pg/mL = 1.17 [1.12, 1.22], p<0.001), concentric hypertrophy
198	(HR=1.84 [1.41-2.41], p<0.001), and eccentric hypertrophy (HR=2.58 [1.77-3.76], p<0.001)
199	were significant predictors of all-cause mortality, whereas BMI, systolic blood pressure, LDL,
200	and CRP were not (Table 3a).
201	

LVH and long-term outcomes in MESA

202	Incidence of congestive heart failure (n=274, 5.5%) occurred in 4.7%, 22.7%, and 21% of				
203	participants with no, concentric, or eccentric hypertrophy, respectively (p<0.001) (Figure 3).				
204	Significant predictors of congestive heart failure are displayed in (Table 3b).				
205	Incidence of myocardial infarction (n=249, 5%) occurred in 4.7%, 12.3%, 9.4% of participants				
206	with no, concentric, or eccentric hypertrophy, respectively (p<0.001) Significant predictors of				
207	myocardial infarction are displayed in (Table 3c). Incidence of coronary heart disease (n=517,				
208	10.3%) occurred in 9.8%, 24%, 16.9% of participants with no, concentric, or eccentric				
209	hypertrophy, respectively (p<0.001) (Figure 3). Significant predictors of coronary heart disease				
210	are displayed in (Table 3d).				
211					
212	Discussion				
213	The major findings from this analysis of the MESA study of CMR data from 4,979 participants				
214	with sub-clinical cardiovascular disease are as follows: 1) elevated inflammatory biomarkers,				
215	such as IL-6 and CRP were associated with both CH and EH compared with normal geometry 2)				
216	CH was associated with male gender, Black/Hispanic ethnicity, and traditional risk factors for				
217	CV disease 3) systolic blood pressure and urine creatinine was associated with EH, whereas				
218	elevated serum creatinine and triglyceride levels were inversely associated with presence of EH				
219	4) LVH subtypes were independent and significant predictors of all-cause mortality and incident				
220	heart failure, whereas only CH was associated with incident myocardial infarction				
221					
222	Most studies to date have utilized transthoracic echocardiogram for LVH classification. Our				
223	findings are novel as it is the first to study LVH subtype and utilize CMR for LVH classification				
224	in a cohort with subclinical cardiovascular disease. Interestingly, the CH group tended to have				

LVH and long-term outcomes in MESA

225	higher co-morbid conditions, such as hypertension and diagnosis of metabolic syndrome, which
226	are independently associated with worse outcomes. However, upon analysis of the time-to-event
227	plots and multivariate regression models, both CH and EH carried similar adverse outcomes
228	profiles for outcomes of all-cause mortality and incident heart failure. Of note, only CH was
229	found to be independently associated with incident MI and coronary heart disease, whereas a
230	diagnosis of EH translated to higher hazard of all-cause mortality and incident heart failure than
231	CH. The differing clinical and biochemical risk profiles suggest different pathophysiologic
232	drivers of EH and adverse long-term outcomes.
233	

234 It is well-known that uncontrolled, chronic hypertension (pressure overload) can induce concentric changes in LVH¹⁸. However, the etiologies of EH aside from obesity are less studied¹⁹. 235 236 Our results suggest that the development of EH in participants with preclinical cardiovascular 237 disease are associated with lesser-known risk factors that may induce an inflammatory state 238 beyond those risk factors of metabolic syndrome as neither metabolic syndrome nor BMI was 239 found to be significantly associated with the presence of EH. Indeed, EH was independently and 240 inversely associated with serum creatinine levels and triglyceride levels, and with higher spot 241 urine creatinine concentration. In fact, metabolic syndrome was inversely associated with the 242 presence of EH, although this did not reach statistical significance. As expected, the EH group 243 possessed lower LVEF, higher cardiac outputs, and higher end-diastolic LV volumes compared 244 to normal geometry or CH.

We propose that a group of participants with high muscle turnover or increased metabolic states from unknown etiology may induce a quasi high-output state reflected by chronically increased cardiac output leading to EH and increased risk of incident heart failure and mortality. Another

LVH and long-term outcomes in MESA

explanation of increased urine creatinine and low triglyceride levels can be from individuals with
increased skeletal muscle mass area as was reported in a prior MESA study²⁰. In highly athletic
individuals, the reason for an elevated cardiac output would be due to dynamic changes in
metabolic demand from resting to active skeletal myocytes. These findings may highlight a
cohort of patients with unrecognized cardiac risk factor profiles previously overlooked in the
literature.

254

Our finding that Blacks have an increased prevalence of LVH compared to their White counterparts agrees with prior studies^{21,22}. In this study, it was found that Black and Hispanic race/ethnicity was strongly associated with CH, but not EH. These findings further support the hypothesis that CH and EH are distinct pathologic phenotypes in cardiovascular disease. Taken together, the findings highlighted in this study suggest distinct clinical and biochemical risk profiles that are associated with the presence of distinct LVH subtypes that may be influenced by race/ethnicity, variations in the cardiac risk factors, and gender.

262

263 Human epidemiologic studies have supported animal data that LV geometry typically progresses from normal to CH, and then to EH, eventually leading to decompensated heart failure^{23,24}. Our 264 265 results indicate that both EH and CH can occur independent of each other, and both may 266 progress to congestive heart failure. Previously, we have shown that eccentric hypertrophy and 267 not concentric hypertrophy is a negative prognostic variable for adverse outcomes at 1-year in 268 patients undergoing percutaneous coronary intervention for acute coronary syndrome²⁵. These 269 findings suggest that additional cardiac geometric parameters may influence LVH subtypes and 270 account for differences seen in the MESA and acute coronary syndrome cohorts. Recently, it was

271	demonstrated that a dilated LV chamber in the setting of eccentric hypertrophy was associated					
272	with adverse outcomes, whereas EH with normal LV volumes were not ²⁶ . This agrees with our					
273	studies of LVH subtype in ACS as those with EH had statistically significant increased LV end-					
274	diastolic diameters compared to CH (unpublished findings).					
275						
276	Limitations					
277	We recognize important limitations to our study design, observations, and conclusions. The first					
278	is the relatively healthier cohort of participants with subclinical cardiovascular disease, which					
279	may not be generalizable to the entire US population. Second, LVH category was adjudicated					
280	upon enrollment of the study, thus it is difficult to ascertain whether certain risk factors are a					
281	consequence of LVH or driving cardiac remodeling. Third, the sample size of EH cohort was					
282	small compared to CH and normal geometry and may not have been adequately powered to					
283	detect other associations with long-term outcomes.					
284						
285	Conclusion					
286	In this analysis of the multi-center, observational, population-based study of MESA registry, in					
287	which clinical, biochemical, and CMR data from 4,979 participants free of clinical					
288	cardiovascular disease, both CH and EH were independently associated with shared risk factors					
289	for CV disease such as hypertension, although the presence of metabolic syndrome (or its					
290	individual components) was exclusively associated with CH and not EH. Black and Hispanic					
291	race/ethnicity was shown to be associated with CH and not EH. Strikingly, EH was associated					
292	with variables typically not attributed to cardiac disease, such as lower triglyceride and serum					

LVH and long-term outcomes in MESA

293	creatinine levels. The EH phenotype had higher hazard for all-cause mortality and incident heart
294	failure, whereas only CH with incident myocardial infarction and coronary heart disease
295	suggesting differential chronic inflammatory states and clinical risk factors involved in the
296	development of LVH subtypes. We conclude that CH and EH are two distinct clinical
297	phenotypes of left ventricular hypertrophy with differing clinical risk factors, racial and gender
298	predisposition, both associated with worse long-term adverse outcomes. Further studies are
299	needed to explore the variables driving differing LVH subtypes and if regression can be achieved
300	with targeted therapy based on risk factor profiles.
301	
302	Acknowledgement
303	This research was supported by contracts 75N92020D00001, HHSN268201500003I, N01-HC-
304	95159, 75N92020D00005, N01-HC-95160, 75N92020D00002, N01-HC-95161,
305	75N92020D00003, N01-HC-95162, 75N92020D00006, N01-HC-95163, 75N92020D00004,
306	N01-HC-95164, 75N92020D00007, N01-HC-95165, N01-HC-95166, N01-HC-95167, N01-HC-
307	95168 and N01-HC-95169 from the National Heart, Lung, and Blood Institute, and by grants
308	UL1-TR-000040, UL1-TR-001079, and UL1-TR-001420 from the National Center for
309	Advancing Translational Sciences (NCATS). The authors thank the other investigators, the staff,
310	and the participants of the MESA study for their valuable contributions. A full list of
311	participating MESA investigators and institutions can be found at <u>http://www.mesa-nhlbi.org</u> .
312	
313	
314	
315	

LVH and long-term outcomes in MESA

316 **References**

- 317 1. East MA, Jollis JG, Nelson CL, Marks D, Peterson ED. The influence of left ventricular
- 318 hypertrophy on survival in patients with coronary artery disease: Do race and gender matter?
- 319 *Journal of the American College of Cardiology* 2003.
- 320 2. Aronow WS, Epstein S, Koenigsberg M. Usefulness of Echocardiographic Left Ventricular
- 321 Hypertrophy and Silent Ischemia in Predicting New Cardiac Events in Elderly Patients With
- 322 Systemic Hypertension or Coronary Artery Disease. *Angiology* 1990.
- 323 3. Koren MJ, Devereux RB, Casale PN, Savage DD, Laragh JH. Relation of left ventricular mass
- 324 and geometry to morbidity and mortality in uncomplicated essential hypertension. Annals of
- 325 Internal Medicine 1991.
- 326 4. Chatterjee S, Bavishi C, Sardar P, Agarwal V, Krishnamoorthy P, Grodzicki T, Messerli FH.
- 327 Meta-analysis of left ventricular hypertrophy and sustained arrhythmias. *American Journal of*
- 328 *Cardiology* 2014;114.
- 329 5. Kannel WB, Castelli WP, McNamara PM, McKee PA, Feinleib M. Role of blood pressure in
- the development of congestive heart failure: The framingham study. *The American Journal of*
- 331 *Cardiology* 1972;29.
- 6. Kannel WB, Gordon T, Castelli WP, Margolis JR. Electrocardiographic left ventricular
- hypertrophy and risk of coronary heart disease. The Framingham study. *Annals of internal medicine* 1970;72.
- 335 7. Kannel WB, Doyle JT, McNamara PM, Quickenton P, Gordon T. Precursors of sudden
- coronary death. Factors related to the incidence of sudden death. *Circulation* 1975;51.

- 8. Kannel WB, Gordon T, Offutt D. Left ventricular hypertrophy by electrocardiogram.
- 338 Prevalence, incidence, and mortality in the Framingham study. *Annals of internal medicine*
- 339 1969;71.
- 340 9. Nauta JF, Hummel YM, Tromp J, Ouwerkerk W, Meer P van der, Jin X, Lam CSP, Bax JJ,
- 341 Metra M, Samani NJ, Ponikowski P, Dickstein K, Anker SD, Lang CC, Ng LL, Zannad F,
- 342 Filippatos GS, Veldhuisen DJ van, Melle JP van, Voors AA. Concentric vs. eccentric
- 343 remodelling in heart failure with reduced ejection fraction: clinical characteristics,
- 344 pathophysiology and response to treatment. *European Journal of Heart Failure* 2020.
- 345 10. Salles GF, Fiszman R, Cardoso CRL, Muxfeldt ES. Relation of left ventricular hypertrophy
- 346 with systemic inflammation and endothelial damage in resistant hypertension. In:
- 347 *Hypertension*.Vol 50.; 2007.
- 348 11. Palmieri V, Tracy RP, Roman MJ, Liu JE, Best LG, Bella JN, Robbins DC, Howard B V.,
- 349 Devereux RB. Relation of left ventricular hypertrophy to inflammation and albuminuria in adults
- 350 with type 2 diabetes: The strong heart study. *Diabetes Care* 2003;26.
- 351 12. Gupta J, Dominic EA, Fink JC, Ojo AO, Barrows IR, Reilly MP, Townsend RR, Joffe MM,
- 352 Rosas SE, Wolman M, Patel SS, Keane MG, Feldman HI, Kusek JW, Raj DS, Appel LJ, Go AS,
- 353 He J, Lash JP, Rahman M. Association between inflammation and cardiac geometry in chronic
- kidney disease: Findings from the CRIC study. *PLoS ONE* 2015;10.
- 355 13. Bild DE, Bluemke DA, Burke GL, Detrano R, Diez Roux A V., Folsom AR, Greenland P,
- 356 Jacobs DR, Kronmal R, Liu K, Nelson JC, O'Leary D, Saad MF, Shea S, Szklo M, Tracy RP.
- 357 Multi-Ethnic Study of Atherosclerosis: Objectives and design. American Journal of
- 358 *Epidemiology* 2002;156.

- 359 14. Carr JJ, Nelson JC, Wong ND, McNitt-Gray M, Arad Y, Jacobs DR, Sidney S, Bild DE,
- 360 Williams OD, Detrano RC. Calcified coronary artery plaque measurement with cardiac CT in
- 361 population-based studies: Standardized protocol of Multi-Ethnic Study of Atherosclerosis
- 362 (MESA) and Coronary Artery Risk Development in Young Adults (CARDIA) study. Radiology
- 363 2005;234.
- 364 15. Natori S, Lai S, Finn JP, Gomes AS, Hundley WG, Jerosch-Herold M, Pearson G, Sinha S,
- 365 Arai A, Lima JAC, Bluemke DA. Cardiovascular function in multi-ethnic study of
- 366 atherosclerosis: Normal values by age, sex, and ethnicity. American Journal of Roentgenology
- 367 2006;186.
- 368 16. Lang RM, Badano LP, Victor MA, Afilalo J, Armstrong A, Ernande L, Flachskampf FA,
- 369 Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru D, Picard MH, Retzschel ER,
- 370 Rudski L, Spencer KT, Tsang W, Voigt JU. Recommendations for cardiac chamber
- 371 quantification by echocardiography in adults: An update from the American Society of
- 372 Echocardiography and the European Association of Cardiovascular Imaging. Journal of the
- 373 American Society of Echocardiography 2015.
- 17. Grundy SM, Brewer HB, Cleeman JI, Smith SC, Lenfant C. Definition of Metabolic
- 375 Syndrome: Report of the National Heart, Lung, and Blood Institute/American Heart Association
- 376 Conference on Scientific Issues Related to Definition. In: *Circulation*. Vol 109.; 2004.
- 377 18. Aronow WS. Hypertension and left ventricular hypertrophy. Annals of Translational
- 378 *Medicine* 2017;5:5–8.
- 379 19. Cuspidi C, Tadic M, Grassi G. Left ventricular mass and incident hypertension: Missing
- 380 pieces in the puzzle. *Journal of Clinical Hypertension* 2020;22.

- 381 20. Vella CA, Nelson MC, Unkart JT, Miljkovic I, Allison MA. Skeletal muscle area and density
- are associated with lipid and lipoprotein cholesterol levels: The Multi-Ethnic Study of
- 383 Atherosclerosis. *Journal of Clinical Lipidology* 2020;14.
- 384 21. Kizer JR, Arnett DK, Bella JN, Paranicas M, Rao DC, Province MA, Oberman A, Kitzman
- 385 DW, Hopkins PN, Liu JE, Devereux RB. Differences in Left Ventricular Structure Between
- 386 Black and White Hypertensive Adults. *Hypertension* 2004;43.
- 387 22. Drazner MH. The progression of hypertensive heart disease. *Circulation* 2011.
- 388 23. Inoko M, Kihara Y, Morii I, Fujiwara H, Sasayama S. Transition from compensatory
- 389 hypertrophy to dilated, failing left ventricles in Dahl salt-sensitive rats. American Journal of
- 390 Physiology Heart and Circulatory Physiology 1994.
- 391 24. Lieb W, Gona P, Larson MG, Aragam J, Zile MR, Cheng S, Benjamin EJ, Vasan RS. The
- 392 natural history of left ventricular geometry in the community: Clinical correlates and prognostic
- 393 significance of change in LV geometric pattern. JACC: Cardiovascular Imaging 2014.
- 394 25. Ha ET, Cohen M, Peterson SJ, Aronow WS. Eccentric hypertrophy predicts adverse events
- in patients undergoing percutaneous coronary intervention for acute coronary syndrome. Arch
- 396 *Med Sci Atheroscler Dis* 2021;6:: e21–e27.
- 397 26. Bang CN, Roman M, Best L, Lee E, Howard B, Simone G de, Okin P, Kober L, Wachtell K,
- 398 Devereux R. A NEW FOUR-GROUP CLASSIFICATION OF LEFT VENTRICULAR
- 399 HYPERTROPHY BASED ON LEFT VENTRICULAR GEOMETRY LOCATED A NEW
- 400 HIGH-RISK GROUP WITHIN ECCENTRIC HYPERTROPHY IN A POPULATION-BASED
- 401 STUDY: THE STRONG HEART STUDY. Journal of the American College of Cardiology
- 402 2013;61.
- 403

LVH and long-term outcomes in MESA

- 404
- 405
- 406

407 **Figure Legends**

- 408 Figure 1. Clinical and biochemical variables by LVH phenotype
- 409 Figure 2. Inflammatory cytokine levels by LVH phenotype
- 410 Figure 3. Long-term outcomes by LVH phenotype
- 411 a. All-cause mortality
- 412 b. Incidence of congestive heart failure
- 413 c. Incidence of myocardial infarction
- 414 d. Incidence of cornary heart disease
- 415
- 416 **Tables**
- 417 Figures

Figure 1. Clinical and biochemical variables by LVH phenotype

displayed as means/medians with 95% CI

displayed as means/medians with 95% CI

*normal geometry vs. CH, normal vs. EH

Table 1. Comparative table of baseline demographics of variouscardiac geometries

Demographic data				
	Normal geometry (n=4,772)	Concentric hypertrophy (n=154)	Eccentric hypertrophy (n=53)	p-value
Demographics		`````		
Age	61 ± 10	64 ± 10	64 ± 11	< 0.001
Male gender (%)	2265 (47)	80 (52)	25 (47)	n.s.
Race/Ethnicity				< 0.001
(%) White	1904 (40)	20(10)	19 (36)	
Black	1894 (40) 1196 (25)	29 (19) 69 (45)	18 (34)	
Hispanic	1040 (22)	49 (32)	14 (26)	
Chinese American	642 (13)	7 (4)	2 (4)	
chinese / merican	042 (15)	/ (+)	2 (4)	
Hypertension (%)	1941 (41)	131 (85)	35 (66)	< 0.001
Dyslipidemia (%)	1758 (37)	60 (39)	11 (21)	n.s.
Diabetes (%)	467 (10)	38 (25)	8 (15)	< 0.001
Smoker (%)	587 (12)	31 (20)	14 (26)	0.001
FamHx of MI (%)	1585 (35)	48 (34)	25 (48)	n.s.
Income tier	8.6 ± 3.5	7.9 ± 3.4	7.7 ± 3.5	0.001
Clinical data				
Systolic blood	124 ± 21	150 ± 27	140 ± 21	< 0.001
pressure (mm Hg)				
BMI	28 ± 4.9	29 ± 5.2	29 ± 5.4	< 0.001
Waist	96 ± 13	101 ± 13	100 ± 14	< 0.001
circumference				
(cm) Metabolic	1547 (22)	90 (59)	22(42)	-0.001
	1547 (32)	89 (58)	23 (43)	< 0.001
syndrome (%)				
Laboratory data				
Fasting glucose	89 ± 16	94 ± 28	86 ± 18	< 0.001
Total cholesterol	194 ± 35	193 ± 38	187 ± 46	n.s.
(mg/dL)				
Triglycerides	131 ± 85	142 ± 102	107 ± 51	0.03
(mg/dL)				
HDL (mg/dL)	51 ± 15	49 ± 151	51 ± 15	n.s.
LDL (mg/dL)	117 ± 31	116 ± 33	114 ± 40	n.s.
Serum creatinine	0.92 ± 0.28	1.0 ± 0.28	0.82 ± 0.38	< 0.001
(mg/dL)	110 ===			
Urine creatinine	119 ± 73	125 ± 75	135 ± 91	n.s.
(mg/dL)	51.66	16 50	0 0 + 12 5	<0.001
Urine albumin/creatinine	5.1 ± 6.6	16 ± 52	8.2 ± 13.5	< 0.001
ratio				
Tatio				

IL-6	1.1 ± 1.1	1.5 ± 1.3	1.4 ± 1.4	< 0.001
CRP	1.8 ± 3.2	3.0 ± 4.7	2.1 ± 3.9	<0.001
Coronary artery calcium score	129 ± 375	281 ± 612	324 ± 927	<0.001
Cardiac MRI data				
LV wall thickness, end- diastolie (mm)	9.2 ± 1.8	13 ± 1.8	10 ± 0.7	<0.001
LV end-diastolic volume (mL)	125 ± 30	152 ± 40	192 ± 45	< 0.001
LVEF	69 ± 7.1	64 ± 10	62 ± 12	< 0.001
Stroke volume	86 ± 19	95 ±20	117 ± 26	< 0.001
Heart rate (bpm)	63 ± 9.3	63 ± 11	62 ± 13	n.s
Cardiac output (L/min)	5.7 ± 1.4	6.2 ± 1.7	7.6 ± 2.1	< 0.001

Table 2. Independent associations with LVH subtype

a. Concentric hypertrophy

	Odds Ratio (95% CI)	p-value
Age (per 1 year)	0.99 (0.97-1.01)	0.28
Gender (female)	0.64 (0.43-0.94)	0.02
Race		
White	0.43 (0.26-0.70)	0.001
Chinese-American	0.30 (0.13-0.67)	0.004
Black	1.05 (0.71-1.57)	0.80
Hispanic (reference)	-	-
Systolic blood pressure	1.05 (1.04-1.05)	< 0.001
(per 1mm Hg)		
Fasting glucose (per mg/dL)	1.003 (0.99-1.007)	0.21
Baseline creatinine (per mg/dL)	1.15 (0.71-1.88)	0.55
Urine creatinine (per mg/dL)	1.001 (0.99-1.003)	0.52
Metabolic syndrome	0.62 (0.40-0.96)	0.03
IL-6 (per pg/mL)	1.01 (0.86-1.18)	0.89
CRP (per pg/mL)	1.005 (0.97-1.038)	0.76
Triglyceride (per mg/dL)	1.00 (0.99-1.002)	0.92

b. Eccentric hypertrophy

	Odds Ratio (95% CI)	p-value
Age (per 1 year)	1.02 (0.98-1.05)	0.34
Gender (female)	0.62 (0.31-1.26)	0.19
Race		
White	0.96 (0.46-1.98)	0.91
Chinese-American	0.28 (0.06-1.30)	0.10
Black	0.77 (0.35-1.72)	0.53
Hispanic (reference		
Systolic blood pressure	1.03 (1.02-1.04)	< 0.001
(per 1mm Hg)		
Fasting glucose (per	0.99 (0.98-1.008)	0.54
mg/dL)		
Baseline creatinine (per	0.11 (0.01-0.72)	0.02
mg/dL)		
Urine creatinine (per	1.004 (1.00-1.008)	0.02
mg/dL)		
Metabolic syndrome	0.54 (0.27-1.09)	0.08
IL-6 (per pg/mL)	1.13 (0.92-1.38)	0.23
CRP (per pg/mL)	1.004 (0.96-1.05)	0.87
Triglycerides (per	0.99 (0.98-0.99)	0.006
mg/dL)		

Table 3. Independent predictors of adverse outcomes

a. All-cause mortality

	Hazard Ratio (95% CI)	p-value
Age	1.10 (1.09-1.11)	< 0.001
Gender (male)	1.48 (1.29-1.69)	< 0.001
Race		
White (reference)	-	-
Chinese-American	0.88 (0.71-1.08)	0.22
Black	1.17 (1.005-1.36)	0.04
Hispanic	0.89 (0.75-1.06)	0.20
BMI (kg/m^2)	0.99 (0.98-1.01)	0.56
Systolic blood pressure	1.002 (0.99-1.005)	0.17
Fasting glucose (per mg/dL)	1.005 (1.003-1.007)	< 0.001
Baseline creatinine (per mg/dL)	1.29 (1.15-1.46)	< 0.001
LDL (per mg/dL)	0.998 (0.996-1.000)	0.11
LVEF (per 1%)	0.98 (0.98-0.99)	0.005
IL-6 (per pg/mL)	1.17 (1.12-1.22)	< 0.001
CRP (per mg/L)	1.01 (0.998-1.021)	0.11
Cardiac geometry		
Normal (reference)	-	-
СН	1.84 (1.41-2.41)	< 0.001
EH	2.58 (1.77-3.76)	< 0.001

b. Incident heart failure

	Hazard Ratio (95% CI)	p-value
Age	1.09 (1.07-1.10)	< 0.001
Gender (male)	1.37 (1.04-1.80)	0.02
Race		
White (reference)		-
Chinese-American	0.64 (0.38-1.07)	0.09
Black	0.81 (0.59-1.09)	0.17
Hispanic	0.73 (0.52-1.03)	0.07
BMI (kg/m^2)	1.03 (1.009-1.06)	0.01
Systolic blood pressure	1.008 (1.002-1.013)	0.01
Fasting glucose (per mg/dL)	1.007 (1.004-1.010)	< 0.001
Baseline creatinine (per mg/dL)	1.36 (1.13-1.65)	0.001
LDL (per mg/dL)	1.00 (0.99-1.004)	0.86
LVEF (per 1%)	0.95 (0.94-0.96)	< 0.001
IL-6 (per pg/mL)	1.02 (0.92-1.14)	0.63
CRP (per mg/L)	1.02 (1.002-1.046)	0.02
Cardiac geometry		
Normal (reference)	-	-
СН	3.09 (2.02-4.72)	< 0.001
EH	3.78 (2.04-7.03)	< 0.001

c. Incident myocardial infarction

	Hazard Ratio (95% CI)	p-value
Age	1.04 (1.02-1.05)	< 0.001
Gender (male)	1.83 (1.37-2.45)	< 0.001
Race		
White (reference)	-	-
Chinese-American	0.64 (0.40-1.03)	0.06
Black	0.56 (0.39-0.80)	0.002
Hispanic	0.87 (0.63-1.22)	0.44
BMI (kg/m^2)	0.99 (0.96-1.02)	0.82
Systolic blood pressure	1.007 (1.001-1.013)	0.03
Fasting glucose (per mg/dL)	1.007 (1.004-1.010)	< 0.001
Baseline creatinine (per mg/dL)	1.51 (1.29-1.77)	< 0.001
LDL (per mg/dL)	1.005 (1.001-1.009)	0.02
LVEF (per 1%)	0.99 (0.97-1.009)	0.31
IL-6 (per pg/mL)	1.10 (0.99-1.23)	0.06
CRP (per mg/L)	0.99 (0.96-1.02)	0.92
Cardiac geometry		
Normal (reference)	-	-
СН	2.17 (1.25-3.76)	0.006
EH	2.41 (0.98-5.94)	0.054

d. Incident coronary heart disease

	Hazard Ratio (95% CI)	p-value
Age	1.04 (1.03-1.06)	< 0.001
Gender (male)	2.27 (1.85-2.80)	< 0.001
Race		
White (reference)	-	-
Chinese-American	0.80 (0.59-1.10)	0.18
Black	0.67 (0.53-0.85)	0.001
Hispanic	0.78 (0.61-0.99)	0.04
BMI (kg/m^2)	1.01 (0.99-1.03)	0.15
Systolic blood pressure	1.009 (1.004-1.013)	< 0.001
Fasting glucose (per	1.006 (1.003-1.008)	< 0.001
mg/dL)		
Baseline creatinine (per mg/dL)	1.34 (1.16-1.55)	< 0.001
LDL (per mg/dL)	1.003 (1.00-1.006)	0.04
LVEF (per 1%)	0.99 (0.98-1.009)	0.54
IL-6 (per pg/mL)	1.09 (1.01-1.18)	0.01
CRP (per mg/L)	1.01 (0.99-1.03)	0.20
Cardiac geometry		
Normal (reference)	-	-
СН	1.96 (1.32-2.89)	0.001
EH	1.63 (0.80-3.30)	0.18