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Abstract 16 

Purpose  17 

Surgeon and hospital related features such as surgeries volume can be associated with treatment 18 

choices and treatment outcomes. Accounting for these covariates with propensity score (PS) analysis 19 

can be challenging due to clustered nature of the data. Previous studies have not focused solely on 20 

the PS estimation strategy when treatment effects are estimated using random effects model(REM). 21 

We studied PS estimation for clustered data using REM compared with logistic regression. 22 

Methods 23 

Six different PS estimation strategies were tested using simulations with variable cluster-level 24 

confounding intensity (odds ratio(OR)=1.01 to OR=2.5): i) logistic regression PS excluding cluster-25 

level confounders; ii) logistic regression PS including cluster-level confounders; iii) same as ii) but 26 

including cross-level interactions; iv), v) and vi), similar to i), ii) and iii) respectively but using REM 27 

instead of logistic regression PS. Same analysis were tested in a randomised controlled trial 28 

emulation of partial vs total knee replacement surgery. Simulation metrics included bias and mean 29 

square error (MSE). For trial emulation, we compared observational vs trial-based treatment effect 30 

estimates. 31 

Results 32 
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In most simulated scenarios, logistic regression including cluster-level confounders gave more 33 

accurate estimates with the lowest bias and MSE. E.g. with 50 clusters x 200 individuals and 34 

confounding intensity OR=1.5, the relative bias= 10% and MSE= 0.003 for (i), compared to 21% and, 35 

0.010 for (iv).  In the Trial emulation, all 6 PS strategies gave similar treatment effect estimates. 36 

Conclusions 37 

Logistic regression including patient and surgeon/hospital-level confounders appears to be the 38 

preferred strategy for PS estimation. Further investigation with more complex clustered structure is 39 

suggested. 40 

Keywords:  41 
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INTRODUCTION 66 

Observational studies using routinely collected patient data from health registries are often used for 67 

clinical treatment comparative study when randomised control trials are unfeasible or unethical(1). 68 

Conversely to randomisation in trials, treatment allocation in observational data is often driven by 69 

patient and physician features, leading to confounding by indication. First proposed by Rosenbaum 70 

and Rubin(2, 3), propensity score (PS) weighting are a popular method to minimise the resulting 71 

bias. Most PS applications in pharmacoepidemiology include only patient covariates. Conversely, 72 

medical device and surgical studies typically have a clustered structure that accommodates hospital 73 

and physician/surgeon features that could impact treatment and outcome and hence act as 74 

confounders(4, 5). 75 

Several simulation studies have shown that using random effects models(6) in the PS estimation or 76 

treatment outcome modelling can reduce the bias arising from cluster level confounding in clustered 77 

data(7-12). However, it is unclear whether random effects models should be used for both PS 78 

estimation and outcome modelling in observational studies of medical devices or surgical 79 

procedures. Therefore, this study aims to evaluate to what extent random effects model should be 80 

used for PS estimation when random effects model is used to estimate the treatment outcome. This 81 

study aimed to assess to what extent random effects model should be used for clustered 82 

observation studies of medical device and surgical epidemiology.  83 

We used Monte Carlo simulations(13), and a surgical trial emulation study comparing partial and 84 

total knee replacement surgery to evaluate the accuracy and precision of random effects model 85 

compared to logistic regression propensity score model. 86 

 87 
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METHODS 90 

Simulation data generation process 91 

The simulation settings were based on previous simulation studies(7, 8) but with parameters 92 

adapted to medical device/surgical epidemiology data. We simulated clustered datasets via Monte 93 

Carlo simulations with a fixed sample size of 10,000 individuals to represent the patients, binary 94 

treatment allocation (T) and binary outcome (Y). The complete mathematical formulae for data 95 

generation are included in the supplementary material. We simulated six individuals-level covariates 96 

(x1 to x6), two cluster-level covariates (z1 and z2 to represent the hospital/surgeon level covariates) 97 

and a cross-level interaction term between the individual and cluster-level confounder for each 98 

individual. Among the individual covariates simulated, 5 were confounders (x1- x5), 1 was a risk 99 

factor associated with outcome but not with exposure (x7), and 1 was an instrumental variable (x6). 100 

Both cluster level covariates (z1 and z2) were generated as confounders. Figure 1 gives the clustered 101 

causal diagram of the simulation covariates. 102 

12 different scenarios with 1000 replications under each scenario were simulated to test: 1) three 103 

different ratios of cluster: individual size: 10: 1000, 50: 200, and 500: 20; 2) different effect size for 104 

z1 and z2 on outcome, ranging from negligible with odds ratio = 1.01 (resembling an instrumental 105 

variable) to strong with odds ratio = 2.5 (equivalent to strong multilevel confounding). Table 1 gives 106 

the generation distribution, effects on treatment allocation and effects on treatment outcome for all 107 

the covariates generated in the simulations. 108 

The simulation data were generated with simstudy (version 0.2.1) R package, and the propensity 109 

score models were fitted with lme4 (version 1.1.21) R package. 110 
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Figure 1: This diagram gives the causal relationship between the covariates in the simulation data, the arrow indicates 113 

causes. For example, x1-> Y implies x1 causes Y. 114 
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 122 

Table 1: The table gives the generation distribution, effects on treatment allocation and effects on treatment outcome for 123 
covariates generated in the simulations. OR = odd ratio 124 

Covariates Description Effects on treatment 

allocation (beta value) 

Effects on treatment 

outcome (Beta value) 

Generation 
distribution 

z1,z2 Cluster-level 

confounders 

z1 = z2 = 0.4055 

(equivalent to OR=1.5) 

z1 = z2 = 

[0.01,0.2231,0.4055,0.9163] 

~ [equivalent to OR 

=1.01,1.25,1.5,2.5] 

z1 ~ N(0,1),  

z2 ~ Bernoulli(0.5) 

x1 to x5 Individual 

level 

confounders 

[x1,x2,x3,x4,x5] = 

[0.35,0.4,0.45,0.5,0.55] 

[x1,x2,x3,x4,x5] = 

[0.35,0.4,0.45,0.5,0.55] 

[x1,x2,x3]~Bernoulli 

([0.4,0.45,0.5] ) 

x4,x5 ~ N(0,1) 

x6 Individual 

level risk 

factor 

0 0.5 Bernoulli( 0.5) 

x7 Individual 

level 

instrumental 

variable 

0.5 0 Bernoulli( 0.5) 

z1*x1 Cross level 

interaction 

term 

0.4055 (OR =1.5) 0 z1*x1 
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Propensity score estimation strategy 131 

For all the data scenario described in the simulation data generation process, we tested six different 132 

strategies to incorporate propensity score, as defined in Table 2. 133 

Table 2: The table gives the cluster level information contained and the statistical models used for the six propensity score 134 
estimation strategies (M1 to M6). 135 

Propensity score 

strategy 

Cluster level 

confounders as 

covariates in PS model 

Cross level 

confounders 

interaction term as 

covariate in PS model 

Statistical model to 

build a propensity 

score  

M1 Excluded Excluded Logistic regression 

M2 Included Excluded Logistic regression 

M3 Included Included Logistic regression 

M4 Excluded Excluded Random effects 

model1  

M5 Included Excluded Random effects 

model1  

M6 Included Included Random effects 

model1 

1 The random effects model were built with logit link function 136 
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Treatment effect estimation 140 

For each of the scenarios, the average treatment effect (ATE) was estimated using random effects 141 

models with logit function regress on treatment outcome weighted with stabilised inverse 142 

probability weighting (SIPW)(14) based on propensity scores calculated using the strategies 143 

described in table 2. Random effects model was use for treatment effect estimation since several 144 

simulation studies on propensity score(7, 8) have shown that using random effects models to 145 

account for the cluster level confounding generally gives the least bias. 146 

Assessment of simulation results 147 

We measured each propensity score specification strategy's performance on each scenario by 148 

calculating the 1) absolute relative bias (%), defined as the average percentage difference between 149 

the true treatment effect and the estimated treatment effect. 2) mean square error (MSE), which is 150 

a measure of accuracy. 3) 95% confidence interval model coverage, defined as the proportion of the 151 

95% confidence intervals of the estimated treatment effect effects containing the true treatment 152 

effect. All the performance measures were calculated following the simulation study guidelines 153 

discussed in Morris et al(15) with “rsimsum” (version 0.9.1) R package. 154 

Case study on medical device and surgical epidemiology 155 

We used data from the UTMOST study(16), which aimed to identify the optimal methods for 156 

controlling confounding when emulating the results of the TOPKAT surgical trial(17). The UTMOST 157 

cohort study included patients with a first primary total knee replacement (TKR) or 158 

unicompartmental knee replacement (UKR)(18) in the UK National Joint Registry (NJR) from 2009 to 159 

2016 who would have met the TOPKAT trial eligibility criteria. UTMOST included a total of 294556 160 

patients (294556 UKR and 21,026 TKR patients), and 6420 different lead surgeons carried out the 161 

interventions. UTMOST extracted 18 patient-level covariates from the NJR, linked to Hospital 162 

Episode Statistics (HES) records and patient-reported outcome measures, and the volume of UKR 163 
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performed by each lead surgeon in the previous year from the NJR. The UTMOST study outcome was 164 

revision five years after surgery. Table 3 gives the covariates adjusted in the study.  165 

We applied the six proposed propensity score specification strategies from table 2 to the UTMOST 166 

dataset to construct the propensity scores for UKR and compared it to the results of the TOPKAT 167 

surgical trial. The cross-level interaction term considered in UTMOST was the interaction of surgeon 168 

volume and patient gender. As with the simulated data described in the method section, we 169 

modelled the 5-year revision risk for patients received UKR using a random effects model with the 170 

lead surgeon as cluster level while covariates were adjusted with stabilised inverse probability 171 

weights. 172 

 173 
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Table 3:: This table gives the covariates adjusted in the case study. UKR = unicompartmental knee replacement NJR = 185 
National Joint Registry. 1 standardised measure of health-related quality of life developed by the EuroQol Group 186 

Covariates Type/description 

Socio-demographic covariates  Patient covariates (individual level) 

Age Continuous covariate 

Gender Binary covariate 

Rural Urban Categorical covariate – urban/town and 

fringe/village/isolated 

IMD categorical covariate in 10 percentiles from 

least deprived to most deprived 

BMI Continuous covariate 

Pre-Operative Patient Reported Outcomes  Patient covariates (individual level) 

pre-operative OKS  Continuous covariate 

EQ-5D
1
 Continuous 

General health Categorical covariate with discrete scale 

excellent/1/2/3/4/poor 

Comorbidities 3-year before surgery  Patient covariates (individual level) 

Charlson comorbidity  Binary covariate 

Gastrointestinal disease  Binary covariate 

Osteoarthritis and other joint problems  Binary covariate 

Mental health  Binary covariate 

Respiratory disease  Binary covariate 

Cardiovascular disease  Binary covariate 

Thyroid problems  

Foot, hip, spinal pain  

 

Binary covariate 

Foot, hip, spinal pain  Binary covariate 

Coxarthrosis  Binary covariate 

Neurological disorders  Binary covariate 

Other arthrosis  Binary covariate 
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Polyarthrosis  Binary covariate 

Spondylosis Binary covariate 

Surgeon’s feature covariates Surgeon covariates (cluster level) 

Surgery volume of UKR performed by each 

lead surgeon in the previous year from the 

NJR 

Continuous covariate 
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RESULTS 203 

Simulation study 204 

Figures 3 and 4 gave the simulations average absolute relative bias and MSE of the treatment effect 205 

estimates for propensity score estimation strategy M1 to M6. There were few clear trends appeared 206 

from figure 3 and 4 that were consistent in all cluster structure scenario. The relative bias and MSE 207 

for models with and without the cross-level interaction were similar, for example, relative bias = 208 

9.42% in M2 and relative bias = 9.53% in M3 for cluster level confounders odd ratio (OR) = 1.01, 209 

cluster structure (10,1000) scenario, suggesting that not incorporating the cross-level correlation 210 

where there is one did not impact on bias much. In scenarios where the cluster level confounders 211 

had minimal effect on outcome (OR = 1.01), the model where propensity score without cluster level 212 

confounders in the logistic regression (M1) gave the lowest bias when compared to other PS models. 213 

By contrast, M1 did not always gave lowest relative bias and MSE when the effect size of cluster 214 

level confounders OR were greater than 1.01. 215 

For cluster structure with small cluster number and large cluster size (m = 10, n = 1000) and (m =50, 216 

n =200) using random effects model for propensity score estimation (M4, M5, M6) consistently gave 217 

higher bias compared to using logistic regression model (M1, M2, M3). For example, the relative bias 218 

for M4 is 21.1% compared to 9.53% for M1 in cluster structure (m = 50, n = 200) and cluster level 219 

confounders effect size odd ratio 1.5 scenario. Also, adding the cluster level confounders as 220 

covariates in the propensity score model did not impact the bias much in cluster number (m), cluster 221 

size (n) = [ (10,1000), (50,200)] scenarios regardless of the cluster level confounder effect size on the 222 

treatment outcome. Since the relative bias for M1 compared to M2 and M3, and the relative bias 223 

M4 compared to M5 and M6 are very similar. 224 

The results for the smallest cluster size scenarios (m = 200, n = 50) behaved differently compared to 225 

the other two cluster structures tested in the study. Apart from in the cluster confounder effect on 226 
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outcome OR = 1.01 scenario. The relative bias for propensity score strategy that either included the 227 

cluster level confounders as covariates in the propensity score model or used a random effects 228 

model to account for the cluster structure of the data (M2 to M6) reduced bias compared to 229 

propensity score strategy did not consider the cluster level (M1). The improvement in bias and MSE 230 

was greater as the cluster level confounders effect on outcome increases. For example, the relative 231 

bias for M1 = 14.02% compared to M2 = 9.48% for cluster level confounders effect on outcome OR = 232 

1.5. For cluster level confounders effect size on outcome OR = 2.5, the relative bias for M1 = 20.16% 233 

compared to M2 = 10.54%. 234 
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Figure 2: The graphs give the simulation treatment effects average absolute relative bias and 95% confidence interval for 248 

propensity score specification strategies M1 to M6 for different cluster structure and cluster (surgeon) level confounder odd 249 

ratio on treatment outcome. Structure = (number of clusters, individuals per cluster), surgeon OR = cluster level confounder 250 

odd ratio on treatment outcome. Propensity score(PS) strategies: M1 = logistic regression PS excluding cluster-level 251 

confounders; M2 = logistic regression PS including cluster-level confounders, M3 = logistic regression PS with cluster level 252 

confounders and cross level interaction term, M4 = random effects PS excluding cluster-level confounders, M5 = random 253 

effects PS including cluster-level confounders, M6 = random effects PS with cluster level confounders and cross level 254 

interaction term 255 
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Figure 3: The graphs give the simulation treatment effects average mean square error and 95% confidence interval for 264 
propensity score specification strategies M1 to M6  for different cluster structure and cluster (surgeon) level confounder odd 265 
ratio on treatment outcome. Structure = (number of clusters, individuals per cluster), surgeon OR = cluster level confounder 266 
odd ratio on treatment outcome. Propensity score(PS) strategies: M1 = logistic regression PS excluding cluster-level 267 
confounders; M2 = logistic regression PS including cluster-level confounders, M3 = logistic regression PS with cluster level 268 
confounders and cross level interaction term, M4 = random effects PS excluding cluster-level confounders, M5 = random 269 
effects PS including cluster-level confounders, M6 = random effects PS with cluster level confounders and cross level 270 
interaction term 271 

 272 

Figure 4 gave the 95% CI model coverage for the simulation study. It showed that low coverage was 273 

a major issue for treatment effects estimates using random effect model based propensity score 274 

model (M4 to M6) when the cluster size was large (n = 1000 and n = 200) as the model coverage for 275 

M4 M5 M6 were much lower than M1 M2 M3. In our small cluster size scenario (n = 20), the model 276 

coverage between M4 M5 M6 and M1 M2 M3 were more closely matched. However M2 and M3 still 277 

gave higher model coverage then M4 M5 M6. 278 
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Figure 4:  The graphs give the simulation treatment effects average 95%CI model coverage probability and its 95% 279 
confidence interval for propensity score specification strategies M1 to M6 for different cluster structure and cluster level 280 
confounder odd ratio on treatment outcome. Structure = (number of clusters, individuals per cluster), surgeon OR = cluster 281 
level confounder odd ratio on treatment outcome. Propensity score(PS) strategies: M1 = logistic regression PS excluding 282 
cluster-level confounders; M2 = logistic regression PS including cluster-level confounders, M3 = logistic regression PS with 283 
cluster level confounders and cross level interaction term, M4 = random effects PS excluding cluster-level confounders, M5 = 284 
random effects PS including cluster-level confounders, M6 = random effects PS with cluster level confounders and cross level 285 
interaction term . The black vertical dotted line indicates 95%. 286 
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Real world case study 292 

Figure 5:Treatment effects estimates in relative risk and its 95% confidence interval using data from the UTMOST study and 293 
the six proposed propensity score strategies M1 To M6  and also the TOPKAT surgical trial estimates. TOPKAT = surgical trial 294 
estimates. Propensity score(PS) strategies: M1 = logistic regression PS excluding cluster-level confounders; M2 = logistic 295 
regression PS including cluster-level confounders, M3 = logistic regression PS with cluster level confounders and cross level 296 
interaction term, M4 = random effects PS excluding cluster-level confounders, M5 = random effects PS including cluster-297 
level confounders, M6 = random effects PS with cluster level confounders and cross level interaction term 298 

 299 

Figure 5 gives the treatment effect estimates using the six propensity score strategies (M1 to M6) 300 

proposed for the case study (UTMOST) and the TOPKAT surgical trial estimates.  We found that 301 

under all model strategies, UKR had a higher risk for 5-year revision than TKR. In contrast, TOPKAT 302 

found no statistically significant difference in the revision risk between UKR and TKR. Models that 303 

incorporated multilevel data or not or/and included the cluster-level confounders in the propensity 304 

score model had an overlapping confidence interval of outcome estimates. This meant all six 305 

proposed propensity score strategies (M1 to M6) gave similar treatment estimates and were not 306 

statistically significantly different. In addition, propensity score models with and without cross level 307 
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interaction term had similar estimates (M2 vs M3, M5 vs M6), suggesting that adding the cross level 308 

interaction term in the propensity score models did not impact the estimate. 309 
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CONCLUSION AND DISCUSSION  327 

Discussion 328 

This study aimed to find the best way to account for cluster level confounding in propensity score 329 

model for propensity score weighting analysis when random effects model was used to estimate the 330 

treatment outcome. In our simulation study, we found accounting for the cluster level confounders 331 

in the propensity score model when random effects model was used as the outcome model does not 332 

always give the smallest bias. For cluster structures with small cluster number and large cluster size 333 

(m = 10, n = 1000) and (m =50, n =200), strategy that ignored the cluster level confounders (M1) 334 

performed the best. Including the cluster level confounders in the propensity score model by using 335 

random effects model and as covariates in the model only offered improvement in bias for small 336 

cluster size scenarios (m = 500, n = 20). This is consistent with previous studies on propensity score 337 

for clustered data(7, 8, 12), which shows random effects model might give more accurate estimation 338 

in propensity score compared to logistics regression but not necessary improvement in accuracy for 339 

treatment estimation. However in our simulation study we also showed the optimal propensity 340 

score model strategy were dependent on clustered structure and cluster level confounder effect on 341 

outcome. Whereas previous simulations study(8, 12) on this topic were more focus on the 342 

performance of different weighting approaches. We also found that adding the cross-level 343 

interaction term made little impact to the treatment effect in the simulation study. 344 

Applying the proposed propensity score strategies to real-world clinical study corroborated with 345 

some but not all our simulation results. Including a cross-level interaction term in either the logistic 346 

regression or random effects model did not substantially change the estimated treatment effect, 347 

same as the simulation study result. However, the treatment effect estimates in the real-world 348 

clinical study all had overlapping confidence intervals, meaning all six propensity score strategies 349 

(M1 to M6) gave similar results, different from our simulation results. There were few differences 350 

between the cluster structure, which could contribute to these differences in the result. First, the 351 
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cluster size was fixed in the simulation study, but the cluster size was varied for the real-world 352 

clinical study. Second, we found that many surgeons only carried out one type of treatment in the 353 

real-world clinical study. However, in our simulation study, the treatment is allocated individually, 354 

meaning both treatments can appear in all clusters. This discrepancy of results between our real-355 

world clinical study and simulation also highlighted that the cluster structure of the data affects the 356 

accuracy and precision of results for propensity score weighting analysis. More research is needed 357 

on how different cluster structures affect propensity score weighting analysis. 358 

Strengths and Limitation of the study 359 

This study’s main strength is its use of both simulations and real-world data. Using simulated data, 360 

where the true average treatment effect was known, allowed us to compare the accuracy of the six 361 

proposed PS estimation strategies. Using clinical data allowed us to test whether the trends from the 362 

simulation study were held with real-world data. 363 

This study has several limitations.  In the simulation study, we investigated only fixed cluster number 364 

and size scenarios in the scenarios. Our real-world case study found the simulation findings may not 365 

be able to generalise to the scenario when cluster number and size was not fixed. In addition, we 366 

only tested the propensity score strategies on binary outcomes. Therefore, our results cannot 367 

generalise to other types of outcomes.  We also assumed that the treatment assignment was only 368 

influenced by a small set of covariates in the simulation study. It could be argued that in real world 369 

settings, the data would usually contain more covariates. However, the focus of this study was not 370 

on covariates number. Finally, the TOPKAT trial treatment estimate was underpowered in the real-371 

world case study. As a result, the 95% confidence interval for the trial treatment estimate was large, 372 

making it difficult to compare the accuracy of the treatment effects from the UTMOST data. 373 

 374 
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Conclusion 376 

In summary, careful consideration of the cluster structure is necessary to decide on whether to use a 377 

random effects model on propensity score estimation. We should only consider using random 378 

effects model for propensity score model when the dataset contains large numbers of small clusters. 379 

Also, we should consider including cluster level confounders as covariates in the propensity score 380 

model when the cluster level confounders are thought to strongly affect the treatment outcome, as 381 

this can reduce bias. 382 

 383 
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Abbreviations: PS, propensity score; OR, odd ratio; REM, random effects model; MSE, mean square 446 

error; UKR, unicompartmental knee replacement; TKR, total knee replacement; NJR, UK National 447 
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