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Abstract 

Alzheimer’s disease (AD) is the most common form of dementia. There is no treatment 

and AD models have focused on a small subset of genes identified in familial AD. Microarray 

studies have identified thousands of dysregulated genes in the brains of patients with AD yet 

identifying the best gene candidates to both model and treat AD remains a challenge. We 

performed a meta-analysis of microarray data from the frontal cortex (n = 697) and cerebellum 

(n = 230) of AD patients. A two-stage artificial intelligence approach, with both unsupervised 

and supervised machine learning, combined with a functional network analysis was used to 

identify functionally connected and biologically relevant novel gene candidates in AD. We found 

that in the frontal cortex, genes involved in mitochondrial energy, ATP, and oxidative 

phosphorylation, were the most significant dysregulated genes. In the cerebellum, dysregulated 

genes were involved in mitochondrial cellular biosynthesis (mitochondrial ribosomes). There 

was little overlap between dysregulated genes between the frontal cortex and cerebellum. A 

further functional network analysis of these genes identified that two downregulated genes, 

ATP5L and ATP5H, which both encode subunits of ATP synthase (mitochondrial complex V) 

may play a role in AD. Combined, our results suggest that mitochondrial dysfunction, 

particularly a deficit in energy homeostasis, may play an important role in AD.  
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1. Introduction 

Alzheimer’s disease (AD) is the most common form of dementia with 50 million suffering 

from it globally and almost 10 million people developing it yearly 1. There are currently no 

effective treatments for AD and over 99.6% of clinical trials of AD have failed so far 2. Further, 

most of what is currently known about AD has been established using familial AD (FAD) 

models, characterized by mutations in amyloid precursor protein (APP), presenilin 1 (PSEN1) 

and presenilin 2 (PSEN2), which account for less than 1% of AD cases 3, 4, 5, 6.  

The recent advent of high-throughput genetic analysis technologies have allowed us to delve 

into the dysregulated genetic landscape of sporadic, or late onset, AD. Gene expression profiling 

via microarray analysis allows quantitation of a large number of mRNA transcripts and their 

variation in a relatively unbiased approach 7, but have previously been confined to relatively 

small sample numbers, making statistical analysis challenging 8. More specifically, the dataset is 

pruned using arbitrary fold changes as well as p-values that require multiple corrections, both of 

which potentially overlook genes that may be important. Additionally, there is a tendency to use 

microarray data to confirm a priori hypotheses, perhaps biasing reported outcomes rather than 

using microarray as a purely exploratory method.  

Recent meta-analyses of publicly available microarray data have proven to be a rich vein for 

identifying novel genes contributing to several diseases, including influenza 9, atherosclerosis 10, 

chronic pain 11, cancer 12, 13, and Parkinson’s disease 14. To date, however, few studies have used 

this approach to investigate possible genetic contribution to AD. One such study took a 

comparative approach to find overlapping gene expression profiles in neurodegenerative 

disorders including AD, Lewy body disease, amyotrophic lateral sclerosis and frontotemporal 

dementia 15. Another study took a similar approach to compare cross-species transcriptional 

overlap between mouse models of AD and humans 16. These meta-analyses, however, are limited 

in two ways. First, human transcriptomic data is high-dimensional (i.e. high ratio of samples to 

genes) and complex, making it difficult to identify disease associated patterns in the datasets 17. 

Second, as discussed above, these studies identified thousands of dysregulated genes without 

identifying which of these may be the best target(s) for developing new mouse and cell models 

of AD to interrogate and identify novel therapeutic approaches.  
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The use of artificial intelligence (AI) is a way to overcome the above-mentioned limitations. 

Importantly, not only is AI able to unravel patterns within complex data in an unbiased way 17, it 

also has the ability to reveal which gene target(s) should be investigated further. An example of 

this is that machine learning models have successfully differentiated Parkinson’s disease patients 

from healthy controls based on their gene expression profiles 18. Further, a recent study using a 

similar approach, in inflammatory bowel disease (IBD), performed a meta-analysis of human 

gene expression data, followed by machine learning, to identify novel disease causing genes 19. 

Their role in disease was confirmed in mice, representing the development of a novel model of 

IBD. Using these recently developed tools, patient-derived IBD organoids were successfully 

‘treated’, identifying novel therapeutic targets and therapies for IBD 19. In AD, as far as we are 

aware, a meta-analysis combined with machine learning approach has been used once. However 

the identified genes had little to no functional interactions in STRING pathway analysis, 

suggesting that they are unlikely to be biologically relevant 20. In the context of AD, these 

previous data establish a clear need to for methods that identify functionally connected and 

biologically relevant candidate genes as has been done in IBD 19. Hopefully, this approach will 

lead to the development of novel animal models of AD as well as new treatments.  

To identify the most biologically relevant genes in AD that inform disease pathophysiology, 

we performed a meta-analysis of an unprecedented number of microarray datasets from the 

frontal cortex and cerebellum of patients with AD compared to healthy controls. We then used a 

combination of unsupervised and supervised machine learning along with functional network 

analyses in STRING to determine genes with clearly established interaction networks indicating 

that that may be biologically relevant to AD.  

2. Methods  

2.1. Systematic Review of Publicly Available Data Repositories 

To identify publicly available transcriptomic datasets, a systematic review of the Gene 

Expression Omnibus (GEO) database was performed. The key search terms used included 

“Alzheimer’s disease” and “homo sapiens”. Datasets were screened based on the following 

inclusion criteria: (a) gene expression data generated using microarray platforms, (b) gene 

expression specific to the amygdala, hippocampus, entorhinal cortex, frontal cortex, temporal 
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cortex or cerebellum, (c) clinically confirmed Alzheimer’s disease patients and (d) inclusion of 

cognitively normal healthy controls. Datasets were excluded for the following: (a) use of other 

high throughput gene expression assays (e.g. RNA-sequencing), (b) gene expression in the 

periphery (e.g. blood), (c) not specifying confirmed AD diagnosis, and (d) not including 

cognitively healthy controls (e.g. use of controls with mild cognitive impairment).  

2.2. Identification and Meta-Analysis of AD Microarray Datasets 

A total number of 1010 datasets in GEO were screened. Based on the inclusion and exclusion 

criteria, 14 datasets were identified as being eligible for inclusion in the meta-analysis. The meta-

data of each dataset was analyzed to determine if there was a sufficient sample size to undertake 

further analyses and machine learning. Of these datasets, 11 were excluded due to an insufficient 

sample size and were unable to be combined to create a new dataset of sufficient size (e.g. 

sample size of only 10). Consequently, we were unable to include the following brain regions in 

the analyses: the amygdala, hippocampus, entorhinal cortex, and temporal cortex.  

In the three identified data sets, we included two brains regions, the frontal cortex and 

cerebellum. Data from the frontal cortex originated from two GEO datasets: GSE44770 and 

GSE33000. Data for the cerebellum originated from the GEO dataset GSE44768. Samples from 

the studies consisted of AD patients, with confirmed antemortem clinical diagnosis and 

postmortem neuropathological assessment, and normal, non-demented, healthy controls that 

were age-matched 21, 22. After identifying the respective datasets for the frontal cortex and 

cerebellum, we then converted all normalized gene expression values into a z-score. For the 

frontal cortex only, genes common to both datasets were selected and then the two datasets were 

merged into one. Data processing and merging was done in R Studio v1.2.5033 (R v3.6.3) with 

packages GEOquery, and dplyr. The final, unified frontal cortex dataset had a total sample size 

of n = 697 (AD n = 439, healthy control n = 238). The cerebellum dataset had a total sample size 

of n = 230 (AD n = 129, healthy control n = 101).  

2.3. Machine Learning and STRING Network Analysis 

 The conventional approach for identifying differentially expressed genes typically uses 

fold change, p-values, or a combination of the two. These methods, however, are limited and are 

unlikely to provide the information needed to make strong conclusions about dysregulated genes 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 12, 2022. ; https://doi.org/10.1101/2022.02.02.22270347doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.02.22270347


6 
 

that may be important for AD. First, using standard fold change cutoffs to select differentially 

expressed genes is inherently problematic. Genes with either low, or high, absolute expression 

are more likely to either easily meet or miss the fold change threshold, respectively, regardless of 

whether or not the gene is truly differentially expressed 23, 24. Further, the p-value is well-known 

to not only provide limited information about the data at hand, but to also be easily 

misinterpreted, thus likely contributing to the replication crisis 25, 26, 27. Specifically, calculating 

statistical significance using a p-value does not account for the degree to which the genes are, or 

are not, involved in differences between groups (in this case, between AD patients and healthy 

controls). One way to circumvent the inherent limitations of conventional methods is to approach 

the problem of identifying novel disease-driving genes through the lens of artificial intelligence, 

such as machine learning. In other words, we treat the problem as a machine learning problem: 

we would like to determine which genes best predict the classification of a given sample as being 

from either an AD patient or healthy control.  

 In the present study, we used a two-stage machine learning approach (Figure 1). In the 

first stage, we used unsupervised machine learning to perform an initial feature selection: 

identifying the genes that are likely to be important candidates for distinguishing an AD patient 

from a healthy control. Feature selection is an important step to reduce the number of features 

and thus avoid the curse of dimensionality for the final machine learning algorithm 28. 

Unsupervised machine learning is unique in the sense that it does not predefine any sample as 

being either an AD or healthy control sample. Instead it identifies similarities between the 

various samples that exist, irrespective of their group membership 29. Samples with high 

similarity will cluster together and will inform us how the data is grouped and what the drivers of 

this differentiation are 29. If true differences exist between AD patients and healthy controls, the 

unique clusters will be representative of this, and we will identify which genes are driving these 

differences. The unsupervised machine learning approach used here was a principal component 

analysis (PCA), an important technique that reduces dimensionality within a dataset while 

simultaneously minimizing any information loss 30. PCA has an established use in the analysis of 

high throughput datasets, such as microarray, to reveal hidden patterns within the thousands of 

identified genes 31, 32, 33. All the genes (> 15,000 genes per dataset) that were identified within the 

frontal cortex and cerebellum datasets, respectively, were analyzed using PCA in R Studio 

v1.2.5033 (R v3.6.3) and visualized using ggplot (Figure 1). The PCA indicated that the between 
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group variance for the frontal cortex ran along principal component (PC) 1 and along PC2 for the 

cerebellum. As such, the top 1000 genes that contributed to frontal cortex PC1 and cerebellum 

PC2, respectively, were selected as potential gene candidates for AD (Figure 1).  

 

Figure 1. AI workflow used in the current study to identify new AD related genes. 

 

To further narrow down the list of gene candidates, we entered each list of the top 1000 

contributing genes from the PCs into STRING v11 34. Importantly, STRING allows for the 

identification of interaction networks and gene-enrichment analysis 34. We then identified 

possible distinct network clusters using k-means clustering in STRING (Figure 1). K-means 

clustering is an unsupervised machine learning approach which, here, is a way to identify genes 
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in the network that have similar interconnections and overlapping pathways 35. Subsequently, 

each distinct k-means cluster for the two brains regions were separately entered into STRING 

and a network analysis was performed using the following active interaction sources: 

experiments, databases, co-expression, neighborhood, and gene fusion and a minimum required 

interaction score of 0.7 (high confidence) (Figure 1). Importantly, using STRING, and the wealth 

of experimental data that it relies on, to identify pathways and interaction networks increases the 

likelihood of identifying strong, biologically relevant gene candidates for AD. More specifically, 

this approach allows for the identification of biologically relevant pathways rather than stand-

alone genes that may not have any evidence of interactions thus increasing the chance of network 

effects and identifying therapeutic candidates AD. In STRING, each k-means cluster were 

characterized using biological processes identified by Gene Ontology 36. We then selected the 

central node(s) in each k-means cluster based on their connections with other genes in the 

network, with identified central node(s) having the highest number of connections (Figure 1). In 

other words, those with the most connections are preferentially chosen. Selecting highly 

interconnected gene nodes increases the likelihood of identifying candidates that are 

fundamentally important biologically relevant targets in AD.  

 After identifying the central nodes in each k-means cluster for the frontal cortex and 

cerebellum, respectively, we then undertook the second stage of our two-stage machine learning 

approach: supervised machine learning using decision trees (classification and regression trees 

(CART)) 37 (Figure 1). Here, the CART identifies which genes are best able to separate AD 

patients from healthy controls within the machine learning model. The use of CART has been 

well-established in large clinical and public health projects characterized by high-dimensional, 

heterogeneous data 37, 38. In the current study, the central gene nodes for each k-means cluster 

were used as features in the CART. The datasets for frontal cortex and cerebellum were each 

split into training (75%) and testing (25%) datasets. Training, tuning, and validating the model 

was done on the training dataset. Here, a 5-fold cross-validation was repeated three times to 

improve the accuracy estimates of the models 39. Cross-validation was used also as a tool for 

identifying the top performing gene predictors. The final evaluation of the CART model 

performance was done on the previously withheld testing dataset. CART was performed in R 

Studio v1.2.5033 (R v3.6.3) with libraries rpart, caret, and pROC.  
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2.4. Comparison of central node genes between frontal cortex and cerebellum 

   In parallel with our supervised machine learning analysis, we also sought to identify if 

there were any common central node genes between the frontal cortex and cerebellum. 

Identifying overlapping functional nodes is important to establish any common mechanisms 

underlying AD pathology in both regions. After identifying the overlap, we then performed a 

functional network analysis of these genes in STRING v11 to determine enriched pathways and 

biological processes that are common. We were also able to use the STRING analysis to confirm 

if any of the overlapping central node genes were themselves central nodes in the overlap 

functional network (Figure 1).  

3. Results 

3.1. Meta-analysis and unsupervised machine learning identifies novel dysregulated 

pathways and genes in AD 

 Unsupervised machine learning using principal component analysis (PCA) of the frontal 

cortex and cerebellum datasets demonstrated a clear clustering between the AD patients and 

healthy control groups along principal component (PC) 1 for the frontal cortex and PC2 for the 

cerebellum (Figure 2a and b).  
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Figure 2. Principal component analysis of genes identified in the microarray meta-analysis reveals a clear 
between-group separation between the AD patients (red) and healthy controls (blue). (a) Frontal cortex. 
(b) Cerebellum.  

 

Based on this finding, the top 1000 genes from frontal cortex PC1 and the top 1000 genes 

from cerebellum PC2 were identified as the most dysregulated genes in AD as they contributed 

the most to between-group variance (Supplementary Table 1). To determine the number of 

common pathways represented in these genes, a second unsupervised machine learning approach 

was performed using k-means clustering in STRING to identify genes in the network that have 

similar interconnections and overlapping pathways 35. Three k-means clusters were identified in 

both the frontal cortex and cerebellum (Figure 3). We then used Gene Ontology (GO) to 

characterize the biological functions of each of the clusters.    
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Figure 3. STRING k-means clustering of the top 1000 dysregulated genes in AD identified by the 
principal component analysis (PCA). (a) Frontal cortex principal component 1 (PC1) k-means clustering 
showed three distinct clusters of genes. Red n = 420, green n = 294, blue n = 286. (b) Cerebellum PC2 k-
means clustering showed three distinct clusters of genes. Red n = 392, green n = 325, blue n = 283.    

 

The first k-means cluster (red) for the frontal cortex was characterized by signaling 

processes (Supplementary Figure 1). Within this cluster, 15 central node genes were identified 

that play important roles in voltage-dependent calcium channels, guanine nucleotide-binding 

protein (G protein) formation and activity, AMPA receptor, cAMP-dependent protein kinase A 

(PKA), and the SNARE complex (Table 1; Supplementary Table 2). The second frontal cortical 

cluster (blue) was characterized by metabolic processes relating to macromolecules, proteins, 

and DNA (Supplementary Figure 2). Here, 26 genes were identified as being central nodes in the 

network with extensive roles in general cellular metabolic processes including DNA repair, 

transcriptional regulation, ubiquitin pathway regulation, and apoptosis (Table 1; Supplementary 

Table 2). The third k-means cluster identified in the frontal cortex (green) was related to 

mitochondrial processes. Within this cluster, there were two distinct sub-clusters identified based 

on biological function. The first was related to mitochondrial-specific energy, ATP, and 

oxidative phosphorylation and had 36 central nodes in the network (Supplementary Figure 3). 

These genes were all related to different mitochondrial subunits including: the F0-F1 ATP 

synthase (also known as mitochondrial complex V, ATP synthase), V-ATPase, mitochondrial 

complex I, and mitochondrial complex III (Table 1; Supplementary Table 2). The second sub-

cluster within the green k-means cluster was defined by mitochondria-mediated cellular 
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biosynthesis (Supplementary Figure 3) characterized by 10 central nodes where all genes were 

specific to the nuclear-encoded mitochondrial ribosomal 39S or 28S subunits, which play a 

central role in protein synthesis in mitochondria (Table 1; Supplementary Table 2). 

 

Table 1. Summary of the overall characterization of the k-means clusters identified in the frontal cortex 
principal component 1 (PC1).  

 

K-means 
Cluster 

Functional Pathway 
Characterization 

Number of 
Central 

Gene Nodes 

Roles of Central Gene Nodes 

1 (red) Signaling processes 15 Voltage-dependent calcium channels, 
G-protein formation and activity, 
AMPA receptor, cAMP-dependent 
protein kinase A, and SNARE 
complex 

2 (blue) Metabolic processes 
(macromolecular, proteins, 
and DNA) 

26 General cellular metabolic processes, 
DNA repair, transcriptional 
regulation, ubiquitin pathway 
regulation, and apoptosis 

3A (green) Mitochondria (energy, ATP, 
and oxidative 
phosphorylation) 

36 ATP synthase, V-ATase, 
mitochondrial complex I, 
mitochondrial complex III  

3B (green) Mitochondria (cellular 
biosynthesis) 

10 Mitochondrial ribosomal 39S and 28S 
subunits, mitochondrial protein 
synthesis 

 

 The characterization of the cerebellum k-means clusters revealed identical functional 

pathways to those in the frontal cortex (Table 2) albeit genes and the number of central gene 

nodes were different. The metabolic processes pathway was characterized by 17 central gene 

nodes which plays a role in transcription and nucleic acid binding (Table 2; Supplementary 

Figure 4; Supplementary Table 3). The signaling processes pathway had 10 central gene nodes 

(Supplementary Figure 5) and there was some overlap here in terms of the roles of the genes 

with the frontal cortex signaling processes pathway including voltage-dependent calcium 

channels and SNARE complexes. Unique to the cerebellum signaling pathway, however, was the 

involvement of cell-cell junctions, actin filament and cytoskeleton, and vesicular transport (Table 

2; Supplementary Table 3). Like the frontal cortex, the third (green) k-means cluster identified in 

the cerebellum was related to mitochondrial processes and was subdivided into two distinct sub-

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 12, 2022. ; https://doi.org/10.1101/2022.02.02.22270347doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.02.22270347


13 
 

clusters: energy, ATP, and oxidative phosphorylation and cellular biosynthesis (Supplementary 

Figure 6). The energy, ATP, and oxidative phosphorylation sub-cluster was characterized by 18 

central gene nodes involved in ATP synthase, V-ATPase, and mitochondrial complexes I and III 

(Table 2; Supplementary Table 3). The cellular biosynthesis sub-cluster included 11 central gene 

nodes that made up components of the mitochondrial ribosomal 39S and 28S subunits and were 

involved in mitochondrial ribosomal protein synthesis (Table 2; Supplementary Table 3).  

 

Table 2. Summary of the overall characterization of the k-means clusters identified in the cerebellum 
across principal component (PC) 2.  

 

K-means 
Cluster 

Functional Pathway 
Characterization 

Number of 
Central 

Node Genes 

Roles of Central Node Genes 

1 (green) Metabolic processes (RNA 
and nucleic acid)  

17 Transcription, nucleic acid binding 
(mRNA, RNA, DNA) 

2 (red) Signaling processes 10 Voltage-dependent calcium channel, 
cell-cell junctions, actin filament, 
vesicular transport, actin 
cytoskeleton, and SNARE complex 

3A (blue) Mitochondria (energy, ATP, 
and oxidative 
phosphorylation 

18 ATP synthase, V-ATPase, 
mitochondrial complex I, and outer 
mitochondrial membrane  

3B (blue) Mitochondria (cellular 
biosynthesis) 

11 Mitochondrial ribosomal 39S and 28S 
subunits, mitochondrial protein 
synthesis 

 

3.2. Supervised machine learning reveals the top signaling pathways for AD  

 The central gene nodes identified in the k-means clusters and sub-clusters within each 

brain structure were subsequently analyzed using supervised machine learning. A classification 

and regression tree (CART) algorithm was applied to each cluster, respectively, to compare the 

performance of the clusters in predicting AD. Performance indicators used included optimal 

sensitivity (correctly identifies AD patients), specificity (correctly identifies healthy controls), 

accuracy (correct number of classifications (AD / healthy control)) and AUC-ROC curve 

(capability of the model to distinguish between AD patients and healthy controls). The optimal 

performing CART was selected based on a high specificity and sensitivity as well as AUC.  
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Using these metrics, the top performing cluster for the frontal cortex was related to 

mitochondrial energy, ATP, and oxidative phosphorylation. This was followed very closely by 

the synaptic signaling, metabolic processes, and mitochondrial cellular biosynthesis clusters 

(Table 3, Figure 4). While sensitivity was the same between both models, the mitochondrial 

energy, ATP, and oxidative phosphorylation cluster model had a slightly higher specificity and 

AUC, suggesting that this model was slightly better at identifying controls (Figure 4).  

 

Table 3. CART performance metrics for the k-means clusters and sub-clusters in the AD frontal cortex. 
AUC: area under the curve.  

Cluster Specificity  Sensitivity Accuracy AUC 
Mitochondrial energy, ATP, and 
oxidative phosphorylation 

0.83 0.93 0.85 90.1 

Signaling 0.83 0.92 0.86 86.6 
Metabolic processes  0.82 0.91 0.84 88.2 
Mitochondrial cellular biosynthesis 0.81 0.88 0.83 89.7 
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Figure 4. Receiver operating characteristic (ROC) curve of the CART models performance for each 
cluster in the frontal cortex. AUC: area under the curve.  

 

 For the cerebellum, the top performing cluster was for mitochondrial cellular 

biosynthesis. This was closely followed by metabolic processes and signaling and finally by 

mitochondrial energy, ATP, and oxidative phosphorylation (Table 4, Figure 5). Although the 

levels of sensitivity vary between pathways in each brain region, all four pathways were common to both 

brain regions.  
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Table 4. CART performance metrics for the k-means clusters and sub-clusters in the AD cerebellum. 

Cluster Specificity  Sensitivity Accuracy AUC 
Mitochondrial cellular biosynthesis 0.80 0.85 0.76 88.0 

Metabolic processes 0.76 0.89 0.82 83.9 
Signaling 0.74 0.89 0.81 81.0 
Mitochondrial energy, ATP, and 
oxidative phosphorylation 

0.67 0.86 0.76 85.4 

  

 

 

Figure 5. Receiver operating characteristic (ROC) curve of the CART models performance for each 
cluster in the cerebellum. AUC: area under the curve.  
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3.3. Analysis of the overlapping gene nodes between frontal cortex and cerebellum reveals 

the importance of ATP5L and ATP5H  

 We then identified the common central node genes in the four overlapping pathways, 

(Table 5). Overlapping central gene nodes were disproportionately represented from the 

mitochondrial energy, ATP, and oxidative phosphorylation pathway, with 10 genes being 

dysregulated in AD across the frontal cortex and cerebellum. These genes largely comprised 

subunits of ATP synthase (n = 5), followed by the V-ATPase (n = 2), mitochondrial complex I (n 

= 2), and mitochondrial complex III (n = 1). Three central gene nodes from mitochondrial 

cellular biosynthesis pathway: one 39S subunit ribosomal protein gene and two 28S subunit 

ribosomal protein genes. Only two central gene nodes overlapped in the signaling pathway 

between the cerebellum and frontal cortex: a subunit for a voltage-dependent calcium channel 

and a SNARE complex member (Table 5). 

Table 5. Overlapping central gene nodes between the frontal cortex and cerebellum.  

Gene Protein Name Functional 
Pathway 

Role / Function 

ATP5A1 ATP synthase F1 subunit α Mitochondrial 
energy, ATP, 
and oxidative 
phosphorylation 

F1 catalytic core of mitochondrial ATP 
synthase  

ATP5B ATP synthase F1 subunit β F1 catalytic core of mitochondrial ATP 
synthase  

ATP5C1 ATP synthase F1 subunit γ F1 catalytic core of mitochondrial ATP 
synthase  

ATP5H ATP synthase peripheral 
stalk subunit d 

F0 complex of mitochondrial ATP 
synthase  

ATP5L ATP synthase membrane 
subunit g 

F0 complex of mitochondrial ATP 
synthase 

ATP6AP2 ATPase H+ transporting 
accessory protein 2 

Transmembrane sector of mitochondrial 
V-ATPase 

ATP6V1H ATPase H+ transporting V1 
subunit H 

Component of V-ATPase 

NDUFC2 NADH:ubiquinone 
oxidoreductase subunit C11 

Mitochondrial complex I 

NDUFS4 NADH:ubiquinone 
oxidoreductase subunit S4 

Mitochondrial complex I 

UQCRC2 Ubiquinol-cytochrome c 
reductase core protein 2 

Mitochondrial complex III 

MRPL46 Mitochondrial ribosomal 
protein L46 

Mitochondrial 
cellular 
biosynthesis 

39S subunit mitochondrial ribosomal 
protein 

MRPS10 Mitochondrial ribosomal 
protein S10 

28S subunit mitochondrial ribosomal 
protein 

MRPS35 Mitochondrial ribosomal 28S subunit mitochondrial ribosomal 
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protein S35 protein 
CACNA1D Calcium voltage-gated 

channel subunit α1D 
Signaling Voltage-dependent calcium channel 

SNAP25 Synaptosome associated 
protein 25 

SNARE complex   

 

 Given these central gene nodes overlapped in both the cerebellum and frontal cortex, we 

then sought to identify if any of these genes were themselves central nodes (i.e. had the most 

connections) within a network using STRING. We found that two of these genes had the most 

connections with the others and therefore were likely central nodes within this sub-group. They 

were ATP5L and ATP5H, each with nine connections across the other mitochondrial energy, 

ATP, and oxidative phosphorylation genes (Figure 6). The biological processes that were 

enriched in this network included oxidative phosphorylation (FDR = 1.87e-10), mitochondrial 

ATP synthesis coupled proton transport (FDR = 3.50e-8), cristae formation (FDR = 9.98e-8), 

and mitochondrial transport (FDR = 6.76e-6).  

Figure 6. STRING functional network analysis of the overlapping central gene nodes between the frontal 
cortex and cerebellum of AD patients. The STRING network analysis includes the following interaction 
sources: experiments, databases, co-expression, neighborhood, and gene fusion. The minimum interaction 
score was set to 0.7 (high confidence). Thickness of the line indicates the confidence in the interaction.  
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 4. Discussion 

 Identifying novel gene candidates in AD is challenging. We approached this challenge by 

performing a meta-analysis of microarray data from the frontal cortex and cerebellum of patients 

with AD. We then used an artificial intelligence-driven method, specifically a combination of 

unsupervised and supervised machine learning, to identify novel gene candidates for future 

study. 

 Across both the frontal cortex and cerebellum there were four functional pathways found 

to be dysfunctional in AD. These included 1) signaling, 2) metabolic processes, 3) mitochondrial 

energy, ATP, and oxidative phosphorylation, and 4) mitochondrial cellular biosynthesis. Despite 

the overlapping functional pathways between the two regions, there were pronounced differences 

in the relative importance of these pathways and the central gene nodes identified within each 

(Figure 6). First, the supervised machine learning analysis using CART identified that in the 

frontal cortex the mitochondrial energy, ATP, and oxidative phosphorylation pathway was the 

best predictor of AD. In the cerebellum, however, the mitochondrial cellular biosynthesis 

pathway was the best predictor of AD. There was little overlap (15/143) in the central gene 

nodes between the frontal cortex and cerebellum where fifteen central gene nodes were identical 

and most (10/15) were members of the mitochondrial energy, ATP, and oxidative 

phosphorylation functional pathway (Figure 5). A STRING functional network analysis of these 

overlapping genes found they were enriched in mitochondrial-related biological processes, 

including oxidative phosphorylation, mitochondrial ATP synthesis coupled proton transport, 

cristae formation, and mitochondrial transport. Further, two genes in this network were the most 

highly connected: ATP5L and ATP5H and therefore represented central gene nodes within this 

overlapping sub-network.  
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Figure 5. Summary of the central gene nodes identified in the frontal cortex and cerebellum, including 
the overlap in central gene nodes between the two regions. Black bolded genes represent those identified 
by the classification and regression trees (CART) as being significant predictors of AD. Red bolded genes 
represent the two central gene nodes of the overlapping genes between the frontal cortex and cerebellum. 

 

Mitochondria are increasingly being shown to contribute to the development and 

progression of AD, with evidence for both primary and secondary dysfunctional mitochondrial 

cascades (for reviews see 40, 41). Specifically, mitochondrial dysfunction not only affects AD 

pathology, including APP activity and β amyloid (Aβ) accumulation, but AD pathology also 

leads to further mitochondrial dysfunction 41. Our findings are consistent with these studies 

showing that oxidative phosphorylation and mitochondrial ribosomal subunit mRNA are 

decreased in the bloods of patients with MCI who were at risk of developing AD as well as the 

AD patients themselves 42, 43. This highlights an early pattern of systemic mitochondrial 

dysfunction that both precedes AD pathology and persists across the disease trajectory. These 

findings are further confirmed by a recent proteome analysis of the AD brain tissue showing that 
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dysregulated mitochondrial complexes, including ATP synthase, are potential drivers for AD 

pathology 44. The results of the present study also suggest that the role of the mitochondria in AD 

may be more nuanced. Specifically, our supervised machine learning analysis found that 

dysregulated oxidative phosphorylation and ATP synthesis genes are altered in the frontal cortex 

whereas dysregulated mitochondrial ribosomal genes were altered in the cerebellum. This 

suggests that although the mitochondria, broadly, are important, there may be key differences in 

specific mitochondrial mechanisms underlying pathology across brain regions. The reason 

underlying these differences, however, is unclear. It is also important to consider that this finding 

may be due to mitochondrial dysfunction resulting from varying levels of disease load across 

brain regions. For example, amyloid plaque deposition spreads to the cerebellum only in the end 

stages of AD 45 and perhaps amyloid β leads to mitochondrial ribosomal dysfunction. As 

discussed above, however, there is growing evidence that mitochondrial dysfunction precedes 

AD pathology. Future research would strongly benefit from examining these possibilities further.  

 Despite the finding of different mitochondrial mechanisms in the frontal cortex and 

cerebellum, we did find that two ATP synthase genes (ATP5L and ATP5H) represented a 

potential common mechanism underlying AD pathology in both regions. ATP5L encodes the g 

subunit and ATP5H encodes subunit d of the F0 membrane-spanning component of ATP 

synthase. ATP synthase, also known as mitochondrial complex V, is the final step in the 

oxidative phosphorylation pathway and the site of adenosine diphosphate (ADP) to adenosine 

triphosphate (ATP) conversion. It also plays a significant role in the formation of the 

mitochondrial inner membrane cristae 46. There has been some research into the role of ATP 

synthase in AD. Dysfunctional ATP synthase has been shown to sensitize mitochondrial 

permeability transition pore formation and lead to AD pathology, including amyloid β 47. AD 

pathology has also been found to lead to further decreases in ATP synthase activity via 

modifications to the α subunit of the F1 catalytic core 46, 48, 49. There is also some evidence that 

patients with AD have serum anti-ATP synthase β subunit autoantibodies, suggesting that 

mitochondrial dysfunction may be driven by autoimmunity 50. Despite the growing evidence that 

ATP synthase plays a role in AD, there have been no studies that specifically examine a role for 

the g (ATP5L) and d (ATP5H) subunits. Interestingly, however, two genome-wide association 

study (GWAS) meta-analysis of approximately 25,000 and 50,000 people, respectively, 

identified a shared ATP5H/KCTD2 locus for AD risk 51, 52. In line with this finding, a recent 
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analysis of polygenic risk scores for patients with AD found that oxidative phosphorylation 

genes, including ATP synthase, were strongly associated with risk of AD 53. Given these genetic 

findings and our own that ATP5L and ATP5H dysregulation represents a possible brain-wide 

mechanism in AD pathology, future research would benefit from studying these ATP synthase 

subunits further. 

 Although our work presents a strong case for a key role of novel genes in AD, there are 

some limitations that should be taken into consideration. First, based on our inclusion and 

exclusion criteria, we only identified three datasets that were appropriate for inclusion in the 

current study: two from the frontal cortex and one from the cerebellum. Although we did seek to 

include data from other brain regions, including the hippocampus and entorhinal cortex, the 

microarray datasets for these did not have the sample size to support our machine learning-based 

analyses. As such, we are unable to include a comparison of the genes and pathways that are 

involved in these regions to those discussed here. Future research would benefit from focusing 

on expanding gene expression data for these regions to enable large-scale analyses and the 

application of artificial intelligence methods. Our current findings, however, present a strong 

case for key overlapping genes across the frontal cortex and cerebellum despite differences in 

AD pathophysiology 54, which highlight the possibility of common underlying mechanisms. A 

second consideration is that our study has used established databases (e.g. STRING 35, Gene 

Ontology 36) to identify functional networks and pathways in AD. An inherent limitation of these 

databases is that they rely on existing interactions between proteins and networks that have been 

previously identified in experimental literature. As such, the use of these databases precludes the 

possibility of other central gene node(s) that do not yet have a wealth of experimental data. 

Although there is no way to overcome this limitation, we strongly suggest that future 

experimental work confirm the findings presented here.  

 In summary, our study reports an artificial intelligence-driven identification of novel gene 

candidates in the frontal cortex and cerebellum of patients with AD using a relatively unbiased 

methodology. Our findings highlight the importance of nuclear-encoded mitochondrial genes 

involved in oxidative phosphorylation in the frontal cortex and mitochondrial ribosomal protein 

synthesis in the cerebellum. Further, we found ATP synthase function as a possible common 

mechanism underlying AD pathology across brain regions. Together, these findings highlight the 
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possibility that mitochondrial dysfunction and pathophysiological mechanisms in AD may be 

brain region specific and that ATP synthase subunit dysregulation is a common mechanism. 

These candidates should be investigated further as they may have significant implications for 

understanding the etiology of AD and future therapeutic strategies.  
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