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Abstract 
 

Background: It is plausible that maternal pregnancy metabolism influences risk of offspring congenital 

heart disease (CHD). We sought to explore this through a systematic approach using different methods 

and data.  

Methods: We undertook multivariable logistic regression of the odds of CHD for 923 Mass Spectrometry 

(MS)-derived metabolites in a sub-sample of a UK birth cohort (Born in Bradford (BiB); N = 2,605, 46 CHD 

cases). We considered metabolites reaching a p-value threshold <0.05 to be suggestively associated with 

CHD. We sought validation of our findings, by repeating the multivariable regression analysis within the 

BiB cohort for any metabolite that was measured by nuclear magnetic resonance (NMR) or clinical 

chemistry (N = 7,296, 87 CHD cases), and by using genetic risk scores (GRS: weighted genetic risk scores 

of single nucleotide polymorphisms (SNPs) that were associated with each metabolite) in Mendelian 

randomization (MR) analyses. MR analyses were performed in BiB and two additional European birth 

cohorts (N = 38,662, 319 CHD cases). 

Results: In the main multivariable analyses, we identified 44 metabolites suggestively associated with 

CHD, including those from the following super pathways: amino acids, lipids, co-factors and vitamins, 

xenobiotics, nucleotides, energy, and several unknown molecules. Of these 44, isoleucine and leucine 

were available in the larger BiB cohort (NMR), and for these the results were validated. MR analyses were 

possible for 27/44 metabolites and for 11 there was consistency with multivariable regression results.  

Conclusions: In summary, we have used complimentary data sources and statistical techniques to 

construct layers of evidence. We found that amino acid metabolism during pregnancy, several lipids (more 

specifically androgenic steroids), and levels of succinylcarnitine could be important contributing factors 

for CHD. 
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Introduction 
 

Congenital heart diseases (CHDs) are the most common congenital anomaly affecting 

approximately 6-8 per 1000 live births and 10% of stillbirths. They are the leading cause of death from 

congenital anomalies 1. Approximately 20% of CHD cases can be attributed to known chromosomal 

anomalies, gene disorders or teratogens 2. The causes of the remaining cases are unknown. Identifying 

causes of CHDs is important for improving aetiological understanding and developing potential targets for 

intervention. 

Metabolomics technologies have enabled the quantification of a large number of metabolites in 

a biological sample. Metabolites are small-molecule intermediates and products of metabolism. The 

metabolome, the complete set of metabolites in biological tissues/fluids, is influenced by both genotype 

and environment, and dynamically responds to environmental influences. Analyses of maternal 

metabolomic profiles could identify causal mechanisms leading to CHDs 3. Because the metabolome 

reflects interactions of genomic, environmental (e.g., air pollution), behavioural (e.g., smoking) and 

pathophysiological states (e.g., body composition), examining associations of it with CHDs could help 

elucidate modifiable upstream risk factors and/or potential molecular targets for intervention to prevent 

CHDs. 

Studies have explored maternal molecular markers and found that offspring of women with a 

compromised vitamin D status (defined as 25-hydroxyvitamin D < 50 nmol/l in comparison to adequate 

defined as > 75 nmol/l) 4 and lipid profile 5,6 have an increased risk of CHDs. Other work has shown that 

poor glucose control and diabetes during pregnancy can increase CHD risk 7–9. However, these studies 

focus on single or few biomarkers. Exploring the wider metabolome could provide opportunities to 

improve our understanding of the molecular mechanisms that underpin CHDs 3.  Previous work has 

explored metabolomics in maternal serum as a predictor of offspring CHDs and uncovered potentially 

relevant biological pathways 10. The study found more than 100 metabolites that differed between CHD 

cases and non-cases concluding that abnormal lipid metabolism was an important feature of CHD 

pregnancies. Other research has explored potential biomarkers of maternal urine metabolomics with 

offspring CHDs (N = 70 CHD cases and 70 controls) 11. Their results indicated that short chain fatty acids 

and aromatic amino acid metabolism may be relevant to CHDs. Replication of these results are warranted. 

A recent retrospective study in a Chinese population performed metabolomic analyses using maternal 

amniotic fluid and found that two metabolites (uric acid and proline) were elevated in CHD affected 
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pregnancies 12. In summary, there have been studies uncovering potentially important biological pathways 

associated with offspring CHDs. However, pregnancy metabolomic studies are still relatively novel with 

scope for future research to provide new insights and seek replication of previous findings. 

The aim of this study was to explore associations of the maternal metabolome quantified by an 

untargeted mass spectrometry (MS) platform and the odds of CHD in the offspring. To address this aim 

we searched for relevant studies within The LifeCycle Project‐EU Child Cohort Network 13 to identify any 

study with detailed untargeted maternal gestational metabolomic data and offspring CHD information. 

We identified only one cohort with relevant data in a subgroup: the Born in Bradford (BiB) cohort (N = 

2,605 participants; 46 CHD cases) 14,15. Recognising that these novel data were potentially underpowered, 

we sought internal validation of metabolites suggestively associated with CHD, by repeating the 

multivariable regression analysis within the BiB cohort for any metabolite that was measured by nuclear 

magnetic resonance (NMR) or clinical chemistry in larger numbers (N = 7,296, 87 CHD cases). We 

subsequently searched the MR-PREG consortia studies 16,17 for cohorts with maternal genome-wide data 

and offspring CHD information that could be used for Mendelian randomization (MR) analyses of 

associations of genetic instruments for maternal metabolites. We performed pooled MR analyses across 

three MR-PREG cohorts meeting our criteria (N = 38,663, 319 CHD cases) for any metabolites that were: 

(i) suggestively associated with CHD in BiB (P<0.05) and (ii) had summary data in the most recent 

metabolomic genome-wide association study (GWAS).  
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Methods 
 

Study design and participants  
 

A schematic overview of the study design is illustrated in Figure 1. We excluded children of 

multiple births because they differ from single births for congenital anomaly outcomes 18,19. For 

multivariable metabolomic analyses, we used data from the BiB cohort as this was the only cohort that 

had measures of a substantial number of metabolites reflecting a wide range of metabolic paths assessed 

during pregnancy and CHD outcomes 15. We also explored internal validation of any findings with a p-

value < 0.05 within the BiB study where equivalent (or near equivalent) measures to any on the MS 

platform markers are available from other sources. BiB is a population-based prospective birth cohort, 

including 12,453 women across 13,776 pregnancies who were recruited at their oral glucose tolerance 

test (OGTT) at approximately 26–28 weeks’ gestation 14. Eligible women had an expected delivery 

between March 2007 and December 2010. The use of a multivariable p-value threshold of <0.05 to take 

associations forward into further validation analyses is appropriate as an initial screen, for a relatively rare 

outcome, to avoid missing potential causal effects. 

To be included in MR analyses, studies and participants had to have genome-wide data in mothers 

and CHD data in the offspring. Three cohorts contributed to MR analyses: BiB, the Avon Longitudinal Study 

of Parents and Children (ALSPAC) and the Norwegian Mother, Father and Child Cohort Study (MoBa). 

ALSPAC is a UK prospective birth cohort study which was devised to investigate the environmental and 

genetic factors of health and development 20–22. Pregnant women resident in Avon, UK with expected 

dates of delivery 1st April 1991 to 31st December 1992 were invited to take part in the study. The initial 

number of pregnancies enrolled is 14,541 (for these at least one questionnaire has been returned or a 

“Children in Focus” clinic had been attended by 19/07/99). Of these initial pregnancies, there was a total 

of 14,676 fetuses, resulting in 14,062 live births and 13,988 children who were alive at 1 year of age. MoBa 

is a population-based pregnancy cohort study conducted by the Norwegian Institute of Public Health 23,24. 

Participants were recruited from all over Norway from 1999-2008. The women consented to participation 

in 41% of the pregnancies. The cohort includes approximately 114,500 children, 95,200 mothers and 

75,200 fathers. The current study is based on 12 of the quality-assured data files released for research in 

2019. The establishment of MoBa and initial data collection was based on a license from the Norwegian 

Data Protection Agency and approval from The Regional Committees for Medical and Health Research 
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Ethics. The MoBa cohort is currently regulated by the Norwegian Health Registry Act. The current study 

was approved by The Regional Committees for Medical and Health Research Ethics (2018/1256).
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Figure 1. An overview of the study design. 
BiB has pregnancy mass spectrometry derived metabolomics in two separate datasets. Dataset 1 was completed in December 2017 and included 1,000 maternal 
pregnancy samples. Dataset 2 was completed in December 2018 and consisted of 2,000 maternal pregnancy samples within a case cohort design. The selection 
of participants into the two MS metabolomic datasets are shown in flowcharts in Figure S1. Abbreviations: CHD, congenital heart disease; BiB, Born in Bradford; 
NMR, Nuclear Magnetic Resonance; MR, Mendelian Randomization; GWAS, genome-wise association study; ALSPAC, Avon Longitudinal Study of Parents and 
Children; MoBa, Norwegian Mother, Father and Child Cohort.  
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Sample collection and metabolomic profiling in BiB 
 

Of the 13,776 pregnancies in the BiB cohort, 11,480 had a fasting blood sample taken during the 

OGTT (n = 10,574 [92%] between 26–28 weeks’ gestation, with the remaining women being within 11–39 

weeks’ gestation). Samples were taken by trained phlebotomists working in the antenatal clinic of the 

Bradford Royal Infirmary and sent immediately to the hospital laboratory. The metabolomics data in the 

BiB cohort has previously been described in detail 15. In brief, metabolomics analysis was performed on 

ethylenediamine tetraacetic acid (EDTA) plasma samples around 26-28 weeks’ gestation. The untargeted 

MS metabolomics analysis of over 1,000 metabolites was performed at Metabolon, Inc. (Durham, North 

Carolina, USA). Quality control of the metabolite data was conducted by Metabolon. The classes of 

metabolites include amino acids, carbohydrates, cofactors and vitamins, energy, lipids, nucleotides, 

partially characterised molecules, peptides, and xenobiotics. These super-pathways, as defined by 

Metabolon, are also further subdivided into ~80 sub-pathways. Metabolite concentrations were 

quantified using area under the curve of primary MS ions and were expressed as the multiple of the 

median (MoM) value for all batches processed on the given day. The MoM more closely reflects the 

biological variation rather than technical variation between samples or analysis platform 25. Due to the 

timing of funding acquisition, samples were sent to Metabolon in two separate batches. Dataset 1 was 

completed in December 2017 and included 1,000 maternal pregnancy samples. Dataset 2 was completed 

in December 2018 and consisted of 2,000 maternal pregnancy samples within a case cohort design. Over-

sampled cases were removed to obtain a representative sample. The selection of participants into the 

two MS metabolomic datasets are shown in flowcharts in Figure S1 and have been described in detail 

previously 15.  

 

Confounders  
 

In multivariable regression analyses in BiB, we adjusted for the following maternal characteristics 

based on their known or plausible influence on maternal metabolites and on CHD: age, ethnicity, parity, 

residential neighbourhood Index of Multiple Deprivation (IMD), body mass index (BMI), smoking, and 

alcohol consumption. Details of the methods for how confounders were assessed are provided in the 

Supplementary File 1 (Text S1).  
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Congenital heart disease outcomes  
 

In BiB, cases were identified from either the Yorkshire and Humber congenital anomaly register 

database, which will tend to pick up most cases that were diagnosed antenatally and in the early postnatal 

period of life, or through linkage to primary care (up until aged 5), which will have picked up any additional 

cases, in particular those that might have been less severe and not identified antenatally/in early life 26. 

All BiB cases were confirmed postnatally and were assigned ICD-10 codes. We used ICD-10 codes to assign 

CHD cases according to the European surveillance of congenital anomalies (EUROCAT) guidelines. In the 

ALSPAC cohort, cases were obtained from a range of data sources, including health record linkage and 

questionnaire data up until age 25 following European EUROCAT guidelines 27. In MoBa, information on 

whether a child had a CHD or not (yes/no) was obtained through linkage to the Medical Birth Registry of 

Norway (MBRN). All maternity units in Norway must notify births to the MBRN, and information on 

malformations are reported to the registry up to 12 months postpartum 28. Further details on defining 

CHDs including ICD codes are shown in Text S2 and Table S1 (Supplementary File 1).  

 

Genetic data  

 

The rationale for performing MR analyses was to explore replication using a different method 

with two additional independent studies and to explore causation. Metabolites are affected by multiple 

disease processes as well as numerous environmental exposures; therefore, understanding the metabolic 

pathways implicated in CHD is nontrivial. MR can help discriminate causal from non-causal metabolites 

because genetic variants are less likely to be confounded by the socioeconomic and environmental factors 

that might bias causal estimates in conventional multivariable regression 29, but may be biased by a path 

from the metabolomic genetic score to CHD, for example via horizontal pleiotropy or fetal genotype 30. 

Consistent results from both increase confidence that the result is causal. 

 

Genotyping in each cohort 
 

ALSPAC mothers were genotyped using Illumina human660K quad single nucleotide 

polymorphism (SNP) chip, and ALSPAC children were genotyped using Illumina HumanHap550 quad 

genome-wide SNP genotyping platform. Genotype data for both ALSPAC mothers and children were 

imputed against the Haplotype Reference Consortium v1.1 reference panel, after performing the QC 
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procedure (minor allele frequency (MAF) ≥1%, a call rate ≥95%, in Hardy-Weinberg equilibrium (HWE), 

correct sex assignment, no evidence of cryptic relatedness, and of European descent). The samples of the 

BiB cohort (mothers and offspring) were processed on three different type of Illumina chips: 

HumanCoreExome12v1.0, HumanCoreExome12v1.1 and HumanCoreExome24v1.0. Genotype data were 

imputed against UK10K + 1000 Genomes reference panel, after a similar QC procedure (a call rate ≥99.5%, 

correct sex assignment, no evidence of cryptic relatedness, correct ethnicity assignment). In MoBa, blood 

samples were obtained from both parents during pregnancy and from mothers and children (umbilical 

cord) at birth 31. Genotyping has had to rely on several projects - each contributing with resources to 

genotype subsets of MoBa over the last decade. The data used in the present study was derived from a 

cohort of genotypes samples from four MoBa batches. The MoBa genetics QC procedure involved MAF 

≥1%, a call rate ≥95%, in HWE, correct sex assignment, and no evidence of cryptic relatedness. Further 

details of the genotyping methods for each cohort are provided in the Supplementary File 1 (Text S3) 

including flow charts showing selection of participants (Figure S2). 

 

GWAS data and SNP selection 

 

We aimed to construct weighted GRSs for metabolites that had a p-value <0.05 (referred to 

throughout as “suggestively associated” with CHDs) in the multivariable regression analyses using BiB 

data. To do this, we cross-referenced our suggestive associations with large relevant GWAS. We used 

summary data from two GWAS. In the first, the authors explored the genetic effects of 174 metabolites 

(compared with the 923 included in our study) 32. To ensure independent associations, SNPs used from 

the first GWAS were selected at p < 5 × 10−8 and were clumped to ensure independence at linkage 

disequilibrium (LD) r2 = 0.001 and a distance of 10,000 kb using the TwoSampleMR package 33. In the 

second (unpublished), the authors performed a GWAS of metabolon metabolite levels using samples from 

the EPIC-Norfolk 34 and INTERVAL studies 35. 14,296 participants were included in a discovery set (5,841 

from EPIC-Norfolk; 8,455 from INTERVAL) and 5,698 from EPIC-Norfolk in a validation set. The authors 

performed exact conditional analyses to identify independent associations. A total of 913 metabolites 

were taken forward for their GWAS analysis.  

 

Genetic risk score generation 
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GRSs were calculated using SNPs previously associated in largescale GWAS with metabolites 

(described above) by adding up the number of metabolite increasing alleles among the selected SNPs after 

weighting each SNP by its effect on the corresponding metabolite: 

𝐺𝑅𝑆 = 𝑤1 ×  𝑆𝑁𝑃1 + 𝑤2 ×  𝑆𝑁𝑃2 + ⋯ 𝑤𝑛 ×  𝑆𝑁𝑃𝑛 

where w is the weight (i.e., the beta-coefficient of association of the SNP with the exposure from the 

published GWAS) and SNP is the genotype dosage of exposure-increasing alleles at that locus (i.e., 0, 1, or 

2 exposure-raising alleles). After matching metabolites suggestively associated with CHDs at P<0.05 from 

multivable regression analyses and removing indels, selected SNPs were extracted from the imputed 

genotype data in dosage format using QCTOOL (v2.0) and VCF tools (v 0.1.12b) in ALSPAC and BiB, 

respectively. PLINK (v1.9) was then used to construct the GRS for each exposure coded so that an 

increased score associated with increased levels of metabolite. In MoBa, we constructed the GRSs from 

the QC’d data in PLINK format. If a SNP was missing, a proxy SNP was used where available based on r2 > 

0.8 using the European reference panel in the LDLink R package 36. 

 

Statistical analysis 
 

Analyses were performed in R version 4.0.2 (R Foundation for Statistical Computing, Vienna, 

Austria). An analysis plan was written and uploaded to the Open Science Framework before analyses 

commenced, where any subsequent changes to analyses were documented along with the rationale  37. 

We used scaled imputed data (in which missing data have been imputed and the multiple of median values 

transformed to standard deviation (SD)- scores) which was log transformed. Any metabolite (in either 

dataset) where there was too little variation for meaningful analyses (defined as < 440 unique values) was 

excluded 38. Transformed metabolite values were converted to standard deviation SD units. There were 

1,100 and 1,150 quantified metabolites included in dataset 1 and 2, respectively, with 923 of these present 

in both datasets. 

 

Multivariable regression (metabolomic) analyses 

 

We used logistic regression to estimate odds ratios (ORs) and 95% confidence intervals (CIs) of 

any CHD per SD higher metabolite, with and without adjustment for confounders. As we are interested in 

potential causal effects, we present confounder adjusted results throughout. Analyses were done 
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separately in the two BiB datasets and results pooled using fixed-effects meta-analyses. Given that CHD 

is rare and binary, we accepted an uncorrected P<0.05 (from meta-analyses) for the metabolite being 

suggestively associated with CHD in the offspring (but requiring further validation). We took these 

metabolites forward to MR analyses.  

The MS-platform used in BiB includes measures of xenobiotics which are synthetic chemicals that 

are not synthesised by humans. Their presence in the circulation usually reflects endogenous exposures, 

such as medications and supplements. Given that these metabolites would not be present in all 

participants (and therefore have high missingness), many were removed (86/154 (56%)) from the dataset 

given the metabolite inclusion criteria of 440 unique observations mentioned above. Therefore, we 

performed an exploratory additional analysis using xenobiotics (N = 154) as binary variables (1 = yes; 

metabolite is detected in the sample, 0 = no; metabolite is not detected in the sample). We present 

adjusted ORs of these binary variables (any presence vs none) with CHDs.  

We sought to internally validate any of the metabolites suggestively associated with CHDs that 

were also measured in BiB in larger numbers using different methods. After matching suggestive 

associations, we used data from the NMR platform (N = 2 metabolites) and did not use any data from the 

clinical chemistry measurements. More information on the BiB NMR data including methods, QC and 

participant information has been described in detail previously 15. 

 

Mendelian randomization analyses 

 

We undertook MR in each of the 3 cohorts, including all BiB, ALSPAC, and MoBa participants with 

maternal genetic data and offspring CHD data. Logistic regression was used to estimate the OR of CHD per 

SD change in GRS, with adjustment for the first 10 genetic principal components (PCs) with additional 

adjustment for genetic chip, genetic batch, and imputation batch in MoBa. 

The key assumptions for MR are: (i) relevance assumption - the genetic instruments are robustly 

associated with the exposure and relevant to the population being studied (i.e. here pregnant women). 

We tested the association of the GRS of each metabolite with metabolite levels during pregnancy in BiB 

dataset 2. (ii) Independence assumption - The IV outcome association is not confounded. Such 

confounding could occur as a result of population stratification. To minimise this, we adjusted GRS-CHDs 

associations for the first 10 genetic PCs. We also repeated the MR analyses without the inclusion of BiB, 

given that BiB has a unique ethnic structure of South Asians and White Europeans. (iii) Exclusion restriction 
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criteria - The genetic variant is not related to the outcome other than via its association with the exposure. 

We assessed pleiotropy by estimating the variance explained in all metabolites by each of the GRSs by 

undertaking the linear regression of every metabolite measured in BiB on each GRS. If the variance 

explained in other metabolites was similar or greater than to that explained in the candidate risk 

metabolite, this would suggest that there is low metabolite-specificity for the GRS and potential horizontal 

pleiotropic bias via the other metabolite(s). Importantly, however, this approach of testing GRS specificity 

does not distinguish between vertical pleiotropy (e.g. the GRS influences the candidate metabolite which 

is the precursor of another metabolite that affects CHD) and horizontal pleiotropy (e.g. the GRS influences 

two metabolites that affect CHD independently). We also check consistency of MR results when 

additionally adjusting for fetal genotype 30. We performed MR analyses separately in BiB, ALSPAC and 

MoBa and report pooled results from random-effect meta-analyses for all three cohorts and fixed-effect 

meta-analyses for MR analyses excluding BiB (i.e., ALSPAC and MoBa).  

 

Results 
 

Main BiB multivariable regression analyses 
 

Table 1 shows the distributions of characteristics for the women in both BiB datasets. In total, 

there were 2,605 mother-offspring pairs with 46 CHD cases included in the BiB multivariable regression 

metabolomic analyses. N.B. for consistency and clarity, we refer to metabolites here by their super-

pathways (as defined by Metabolon). A metabolite might have a different super-pathway and chemical 

group. For example, N-Acetylcarnosine is a metabolite that is part of the amino acid super-pathway, but 

it is not an amino acid itself. Where available, we include Human Metabolome Database (HMDB) IDs with 

all numerical results which can assist the reader in finding further information on the structure and 

function of a metabolite. The super-pathways that included the largest proportions of the 923 metabolites 

were lipids (38%), unknown (22%), amino acids (18%) and Xenobiotics (8%), with other super-paths having 

≤ 3% of the total (Table 2).  

Of the 923 metabolites quantified in both BiB datasets, 44 (4.8%) were associated with any CHD, 

at P < 0.05, in confounder adjusted pooled analyses (Figure 2). We observed suggestive effects (i.e., 

confounder adjusted associations reaching the p-value threshold <0.05) with several amino acids, lipids 

and co-factors and vitamins. There were also suggestive effects for two xenobiotics, one nucleotide, one 

energy metabolite and some partially characterised and unknown metabolites (Figure 2). None of the 22 
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peptide or 19 carbohydrate-related metabolites associated with CHD at this p-value threshold. Of the 18 

lipid-related metabolites associated with CHD, 13 were positively associated (i.e., increased odds) (e.g., 

Glycolithocholate Sulfate: adjusted odds ratio (aOR) per SD increase in metabolite: 1.73 95% CI (1.21, 

2.48)) and 5 were negatively associated (decreased odds) (e.g. Phosphocholine: aOR 0.65 (0.47, 0.90)). All 

but one (N−Acetylcarnosine) of the 10 amino acid-related metabolites were negatively associated with 

CHDs (e.g. isoleucine: aOR: 0.67 (0.49, 0.92)). 3 of the 4 co-factors and vitamins were negatively 

associated, whereas 1 (biliverdin) was positively associated (aOR 1.41 (1.07, 1.86)). The one nucleotide 

was negatively associated (inosine 5'−Monophosphate (Imp): aOR 0.59 (0.36, 0.99)) and the one energy 

related metabolite positively associated (succinylcarnitine (C4): aOR 1.42 (1.02, 1.97)). Benzoate and 

Saccharin were the two xenobiotics associated with CHDs in main analyses both showing positive 

associations. Results for associations of all metabolites (irrespective of p-value) in unadjusted and 

confounder adjusted analyses from the pooled datasets, and each dataset separately are provided in 

Supplementary File 2 (Tables S5-S7), including HMDB IDs where applicable.  

In the analysis treating xenobiotics as binary variables, after removal of metabolites with no 

exposed cases, there were 6 xenobiotic metabolites suggestively associated with offspring CHDs 

(Supplementary File 1: Table S2). 2 out of the 6 showed positive associations: saccharin, which was also 

associated in main analyses (adjusted odds ratio (aOR) for the presence of metabolite vs not: 2.16 95% CI 

(1.02, 5.13)) – an artificial sweetener) and salicyluric glucuronide (aOR: 2.27 (1.16, 4.29)) – a metabolite 

involved in aspirin metabolism). The remaining 4 showing negative associations are all part of the food 

component/plant metabolite sub pathway (Table S2). 

 

Internal validation using NMR or clinical chemistry measures of suggestive associations from 

main multivariable regression analyses 
 

It was possible to explore 2 of the 44 metabolites suggestively associated with CHDs in the larger 

BiB sample. In comparable confounder adjusted analyses, NMR measured amino acids isoleucine and 

leucine were available on 7,296 mothers, with 87 having an offspring with CHD. Results for these two 

amino acids were highly consistent between the two samples/assay methods (aOR per SD increase in MS 

isoleucine 0.67 (0.49, 0.92) vs 0.65 (0.50, 0.84) for NMR isoleucine and aOR per SD increase in MS leucine 

0.69 (0.51, 0.94) vs 0.67 (0.53, 0.85) for NMR leucine). 
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Table 1. Participant characteristics for the Born in Bradford metabolomic analyses. 

Characteristic Category BiB dataset 1 (N = 998) BiB dataset 2 (N = 1,607) 

Offspring    

CHD Yes 15 (1.6) 31 (1.9) 
Sex Male 510 (51.1) 844 (52.5) 

 Female 488 (48.9) 763 (47.5) 

Maternal    
Age, years  27.5 (5.7) 27.3 (5.6) 

Parity Nulliparous 358 (37.0) 616 (36.8) 

 Multiparous 610 (63.0) 991 (63.2) 

BMI, kg/m2  26.7 (6.0) 26.5 (5.8) 

Ethnicity White British 500 (50.0) 733 (45.6) 

 Pakistani 498 (50.0) 874 (54.4) 

Neighbourhood deprivation (IMD) Quintile 1 (most deprived) 654 (65.5) 1084 (67.5) 
 Quintile 2 175 (17.5) 281 (17.5) 

 Quintile 3 112 (11.2) 175 (10.9) 

 Quintile 4 38 (3.8) 40 (2.5) 

 Quintile 5 (least deprived) 19 (1.9) 27 (2.7) 
Smoking Yes 176 (17.7) 311 (19.2) 

Alcohol Yes 338 (33.9) 496 (30.8) 

Gest age at blood sampling, weeks  26.2 (2.0) 26.2 (2.0) 
Data are means ± SD or n (%) unless stated. Abbreviations: BiB, Born in Bradford; CHD, congenital heart disease; BMI, body mass index; kg, kilogram; m, meter; HDP, hypertensive disorders of 
pregnancy; GHT, gestational hypertension; PE, pre-eclampsia; IMD, Index of Multiple Deprivation (taken from 2010 national quintiles); gest, gestational. 
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Table 2. Showing the breakdown of metabolites in our dataset (N = 923) into the 10 super-pathways as defined by Metabolon.  

Super pathway N (%) for all metabolites (N = 923) N (%) for metabolites suggestively associated 
with CHDs (N = 44) 

Amino Acid 170 (18.4%) 10 (22.7%) 

Lipid 354 (38.4%) 18 (40.9%) 
Cofactors and Vitamins 27 (2.9%) 4 (9.0%) 

Partially Characterized Molecules 3 (0.3%) 1 (2.3%) 

Unknown 201 (21.8%) 7 (15.9%) 
Xenobiotics 86 (9.3%) 2 (4.5%) 

Nucleotide 33 (3.6%) 1 (2.3%) 

Energy 8 (0.9%) 1 (2.3%) 

Carbohydrate 19 (2.1%) 0 

Peptide 22 (2.4%) 0 
Abbreviations: CHD, congenital heart disease.  
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Figure 2. Pooled confounder adjusted associations of maternal pregnancy metabolites with offspring congenital heart disease in the Born in Bradford cohort 
(N = 2,391 & N CHD cases = 42). The associations show confounder adjusted odds ratios of CHD per standard deviation change in log-transformed metabolite 
levels for the 44 (out of 923) metabolites that associated with CHD at p-value <0.05 separated by super pathways as defined by Metabolon. Metabolites were 
measured at ~26-28 weeks’ gestation. Heterogeneity statistics and separate associations for datasets 1 and 2 are reported in Supplementary Tables S5-S7. 
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Associations were adjusted for maternal age, ethnicity, parity, Index of Multiple Deprivation, body mass index, smoking and alcohol intake. Abbreviations: PCMs, 
partially characterised molecules; OR, odds ratio; CHD, congenital heart disease; SD, standard deviation.
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Validating findings with Mendelian randomization  
 

The distributions of offspring and maternal characteristics for MR analyses in BiB, ALSPAC and 

MoBa are displayed in Table S3 (Supplementary File 1). It was possible to explore MR replication for 27 of 

the 44 metabolites that associated with CHD in multivariable analyses (the other 17 were either not 

available in the GWAS or had genetic variants not available in the cohorts, Figure S3). All but 3 of the GRSs 

(24/27 (89%)) were associated with the corresponding metabolite during pregnancy in BiB (with R2 values 

ranging from 0.3% to 34%, for the remaining 3 the associations were wide with confidence intervals that 

included the null (Table S4; Supplementary File 1). Of the 27 GRSs, 3 were specific for the metabolite they 

were instrumenting (i.e. had the strongest association with it and little evidence of associations with other 

metabolites; N-acetylcarnosine, phosphocholine and succinylcarnitine). 18 GRSs were associated with the 

metabolite they were instrumenting and several others that were correlated with that metabolite (e.g. 

the biliverdin GRS was associated with it and also similarly with other hepatic-related metabolites). 6 GRSs 

were more strongly associated with other (uncorrelated) metabolites than the one they were 

instrumenting (scatter plots for all 27 GRSs are shown in Figure S4; Supplementary File 1). The 6 non-

specific GRS were for indolelactate, glycolithocholate sulfate, isoleucine, leucine, myo-inositol and 

taurolithocholate 3-sulfate (MR results for these should be treated with caution and are denoted in Figure 

3B by white-filled points).  

MR analyses replicated and provided causal evidence for a potential protective effect of higher 

levels of the amino acids leucine, indolelactate and isoleucine on CHD, but for the other amino acids MR 

results were either very close to the null or in the opposite direction (Figure 3). Seven of the lipid-related 

metabolites that were positively associated in multivariable regression were also replicated in MR 

analyses (6 of which were highly correlated androgenic steroid metabolites), as was the energy related 

metabolite succinylcarnitine (Figure 3). For the 11 metabolites where we consider the MR GRS analyses 

providing some evidence of replication and a potential causal effect, 7 of the GRSs were specific for the 

metabolite alone and/or also for its correlates. Individual study results and P-values for heterogeneity are 

included in Supplementary File 2 (Table S8). MR results were largely unchanged when excluding BiB from 

analyses (Table S8) and when adjusting for offspring genotype (Table S9; Supplementary File 2). 
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Figure 3. Showing results comparing the main confounder adjusted associations of maternal metabolites with offspring CHDs (Panel A: N = 2,391 & N CHD 
cases = 42in the Born in Bradford cohort) to the Mendelian randomization analyses of maternal genetic risk scores and offspring CHDs (Panel B: N = 38,662 & 
N CHD cases = 319 across 3 cohorts). N.B. results from each analysis are presented on different scales; we are not attempting to quantify estimates in the MR 
analyses, the aim is to compare the direction of effect. The confounder adjusted associations are as above in Figure 2. The MR analyses are adjusted for the top 
10 genetic principal components and genetic batches in MoBa. In Panel B, the metabolite genetic risk scores filled with white appeared to be non-specific for the 
metabolite we were trying to instrument (i.e. the risk score relates to several other metabolites more strongly than the specific named metabolite). The 

Exploring directional consistency between phenotype (conventional multivariable regression) and genotype (Mendelian randomization) associations with metabolites
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metabolites filled in black were either metabolite-specific or specific to the metabolite and other correlated metabolites (see scatter plots in Figure S4). The 
results were pooled using random effects meta-analyses; individual study results and P-values for heterogeneity are shown in Supplementary Table S8. 
Abbreviations: BiB, Born in Bradford; CHD, congenital heart disease; GRS, genetic risk score; MR, Mendelian randomization; OR, odds ratio; CI, confidence 
interval.  
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Discussion 
 

Maternal metabolism is important for healthy fetal growth and development. To our knowledge no 

previous study has examined the association of detailed maternal metabolites with risk of CHD within a 

causal framework. In this novel study we found 44 metabolites (of 923) suggestively associated with CHD. 

These included metabolites related to amino acids, lipids, co-factors and vitamins, unknown molecules, 

xenobiotics, nucleotides and energy. In separate xenobiotics analyses, there was some evidence that 

metabolites related to aspirin and saccharine may increase odds of CHD, whereas metabolites related to 

plant food components may reduce odds. Two of the amino acids, where it was possible to explore 

replication, replicated in BiB in larger numbers using an alternative metabolomics platform. In MR 

analyses, there was directional consistency for 11/27 metabolites that could be explored with this 

method. We found that maternal amino acid metabolism during pregnancy, several lipids (more 

specifically androgenic steroids), and levels of succinylcarnitine could be important contributing factors 

to offspring CHD risk.  

9 out of the 10 amino acids suggestively associated with CHDs were negatively associated suggesting 

that deficiencies in certain amino acids during pregnancy could contribute to offspring CHDs. Previous 

research found that amino acid concentrations measured in amniotic fluid were lower in patients with 

CHDs 39, a similar pattern to what we find here. We were able to replicate our findings for isoleucine and 

leucine in larger numbers in BiB which improves the confidence in the findings. The MR analyses also 

provided evidence to support the direction of association for these metabolites. However, the GRSs for 

isoleucine and leucine were non-specific and so these results should be treated with caution.  

18 of the 44 maternal metabolites suggestively associated with CHD were part of the lipid super 

pathway, which is the most common super pathway measured by the Metabolon platform. Previous work 

reported that an abnormal lipid profile (defined as elevated cholesterol and apolipoprotein B) 5, abnormal 

lipid metabolism (defined as a disturbance in phosphatidyl-choline and various sphingolipids and choline 

metabolism) 13  and high maternal blood lipids 6 are a feature of CHD pregnancies. We were able to take 

forward 15 (out of 18) of the lipid metabolites and replicated the direction of effect for 7. All except 1 of 

these 7 replicated metabolites were androgenic steroids and so were highly correlated. Steroids are 

important for numerous functions during gestation, particularly for normal placental function 40. Here we 

present evidence of a potential causal effect (associated in metabolomic analyses with consistent 
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direction of effect in MR analyses) of positive associations between maternal gestational androgenic 

steroid metabolites and offspring CHDs.  

Levels of bilirubin and biliverdin were positively associated with CHDs. MR analyses were only possible 

for biliverdin but were inconclusive with wide confidence intervals. Thus, these two compounds, which 

are involved in heme catabolism, should be further investigated for a possible role in CHD development. 

Levels of succinylcarnitine were also positively associated with CHDs and we found good replications in 

MR analyses with consistent directions of effect and a GRS that appeared highly specific for 

succinylcarnitine. Succinylcarnitine is an acylcarnitine which are a group of metabolites responsible for 

beta oxidation of fatty acids and mitochondrial function 41. It is well documented that fatty acids play an 

important role in embryonic and fetal development 42,43. We included analyses of partially characterised 

and unknown metabolites in our results as with increasing evidence from genomic studies, previously 

unknown metabolites are having their function identified. With future studies identifying the function of 

some of these unknown/partially characterized metabolites, our results could shed light on the aetiology 

of CHDs.  

A key strength of this study is the unique data that we have in BiB to support novel analyses of 

associations of a wide range of maternal metabolic paths with offspring CHD risk. We were not able to 

identify any other study with such data. However, we realised, even before analyses, that we would have 

limited statistical power with just 46 CHD cases. This motivated us to think about ways of trying to 

replicate any findings in larger samples either through finding measures of the same metabolites available 

from other assays in larger samples or using GRSs as instruments for the metabolites. In the initial 

multivariable regression analyses we adjusted for potential confounders. We defined suggestive 

associations based on a p-value threshold < 0.05, i.e., not taking account of multiple testing.  When we 

apply a Bonferroni corrected threshold (P < 0.0001) none of the associations pass this (Supplementary 

Table S7; Supplementary File 2). Given the novel nature of this study and use of the initial multivariable 

regression in BiB to select associations for further follow-up (replication and MR), we felt this was 

appropriate. As with any ‘screening’ for further analyses we wanted to ensure that we would not miss 

potential causal effects. We recognise that selecting results based on a p-value threshold is problematic 

as some associations with higher p-values might have associations of a magnitude that could be clinically 

important, but there would also be potential for several false positives. Also, we limited MR analyses only 

to those metabolites that associated with p < 0.05 rather than undertaking these analyses on all of the 

923 metabolites. Our reason for this was that having searched for all studies with maternal genome wide 
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data and offspring CHD outcomes we identified only three cohorts and recognised that for MR analyses 

pooled results from these might also have limited power. The limited power in both multivariable and MR 

analyses also meant that we could only examine associations with any CHD and not subtypes.  

MR analyses are sensitive to their assumptions that the GRS is statistically strongly associated with 

the metabolite in pregnancy. We examined associations of these with pregnancy metabolite levels and 

are careful in our interpretation of results in relation to this. Methods that are available for exploring 

potential bias due to horizontal pleiotropy in two-sample MR were not possible here. We know that many 

of the 923 metabolites will be biologically related to each other and with our sample size it would be 

difficult to robustly distinguish effects of correlated metabolites. We explored this by examining the 

strength of association (proportion of variation explained) of each of the 27 GRSs with all other 

metabolites available in BiB dataset 2. Stronger or similar associations with other metabolites would 

suggest that the GRS is not a specific instrument for the metabolite that we are using it for. In this case 

this could be because of known biological relations. For example, we know biologically that many of the 

lipid metabolites are related to each other, and we saw this with similar proportions of variation explained 

by the GRS of the androgenic steroid lipid metabolites with other androgenic steroid lipid metabolites. As 

such we would interpret results for these metabolites as supporting an effect of maternal androgenic 

steroid metabolites on CHD, but we cannot be specific about which ones are driving this. Similar or 

stronger variation of a GRS for other metabolites could be related to vertical pleiotropy, i.e., the 

metabolite for which the GRS is instrumenting strongly influences other metabolites that are related to 

CHD with the other metabolites partly mediating the effect of the focused metabolite. This would not bias 

the result. However, this could also occur with horizontal pleiotropy where the GRS, independently of the 

metabolite of interest, influences other metabolites that are risk factors for CHD. With our current data 

we are not able to distinguish between these two.  

A further limitation of this study is that maternal plasma/serum metabolomics data were derived at 

a single timepoint around 26-28 weeks’ gestation. Fetal cardiac development starts early in pregnancy 

and much of the development occurs in the first trimester 44. Here, we are assuming that metabolite levels 

around 26-28 weeks’ gestation are good proxies for levels in early pregnancy - when the offspring heart 

is forming. Previous work has shown that between person differences throughout pregnancy remain 

largely consistent (i.e., those with a high level of a metabolite in early pregnancy tend to have a similarly 

high level of a metabolite in later pregnancy) 45. Similarly, and worth mentioning, the effects obtained 

from MR studies are often interpreted as the lifetime effect of the exposure (metabolites) in question 46.  
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In summary, we have used metabolomics data obtained during pregnancy to explore how the 

maternal metabolome may contribute to offspring CHDs. We found evidence that amino acid metabolism 

during pregnancy, several lipids (more specifically androgenic steroids), and levels of succinylcarnitine 

could be important contributing factors. Our analysis pipeline, which involved seeking replication of 

metabolite associations by harnessing large-scale GWAS data, provides scope to improve the reliability of 

findings and should prove to be more useful as these datasets continue to grow. Metabolomics could 

prove to be an important tool for identifying biological pathways that may lead to identification of 

prevention targets to decrease the disease burden of CHDs. To do this, future research will require 

international collaboration of more and larger studies with detailed metabolomics data in pregnancy, 

ideally with some of these having repeat measures across pregnancy and offspring CHD data.  
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Ethical approval and consent to participate  

Ethical approval for ALSPAC was obtained from the ALSPAC Law and Ethics committee and local 

research ethics committees (NHS Haydock REC: 10/H1010/70). Informed consent for the use of data 

collected via questionnaires and clinics was obtained from participants following the recommendations 

of the ALSPAC Ethics and Law Committee at the time. At age 18, study children were sent 'fair processing' 

materials describing ALSPAC’s intended use of their health and administrative records and were given 

clear means to consent or object via a written form. Data were not extracted for participants who 

objected, or who were not sent fair processing materials. For BiB, Ethics approval has been obtained for 

the main platform study and all of the individual sub studies from the Bradford Research Ethics 

Committee. Written consent was obtained from all participants. The establishment of MoBa and initial 

data collection was based on a license from the Norwegian Data Protection Agency and approval from 

The Regional Committees for Medical and Health Research Ethics. The MoBa cohort is now based on 

regulations related to the Norwegian Health Registry Act. 

Availability of data and materials 

The ALSPAC data management plan (http://www.bristol.ac.uk/alspac/researchers/data‐

access/documents/alspac‐data‐management‐plan.pdf) describes in detail the policy on data sharing, 

which is through a system of managed open access. Scientists are encouraged to make use of the BiB 

study data, which are available through a system of managed open access. Please note that the study 

website contains details of all the data that is available through a fully searchable data dictionary and 

variable search tool" and reference the following webpage: 

http://www.bristol.ac.uk/alspac/researchers/our-data/. Before you contact BiB study, please 

make sure you have read the Guidance for Collaborators: 

https://borninbradford.nhs.uk/research/guidance-for-collaborators/). MoBa data are used by 

researchers and research groups at both the Norwegian Institute of Public Health and other research 

institutions nationally and internationally. The research must adhere to the aims of MoBa and the 

participants' given consent. All use of data and biological material from MoBa is subject to Norwegian 

legislation. More information can be found on the study website 

(https://www.fhi.no/en/studies/moba/for‐forskere‐artikler/research‐and‐data‐access/). 
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BiB (Born in Bradford) study is only possible because of the enthusiasm and commitment of the 

children and parents. We are grateful to all the participants, practitioners, and researchers who have 

made BiB study happen. We are extremely grateful to all the families who took part in The Aovn 

Longitudinal Study of Parents and Children (ALSPAC) study, the midwives for their help in recruiting them, 

and the whole ALSPAC team, which includes interviewers, computer and laboratory technicians, clerical 

workers, research scientists, volunteers, managers, receptionists and nurses. The Norwegian Mother, 

Father and Child Cohort Study is supported by the Norwegian Ministry of Health and Care Services and 

the Ministry of Education and Research. We are grateful to all the participating families in Norway who 

take part in this on-going cohort study. We thank the Norwegian Institute of Public Health (NIPH) for 

generating high-quality genomic data. This research is part of the HARVEST collaboration, supported by 

the Research Council of Norway (#229624). We also thank the NORMENT Centre for providing genotype 

data, funded by the Research Council of Norway (#223273), South East Norway Health Authorities and 

Stiftelsen Kristian Gerhard Jebsen. We further thank the Center for Diabetes Research, the University of 

Bergen for providing genotype data and performing quality control and imputation of the data funded by 

the ERC AdG project SELECTionPREDISPOSED, Stiftelsen Kristian Gerhard Jebsen, Trond Mohn Foundation, 

the Research Council of Norway, the Novo Nordisk Foundation, the University of Bergen, and the Western 

Norway Health Authorities. We are grateful to all the participants who have been part of the EPIC-Norfolk 

metabolomics project and to the many members of the study teams at the University of Cambridge who 

have enabled this research. 
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University of Bristol. 
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(MR/N024397/1), the British Heart Foundation (CS/16/4/32482), and the NIHR Applied Research 

Collaboration Yorkshire and Humber (NIHR200166) and Clinical Research Network. Core funding for 

ALSPAC is provided by the UK Medical Research Council and Wellcome (217065/Z/19/) and the University 

of Bristol. Many grants have supported different data collections, including for some of the data used in 

this publication, and a comprehensive list of grant funding is available on the ALSPAC website 

(http://www.bristol.ac.uk/alspac/external/documents/grant‐acknowledgements.pdf). GWAS data was 

generated by Sample Logistics and Genotyping Facilities at Wellcome Sanger Institute and LabCorp 

(Laboratory Corporation of America) using support from 23andMe. The views expressed in this publication 

are those of the author(s) and not necessarily those of the National Institute for Health Research or the 

Department of Health and Social Care. The Norwegian Mother, Father and Child Cohort Study is supported 

by the Norwegian Ministry of Health and Care Services and the Ministry of Education and Research. The 

EPIC-Norfolk study (https://doi.org/10.22025/2019.10.105.00004) has received funding from the Medical 

Research Council (MR/N003284/1 MC-UU_12015/1 and MC_UU_00006/1) and Cancer Research UK 

(C864/A14136). The genetics work in the EPIC-Norfolk study was funded by the Medical Research Council 

(MC_PC_13048). Metabolite measurements in the EPIC-Norfolk study were supported by the MRC 

Cambridge Initiative in Metabolic Science (MR/L00002/1) and the Innovative Medicines Initiative Joint 

Undertaking under EMIF grant agreement no. 115372. 
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