Quantifying the risks versus benefits of the Pfizer COVID-19 vaccine in Australia: a Bayesian network analysis

- 4
- 5
- 6

7 Authors:

- 8 Jane E Sinclair¹, Helen J Mayfield², Kirsty R Short¹, Samuel J Brown¹, Rajesh Puranik^{3,4}, Kerrie
- 9 Mengersen⁵, John CB Litt^{6,7a}, Colleen L Lau^{2a*}
- 10
- ¹¹ School of Chemistry and Molecular Biosciences, Faculty of Science, The University of Queensland,
- 12 Brisbane, Queensland, Australia
- 13 ²School of Public Health, Faculty of Medicine, The University of Queensland, Brisbane, Queensland,
- 14 Australia
- ³Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
- ⁴Sydney Medical School Faculty of Medicine and Health, The University of Sydney, NSW, Australia
- ⁵School of Mathematical Sciences, Faculty of Science, Queensland University of Technology,
- 18 Brisbane, Queensland, Australia
- ⁶Discipline of General Practice, College of Medicine and Public Health, Flinders University,
- 20 Adelaide, South Australia, Australia
- 21 ⁷Scientific Advisory Committee, Immunisation Coalition, Melbourne, Victoria, Australia
- 22 ^aContributed equally
- 23
- 24
- 25
- 26
- 27 *Corresponding author
- 28 Prof Colleen Lau
- 29 School of Public Health, Faculty of Medicine,
- 30 The University of Queensland
- 31 288 Herston Rd, Herston,
- 32 Brisbane, Queensland 4006, Australia
- 33 Email: colleen.lau@uq.edu.au
- 34
- 35
- 36
- 37

38 ABSTRACT

39 The Pfizer COVID-19 vaccine is associated with increased myocarditis incidence. Constantly

40 evolving evidence regarding incidence and case fatality of COVID-19 and myocarditis related to

- 41 infection or vaccination, creates challenge for risk-benefit analysis of vaccination programs.
- 42 Challenges are complicated further by emerging evidence of waning vaccine effectiveness, and
- 43 variable effectiveness against variants. Here, we build on previous work on the COVID-19 Risk
- 44 Calculator (CoRiCal) by integrating Australian and international data to inform a Bayesian network
- 45 that calculates probabilities of outcomes for the Delta variant under different scenarios of Pfizer
- 46 COVID-19 vaccine coverage, age groups (≥12 years), sex, community transmission intensity and
- 47 vaccine effectiveness. The model estimates that in a population where 5% were unvaccinated, 5% had
- 48 one dose, 60% had two doses and 30% had three doses, the probabilities of developing and dying
- 49 from COVID-19-related myocarditis were 239-5847 and 1430-384,684 times higher (depending on
- 50 age and sex), respectively, than developing vaccine-associated myocarditis. For one million people
- 51 with this vaccine coverage, where transmission intensity was equivalent to 10% chance of infection
- 52 over two months, 68,813 symptomatic COVID-19 cases and 981 deaths would be prevented, with 42
- and 16 expected cases of vaccine-associated myocarditis in males and females, respectively. The
- 54 model may be updated to include emerging best evidence, data pertinent to different countries or
- 55 vaccines, and other outcomes such as long COVID.

56 1. INTRODUCTION

57

58 In December 2020, the Pfizer vaccine (BNT162b2; Cormirnaty) became the first COVID-19 vaccine 59 to be authorized for public use [1], and has since had more than 1.5 billion doses delivered to 131 60 countries [2,3]. In June 2021, reports linking the Pfizer vaccine to myocarditis, especially in male 61 adolescents and young adults, started to emerge in Israel [4] and the USA [5]. Despite low case 62 numbers, this association informed government policies surrounding a slower vaccine rollout in 63 younger age groups around the world [6]. Furthermore, intense media focus on this rare adverse event 64 may have contributed to an increase in vaccine hesitancy in younger age groups [7], especially in 65 Australia where it was the only COVID-19 vaccine recommended for those aged under 60 years at the 66 time [8]. 67 68 Having access to transparent information on the risks and benefits based on the current best available 69 evidence is crucial for individuals to make an informed decision on whether or not to get vaccinated 70 [9,10], and also for informing public health policy. The Australian Technical Advisory Group on 71 Immunisation (ATAGI) produced a helpful document on 'Weighing up the potential benefits against 72 risk of harm from COVID-19 vaccine AstraZeneca' [11] to address concerns of vaccine-associated 73 thrombosis with thrombocytopenia syndrome. While ATAGI released a clinical 'Guidance on 74 myocarditis and pericarditis after mRNA COVID-19 vaccines' [12], there have not been any 75 documents focused on risk-benefit analysis. 76 77 By October 2021, 23.4% and 55.1% of Australians aged over 16 years had received one and two

doses of a COVID-19 vaccine, respectively, and an unspecified but small percentage had received a

third dose [13]. Because of concerns related to the risk of thrombosis and thrombocytopenia syndrome

- 80 with the AstraZeneca COVID-19 vaccine, the Pfizer vaccine was the standard recommendation for
- 81 those aged <60 years [14]. However, six-month Pfizer vaccine effectiveness data that became
- 82 available in October 2021 showed concerning reductions in protection against symptomatic infection
- 83 each month after administration of the second dose [15]. In the context of the reopening of Australian

84	borders in December 2021 and the introduction of the highly transmissible omicron variant, this
85	decrease in vaccine effectiveness may leave even those who have had two doses of a COVID-19
86	vaccine at substantial risk of developing symptomatic COVID-19. Even for the highly vaccinated
87	population of Australia, it was therefore crucial to communicate the necessity of third doses for
88	maintaining optimal protection against symptomatic infection, serious illness, and death.
89	
90	To effectively facilitate this communication, a risk-benefit analysis tool capable of integrating best
91	evidence from multiple data sources (both Australian and international) and formats (government
92	reports, published literature, and expert opinion) is required [16]. Furthermore, this tool must be easy
93	to update as the pandemic landscape rapidly evolves and as more data become available. We have
94	previously developed a Bayesian network (BN) model to analyze the risks and benefits of the
95	COVID-19 AstraZeneca vaccine in the Australian population [17,18]. This model was used to
96	program the COVID-19 Risk Calculator (CoRiCal) [19], a user-friendly online tool that enables
97	scenario analysis based on user inputs (age, sex, vaccination status, transmission scenario). The tool
98	provides probability estimates for targeted subgroups and can be used by health managers as well as
99	individuals alone or in conjunction with their GP for shared decision making on vaccination. This
100	study describes the BN model used to program the second version of the CoRiCal tool, and results of
101	population-level risk-benefit analysis of the Pfizer COVID-19 vaccine for the Australian context.
102	
103	
104	
105	2. RESULTS
106	
107	2.1. Model description
108	
109	The BN model was designed to predict five outcomes:
110	i. Probability of developing and dying from Pfizer vaccine-associated myocarditis (n5, n12)
111	- depending on vaccine dose (n1), age (n2), and sex (n3);

112	ii.	Background probability of developing and dying from myocarditis (in those who have not
113		had Pfizer vaccine or COVID-19) (n6, n13). Estimates were converted to probability of
114		events over two months to enable comparison with the probability of vaccine-associated
115		(n5, n12) and infection-associated outcomes (n10, n14) over two-month periods;
116	iii.	Probability of symptomatic COVID-19 (n10) – depending on intensity of community
117		transmission (n4), vaccine effectiveness against symptomatic infection (n7), relative risk
118		of symptomatic infection by age and sex (n9);
119	iv.	Probability of dying from COVID-19 (n14) – depending on age (n2), sex (n3), vaccine
120		effectiveness against death (n8); and
121	v.	Probability of developing and dying from COVID-19-related myocarditis (n11, n15) –
122		depending on age (n2), sex (n3).
123		
124	The BN (Fi	gure 1) displays the links between variables and outcomes based on the assumptions
125	presented in	n Table 1 [11,15,20–35] and Supplementary Tables S1-9. Table 2 summarises each of the

126 15 nodes and their parent/child associations.

127

128

129 Figure 1. Bayesian network for assessing risks versus benefits of the Pfizer COVID-19 vaccine in

130 Australia, with nodes in their default states.

132	The BN includes four input nodes (orange) for use in scenario analyses: Pfizer vaccine dose and time
133	since second dose (n1), age (n2), sex (n3), and intensity of community transmission (n4). Community
134	transmission scenarios were presented as probability of infection over two months to enable
135	comparison of vaccination risks versus benefits, as vaccine effectiveness is expected to decrease over
136	time (modelled using two-month intervals for time since second dose). Transmission scenarios were
137	based on ATAGI definitions of low/medium/high risk [11] (equivalent to x, y, z% chance of infection
138	over two months), and 1%, 2%, 5% and 10% chance of infection over two months. The model
139	contains six intermediate nodes (yellow): Pfizer vaccine-associated myocarditis (n5), background
140	incidence of myocarditis (n6), vaccine effectiveness (n7, n8), relative risk of symptomatic infection
141	based on age and sex (n9), and incidence of COVID-19-related myocarditis (n11).
142	
143	Two model versions were constructed employing distinct definitions of the 'Pfizer vaccine dose and
144	time since dose 2' node (n1):
145	• Version 1: Pfizer vaccine doses defined as no doses, first dose, second dose, and third dose.
146	This version allows estimation of the probability of vaccine-associated myocarditis with each
147	dose of vaccine.
148	• Version 2: Pfizer vaccine doses defined as no doses, received only one dose, received two
149	doses, and received three doses. This version allows estimation of the probability of deaths in
150	the target population based on vaccine coverage rates.
151	
152	2.2. Model validation
153	
154	All authors agreed that the final model accurately represented the variables, their states, and
155	associations within the model's scope, in a manner consistent with the best current evidence. Model
156	predictions were matched by independent calculations of selected outcome probabilities
157	(Supplementary Table S10).
158	
159	2.3. Risk-benefit analysis

160	
161	2.3.1. Estimated risks of background myocarditis, Pfizer vaccine-associated myocarditis
162	and myocarditis in patients with symptomatic COVID-19
163	
164	Based on background rates of myocarditis reported by Li et al. [27] and Barda et al. [28], our model
165	estimated two-month incidence of 10.0 (females aged 12-19 years) to 53.9 (males aged \geq 70 years)
166	cases per million, and overall case fatality rate (CFR) ranging from 1.2% to 4.3% for different age-sex
167	subgroups (Supplementary Table S6).
168	
169	Up to 09/12/2021 in Australia, age-sex-specific incidence of Pfizer vaccine-associated myocarditis
170	cases ranged from zero to 24 per million after the first dose, and zero to 103 per million after the
171	second dose (Supplementary Table S7), with no reported deaths. Our model assumed an overall CFR
172	of 0.17% (two deaths out of 1195 cases) based on reports from the Centers for Disease Control and
173	Prevention Vaccine Adverse Event Reporting System in the USA [33] (Table 1).
174	
175	At the time of writing, Australian data on myocarditis in COVID-19 patients were limited (Table 1).
176	Model assumptions on the incidence and CFR of myocarditis in COVID-19 patients were obtained
177	from an international cohort study by Buckley et al. [34], and additional unpublished age-sex specific
178	data from the study via personal communication with the lead author. Data showed incidence ranging
179	from 1.66% to 13.74%, and CFR ranging from <1% to 15.14%, depending on age and sex
180	(Supplementary Table S8). Based on estimates from model version 2, Figure 2 shows that, in a
181	population aged ≥ 12 years, with vaccine coverage of 5% unvaccinated, 5% had one dose, 60% had
182	two doses and 30% had three doses, the probability of developing myocarditis related to symptomatic
183	COVID-19 was 239 to 5847 times higher than developing Pfizer vaccine-associated myocarditis,
184	depending on age group and sex (Figure 2, dashed lines). The probability of dying from myocarditis
185	related to symptomatic COVID-19 was 1430 to 384,684 times higher than dying from vaccine-
186	associated myocarditis, again depending on age group and sex (Figure 2, solid lines).

187

Figure 2. Number of times more likely (in log scale) to develop (circles) and die (squares) from myocarditis in patients with symptomatic COVID-19 than from Pfizer vaccine-associated myocarditis, by age group and sex. *For males aged ≥70 years, Pfizer vaccine-associated myocarditis had an incidence of 0%.

2.3.2. Estimated symptomatic COVID-19 cases and deaths prevented

196	Model version 2 was used to calculate expected symptomatic COVID-19 cases and deaths prevented
197	over two months per million population aged ≥ 12 years, where 5% were unvaccinated, 5% had one
198	dose, 60% had two doses (20% each with the last dose administered 0 to <2, 2 to <4 and 4 to <6
199	months ago) and 30% had three doses. Figure 3a and 3b show the expected cases and deaths,
200	respectively, prevented by age group under different community transmission intensities:
201	• 1% chance of infection over two months (green), equivalent to average of 3645 cases per day
202	in Australia;
203	• 5% chance of infection over two months (yellow), equivalent to average of 7290 cases per
204	day in Australia; and
205	• 10% chance of infection over two months (orange), equivalent to average of 18,225 cases per
206	day in Australia.

0	n	7
4	υ	1

216

217

Figure 3. Estimated COVID-19 cases (a) and deaths (b) (in log scale) prevented over two months per million population of each age group if 5% had no doses, 5% had first dose, 60% had two doses (evenly distributed over 0 to <2, 2 to <4 and 4 to <6 months since second dose) and 30% had three doses of Pfizer COVID-19 vaccine if community transmission equivalent to 1% (green), 5% (yellow), and 10% (orange) chance of infection over two months. (c) Estimated cases of Pfizer COVID-19 vaccineassociated myocarditis over two months under the same vaccine coverage.

224

225 226

2.3.3. Estimated symptomatic COVID-19 cases and deaths under different vaccination coverage scenarios

227

228 Model version 2 was further used to estimate expected symptomatic COVID-19 cases and deaths per

229 million people if transmission intensity was equivalent to a 10% chance of infection over two months,

230 if 5% were unvaccinated, 5% had one dose, 60% had two doses and 30% had three doses (scenario

- 231 one) (Figure 4, orange), versus if 0% of the population received no doses, 5% received the first dose
- only, 15% had two doses (5% each with the second dose administered 0 to <2, 2 to <4 and 4 to <6
- 233 months ago), and 80% had three doses (scenario two) (Figure 4, blue).
- 234

Figure 4. Comparison of expected number of COVID-19 cases (a) and deaths (b) per million population by age groups under vaccine coverage scenario one (5% had no doses, 5% had first dose, 60% had two doses [evenly distributed across time since second dose], and 30% had three doses of Pfizer COVID-19 vaccine), versus coverage scenario two (0% had no doses, 5% had one dose, 15% had two doses [evenly distributed across times since second dose] and 80% had three doses), under a transmission scenario equivalent to 10% chance of infection over two months.

242

The model shows that for a million people aged 12-19 years with the vaccine coverage described in scenario one, 27,391 symptomatic COVID-19 cases and less than one death from COVID-19 would be expected under 10% transmission over two months, versus 11,042 cases and less than one death in scenario two. For one million people aged 20-29 years, 36,249 cases and two deaths could be expected in scenario one versus 13,168 cases and less than one death under scenario two. In contrast, for a million people aged ≥70 years, 12,694 cases and 404 deaths would be expected in scenario one versus 5487 cases and 68 deaths under scenario two.

- 251 **2.4. Sensitivity analysis**
- 252

253 2.4.1. Incidence of Pfizer vaccine-associated myocarditis

255	Therapeutic Goods Administration (TGA) reports between 14/10/2021 and 09/12/2021 [36] presented
256	slight fluctuations in Pfizer vaccine-associated myocarditis incidence in Australia ranging from two to
257	37 cases per million depending on age-sex subgroup (Table 3). These small changes exerted no
258	substantive impact on population-level estimates of the number of deaths. Model calculations also
259	showed expected Pfizer vaccine-associated myocarditis deaths per million second doses to change
260	only slightly during this time; differences ranged from 0.000 to 0.063 deaths per million by age-sex
261	subgroup when comparing data from 14/10/2021 and 09/12/2021.
262	
263	2.4.2. Vaccine effectiveness against symptomatic COVID-19 infection and death
264	
265	The model calculated that in a population where 5% are unvaccinated, 5% had one dose, 60% had two
266	doses and 30% had three doses, a hypothetical 5% or 10% decrease in vaccine effectiveness against
267	the delta variant would result in a 17.8% or 35.7% increase in estimated symptomatic cases,
268	respectively, and a 23.9% or 54.7% increase in estimated expected deaths, respectively (Table 4).
269	Thus, model estimates of cases and deaths are highly sensitive to reductions in vaccine effectiveness,
270	necessitating frequent monitoring of and updating with emerging vaccine effectiveness data,
271	particularly against new variants.
272	
273	
274	
275	3. DISCUSSION
276	
277	We developed a BN model to facilitate risk-benefit analysis of the Pfizer COVID-19 vaccine for the
278	Australian population. Results from this model highlight the importance of both individual factors
279	such as age, sex, and vaccination status, and location-specific factors that reflect the current pandemic
280	landscape, such as transmission intensity, case incidence and CFR from COVID-19, and COVID-19-

and Pfizer vaccine-associated myocarditis. Our model could be used to help inform discussions and
 decision-making for population health managers, individuals and clinicians. In this way, the model
 may aid in policy development, public health management, increased public awareness and improved
 shared-decision-making in medical consultations.

285

286	For Australians ≥12 years, we compared the risk of developing Pfizer vaccine-associated myocarditis,
287	with the benefit of protection against developing and dying from symptomatic COVID-19 over two
288	months under different transmission scenarios, if 5% were unvaccinated, 5% had a first dose, 60%
289	had two doses, and 30% had three doses. Overall, an Australian is 471 to 5847 times more likely to
290	develop COVID-19-related than vaccine-associated myocarditis, and 1430 to 384,684 times more
291	likely to die from it, depending on age and sex (Figure 2). Under any transmission level, younger age
292	groups benefited the most from protection against symptomatic COVID-19 while older age groups
293	benefited the most from protection against fatal COVID-19 (Figure 3). Younger age groups were at
294	higher risk of developing vaccine-associated myocarditis than older groups, and males were at greater
295	risk than females. We note that myocarditis was more common after COVID-19 compared to the
296	background rates, especially in younger men. In comparison, vaccine-associated myocarditis also has
297	a predilection for younger males but at a much lower prevalence than cases associated with
298	symptomatic COVID-19. Importantly, in the main, vaccination is justified in all age groups because
299	myocarditis is generally mild in the young [37–39], and there is unequivocal evidence for reduced
300	mortality in older individuals across all levels of community transmission.
301	

302 While the above risk-benefit analyses were conducted assuming the Australian vaccine coverage at

303 the time of writing, outcomes under other coverage rates can be assessed by the model. We compared

304 the number of COVID-19 cases and deaths expected if the chance of infection was 10% over two

- 305 months under a scenario where 5% are unvaccinated, 5% had a first dose, 60% had two doses and
- 306 30% had three doses, to those expected under a second scenario where 0% are unvaccinated, 5% had a
- 307 first dose, 15% had two doses and 80% had three doses (Figure 4). Younger age groups benefited
- 308 from the steepest decline in expected case rates, with at least 23,000 fewer cases per million in 20-29

309 year-olds. In contrast, older age groups benefited from the greatest decrease in expected deaths from

310 COVID-19, with 337 fewer deaths per million expected in those aged \geq 70 years.

311

312 Sensitivity analysis showed model estimates to be robust against minor changes in the number of 313 Pfizer vaccine-associated myocarditis cases (Table 3), but highly affected by changes in vaccine 314 effectiveness against symptomatic infection and death (Table 4). At a public health level, this holds 315 important implications for COVID-19 burden if new variants such as omicron, for which vaccine 316 effectiveness is decreased, continue to emerge or if vaccine effectiveness proves to wane over time. 317 While vaccine effectiveness would have to drop to a very low threshold for the associated myocarditis 318 risk to outweigh the benefit of protection against symptomatic infection and death from COVID-19 in 319 any age-sex-subgroup, this result highlights the importance of updating the model as new evidence 320 becomes available, or new variants emerge.

321

322 Model estimates must be contextualised within the scope of the BN model, which does not currently 323 consider comorbidities or personal behaviour that may influence an individual's risks of acquiring 324 COVID-19, their response to the infection, or their individual risk of myocarditis. Furthermore, 325 limitations to the availability of Australian data introduces uncertainty in the model inputs, so results 326 may change as more data become available. For example, at the time of writing no Australian data 327 were available on the incidence of Pfizer vaccine-associated myocarditis after the third dose and 328 international data were deemed inappropriate as a substitute (see Table 1 assumptions), necessitating 329 the use of rates for the second dose as a worst-case scenario. In another example, when calculating the 330 delta variant-specific CFR from COVID-19, ideally CFR for the unvaccinated population would be 331 used, and the 2-3 week lag between diagnosis and death accounted for. This information was not 332 available in Australia, so the assumptions were made that the time-window of a few months for the 333 delta wave was long enough to minimise the effect of time lag from infection to death, and the great 334 majority of deaths during the delta wave was in unvaccinated people. Other limitations arise from the 335 model development process, where the use of expert elicitation may be perceived to introduce bias in 336 the evidence viewed. This was minimised through broad literature searches and frequent meetings

337 with external experts such as cardiologists about the quality of the data sources used in the model

assumptions.

339

340	Despite these limitations, the use of an evidence-based BN to model the risks and benefits of COVID-
341	19 vaccination has many advantages. BNs allow for interactive scenario analysis so the model was
342	well-suited for use in programming CoRiCal, a free online tool aimed at better informing the public
343	and helping clinicians to best advise patients on the risks and benefits of COVID-19 vaccination [19].
344	Another benefit of BNs is the ease of updating, allowing for future model updates to incorporate other
345	outcomes such as long COVID, different patient groups such as those <12 years and those with
346	comorbidities, other vaccines such as Moderna, or different vaccine adverse events such as
347	anaphylaxis. Finally, BNs are advantageous due to their integration of new data and different data
348	sources in informing different aspects of the model. While this model has been designed for the
349	Australian context, conditional probability tables (CPTs) can easily be re-populated wherever possible
350	using data from another country.
351	
352	In summary, we developed a BN to compare the risks and benefits of Pfizer COVID-19 vaccination in
353	the Australian population in order to assist clinicians with providing guidance about the Pfizer
354	COVID-19 vaccine. In a community rather than individual context, the final model can also be used
355	to calculate population-level estimates to help inform policy development and public health
356	management. Although designed to compare risks of developing and dying from COVID-19, COVID-
357	19- and Pfizer vaccine-associated myocarditis for the delta variant, the model can be updated to
358	consider the omicron or other variants, other inputs such as patient comorbidities, and other outcomes
359	such as long COVID.
360	
361	
362	
363	4. MATERIALS AND METHODS
364	

365 **4.1. Bayesian networks**

366

- 368 probabilities [40]. Nodes represent variables and have multiple potential states (e.g., male and
- 369 female), and associations are represented by arrows in the direction of parent (independent) to child
- 370 (dependent) variable (Figure 5). Probabilities are assigned to each potential node state via CPTs
- depending on parent node states or, in the case of no parents, prior distributions. The use of CPTs
- 372 allows for integration of multiple data sources and formats including published figures, other
- 373 literature and expert opinion, as well as easy updating when new data are presented [41]. BNs are also
- appropriate for analysing estimated or uncertain risks as they allow for sensitivity analysis to test
- 375 multiple possible inputs [41].

376

377

Figure 5. Example Bayesian network (BN) for modelling the risk of developing background myocarditis over 2 months based on age and sex. The output node, 'Background myocarditis over 2 months' is the child of two linked (black arrow) parent nodes, 'Age group', and 'Sex'. As these parent nodes do not have parent themselves, the probabilities of each of their possible states are determined by a prior distribution; the model adopts the age distribution of the Australian population and an even distribution of males and females. The conditional probability table for the outcome node 'Background myocarditis over 2 months', gives the probability for each state of this node dependent

385	on the parent node states. (a) In the default state, the BN shows that the chance of developing
386	background myocarditis (not from COVID-19 or the Pfizer vaccine) over 2 months is 0.003% (e.g., in
387	a population of 100,000 people, we expect three to get myocarditis in a two-month period). (b) An
388	example of scenario analysis showing the chance of a 40-49 year old male (underlined) developing
389	background myocarditis over two months, the model calculates a 0.004% chance of myocarditis.
390	
391	Throughout the COVID-19 pandemic, BNs have been used in decision making [42], risk assessment
392	[43] and analysis [44,45]. We have previously developed the first BN model for risk-benefit analysis
393	of a COVID-19 vaccine, and used the model outputs to design an online tool to communicate the
394	risks and benefits of the AstraZeneca COVID-19 vaccine in the Australian context [17-19].
395	
396	4.2. Model design
397	
398	The model was based on best evidence from multiple sources, designed through collaboration
399	between subject matter experts (KRS, RP, JL, JES, SJB) and modelers (CLL, HJM, KM, JES) as
400	described previously [17,18]. The model focuses on ages ≥ 12 years due to insufficient data on
401	younger age groups at the time of development.
402	
403	4.3. Myocarditis
404	
405	Acute myocarditis can result in myocardial inflammation from either an infectious or immune-
406	mediated aetiology [46]. Thus, our model compared the risk of Pfizer vaccine-associated myocarditis
407	with the risk of myocarditis in COVID-19 patients. While often asymptomatic, myocarditis may
408	present as chest pain, palpitations and/or dysrhythmias [46-48] and can cause dilated
409	cardiomyopathy, arrhythmia and/or sudden cardiac death [47,48]. In Australia, myocarditis is often
410	diagnosed using electrocardiogram, serum troponin levels, inflammatory markers, chest X-ray,
411	echocardiography and occasionally endomyocardial biopsy [12]. However, these methods can
412	underestimate the presence of myocarditis in comparison to more sensitive cardiac magnetic

412	
413	resonance imaging (MRI), which is considered the gold-standard for non-invasive diagnosis
414	worldwide [49,50]. The 2018 Lake Louise criteria for MRI-based diagnosis of myocarditis targets
415	tissue-based imaging markers of oedema, hyperaemia, necrosis and fibrosis [51,52]. To ensure the
416	diagnosis of myocarditis was made robustly in our model, data reporting myocarditis cases diagnosed
417	via cardiac MRI were used wherever possible.
418	
419	While both the Pfizer COVID-19 vaccine and COVID-19 itself may also be associated with
420	pericarditis, either separately or simultaneously with myocarditis, this model focuses solely on
421	myocarditis. This is because diagnostic criteria for pericarditis are not well-defined, and because it is
422	less common than myocarditis. In studies that reported 'myocarditis/pericarditis', we estimated that
423	~65% of cases were attributable to myocarditis, based on proportions of cases reported in studies that
424	differentiate between them [28,29].
425	
426	The definitions for vaccine-associated and infection-induced myocarditis used for the model reflect
427	those used within the studies from which data were drawn. Vaccine-associated myocarditis was
428	defined as confirmed myocarditis within approximately 10 days of vaccine administration [31], and
429	COVID-19-related myocarditis was defined as myocarditis that occurred within 6 months of COVID-
430	19 diagnosis [34].
431	
432	4.4. Data sources
433	
434	CPTs were derived from data compiled by experts from published material, government reports, and
435	through dialog with external clinical experts (e.g., cardiologists regarding the evidence for Pfizer
436	vaccine-associated, COVID-19-related and background rate of myocarditis). Official Australian
437	authority-issued data were employed whenever possible (e.g., national data on Pfizer vaccine-
438	associated myocarditis). When this was unavailable, data were retrieved from other reliable and
439	publicly available sources (e.g., background rates of myocarditis). Where Australian data were not
440	readily available and international data were not suitable to use for the Australian context, expert

441	opinion was sought. For example, there were limited data in Australia about Pfizer vaccine-associated
442	myocarditis incidence and CFR after the third dose. While rates were reported in Israel and Singapore,
443	these were deemed inappropriate to use in the model as reported rates from first and second doses in
444	these countries were much lower than in Australia. However, both reported lower incidence of
445	myocarditis after the third dose than the second dose. Therefore, to avoid underestimating the risk, the
446	decision was made by the subject experts to use a conservative assumption that incidence after the
447	third dose was the same as the second dose. For some variables, data analysis was required to obtain
448	probabilities for the CPTs, e.g., converting COVID-19 case incidence into probability of infection
449	over two months for the community transmission intensity node, or averaging data to fit the BN age
450	categories. Table 1 and Supplementary Tables S1-9 summarise data sources, model assumptions, and
451	rationale.
452	
453	The BN incorporates default prior distributions for age group (based on the Australian population's
454	age distribution), sex (50% male, 50% female), and vaccine coverage (5% of the population
455	unvaccinated, 5% of received one dose, 60% received two doses [20% with the second dose
456	administered 0 to <2 months ago, 20% 2 to <4 months ago, and 20% 4 to <6 months ago], and 30%
457	received three doses [administered approximately 3 weeks ago]). Prior distributions do not influence
458	scenario analyses results, e.g., once male sex is selected, outputs relate only to males regardless of the
459	entered prior distribution of sexes. Prior distributions can also be altered to model specific scenarios,
460	e.g., different levels of vaccine coverage.
461	
462	4.5. Model validation
463	
464	Subject experts and modellers reviewed the final model to evaluate if the network structure, variables,
465	relationships, and assumptions adequately portrayed the current best evidence. Multiple scenarios
466	were defined, and model outputs manually calculated from the data sources and pre-defined
467	assumptions to validate the BN's predictive behaviour (Supplementary Table S10).

468

469 **4.6. Risk-benefit analysis**

470

471	We assessed	d the risks versus benefits of the Pfizer vaccine if 5% of the population received no doses,
472	5% received	d the first dose only, 60% had two doses (20% each with the last dose administered 0 to
473	<2, 2 to <4	and 4 to <6 months ago), and 30% had three doses within the last two months (third dose
474	administere	d 4 to 6 months after second dose). We assumed the same vaccine coverage for all age
475	groups. The	ese priors were selected to represent predicted vaccination coverage at the time of writing.
476	We compar	ed the following risks (vaccine-associated myocarditis) and benefits (potential COVID-19
477	cases and d	eaths prevented) assuming the above vaccination coverage:
478	i.	Estimated number of times more likely for a person with symptomatic COVID-19 to
479		develop and die from COVID-19-related myocarditis, than for a person to develop and
480		die from Pfizer vaccine-associated myocarditis.
481	ii.	Estimated symptomatic COVID-19 cases and deaths prevented per million population if
482		transmission intensity was equivalent to 1%, 5% or 10% chance of infection over two
483		months, versus estimated cases of Pfizer vaccine-associated myocarditis.
484	iii.	Estimated symptomatic COVID-19 cases and deaths per million if transmission intensity
485		was equivalent to 10% chance of infection over two months, under the vaccination
486		coverage scenario described above versus a possible future scenario where 0% of the
487		population received no doses, 5% received the first dose only, 15% had two doses (5%
488		each with the last dose administered 0 to <2, 2 to <4 and 4 to <6 months ago), and 80%
489		had three doses.
490		
491	4.7. Se	nsitivity analysis

492

493 Evidence informing many model inputs rapidly evolved throughout the model development process.

494 We ran sensitivity analyses for two variables considered most likely to fluctuate over time, to evaluate

495 the necessary frequency for updating model assumptions.

497	From October-December 2021, reported Pfizer vaccine-associated myocarditis incidence in Australia
498	increased weekly but numbers remained very low. We assessed TGA reports from 14/10/2021 and
499	09/12/2021 [36] to evaluate how changes in data influenced model predictions of age-sex-specific
500	myocarditis cases from the second vaccine dose, per million people. We also assessed model output
501	sensitivity to hypothetical 5% and 10% decreases in vaccine effectiveness against both symptomatic
502	infection and death for the delta variant.
503	
504	
505	
506	5. DATA AVAILABILITY
507	All data generated or analysed during this study are included in this article and its supplementary files.
508	
509	
510	
511	6. CONFLICT OF INTEREST STATEMENT
511 512	6. CONFLICT OF INTEREST STATEMENT
511 512 513	6. CONFLICT OF INTEREST STATEMENT The authors declare that they have no known competing financial interests or personal relationships
511512513514	6. CONFLICT OF INTEREST STATEMENT The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. KRS is a consultant for Sanofi,
 511 512 513 514 515 	 6. CONFLICT OF INTEREST STATEMENT The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. KRS is a consultant for Sanofi, Roche and NovoNordisk. The opinions and data presented in this manuscript are of the authors and
 511 512 513 514 515 516 	6. CONFLICT OF INTEREST STATEMENT The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. KRS is a consultant for Sanofi, Roche and NovoNordisk. The opinions and data presented in this manuscript are of the authors and are independent of these relationships.
 511 512 513 514 515 516 517 	6. CONFLICT OF INTEREST STATEMENT The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. KRS is a consultant for Sanofi, Roche and NovoNordisk. The opinions and data presented in this manuscript are of the authors and are independent of these relationships.
 511 512 513 514 515 516 517 518 	6. CONFLICT OF INTEREST STATEMENT The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. KRS is a consultant for Sanofi, Roche and NovoNordisk. The opinions and data presented in this manuscript are of the authors and are independent of these relationships.
 511 512 513 514 515 516 517 518 519 	6. CONFLICT OF INTEREST STATEMENT The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. KRS is a consultant for Sanofi, Roche and NovoNordisk. The opinions and data presented in this manuscript are of the authors and are independent of these relationships.
 511 512 513 514 515 516 517 518 519 520 	 6. CONFLICT OF INTEREST STATEMENT The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. KRS is a consultant for Sanofi, Roche and NovoNordisk. The opinions and data presented in this manuscript are of the authors and are independent of these relationships. 7. ACKNOWLEDGMENTS
 511 512 513 514 515 516 517 518 519 520 521 	 6. CONFLICT OF INTEREST STATEMENT The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. KRS is a consultant for Sanofi, Roche and NovoNordisk. The opinions and data presented in this manuscript are of the authors and are independent of these relationships. 7. ACKNOWLEDGMENTS
 511 512 513 514 515 516 517 518 519 520 521 522 	 6. CONFLICT OF INTEREST STATEMENT The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. KRS is a consultant for Sanofi, Roche and NovoNordisk. The opinions and data presented in this manuscript are of the authors and are independent of these relationships. 7. ACKNOWLEDGMENTS We thank Kim Sampson from Immunisation Coalition and Dr Andrew Baird (St Kilda Medical
 511 512 513 514 515 516 517 518 519 520 521 522 523 	 6. CONFLICT OF INTEREST STATEMENT The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. KRS is a consultant for Sanofi, Roche and NovoNordisk. The opinions and data presented in this manuscript are of the authors and are independent of these relationships. 7. ACKNOWLEDGMENTS We thank Kim Sampson from Immunisation Coalition and Dr Andrew Baird (St Kilda Medical Group, Australia) for facilitating the collaboration between authors; Aapeli Vuorinen (Data Science

525	(School of Public Health, The University of Queensland, Australia) for contributions to model
526	validation; A/Prof Hassan Valley (Deakin University, Melbourne, Australia) for contributions to
527	discussions about risk communication and data visualisation; A/Prof Sudhir Wahi, Director of
528	Echocardiography and Senior Staff Cardiologist, Cardiac Society of Australia and New Zealand
529	(CSANZ) Imaging Council for their feedback on myocarditis-related data; and Dr Benjamin J.R.
530	Buckley (University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, UK) for
531	providing data on age and sex subgrouping of COVID-19-related myocarditis cases and deaths of the
532	cohort described in [34]. Our BN model was built using GeNIe Modeler (BayesFusion 2019),
533	available free of charge for academic research and teaching use from https://www.bayesfusion.com.
534	
535	
536	
537	8. FUNDING
538	
539	This research did not receive any specific grant from funding agencies in the public, commercial, or
540	not-for-profit sectors. The CoRiCal project was supported by the Immunisation Coalition through
541	educational grants received from pharmaceutical companies that manufacture vaccines. However, the
542	CoRiCal project did not receive any direct funding from AstraZeneca, Pfizer, or any other companies
543	that produce COVID-19 vaccines. All co-authors of this paper provided in-kind contribution of their
544	time and expertise to develop the CoRiCal interactive tool, and the research and modelling that
545	underpin the risk calculations provided by the tool. CLL and KRS were supported by an Australian
546	National Health and Medical Research Council (NHMRC) Investigator Grants (1193826 and
547	2007919).
548	
549	
550	
551	9. AUTHOR CONTRIBUTIONS

552 Conception and design: JL, KRS, CLL, JES

553	Acquis	ition of data: JL, RP, JES, CLL, KRS			
554	Analys	is and interpretation: JES, CLL, JL, HJM, KM, SJB			
555	Draftin	Drafting the article: JES, CLL, HJM			
556	Revisi	ng article for important intellectual content: All authors			
557	Final a	pproval of submitted version: All authors			
558					
559					
560					
561	10. RE	EFERENCES			
562					
563	1.	Swiss Agency for Therapeutic Products. Swissmedic grants authorisation for the first			
564		COVID-19 vaccine in Switzerland, https://www.bag.admin.ch/bag/en/home/das-			
565		bag/aktuell/medienmitteilungen.msg-id-81761.html; 2020 [accessed 22 January 2022].			
566	2.	BioSpace. Pfizer and BioNTech expand collaboration with U.S. to provide 500 million			
567		additional COVID-19 vaccine doses at not-for-profit price for donation to poorest countries,			
568		https://www.biospace.com/article/releases/pfizer-and-biontech-expand-collaboration-with-u-			
569		s-to-provide-500-million-additional-covid-19-vaccine-doses-at-not-for-profit-price-for-			
570		donation-to-poorest-countries/; 2021 [accessed 22 January 2022].			
571	3.	COVID19 Vaccine Tracker. Pfizer/BioNTech: Comirnaty,			
572		https://covid19.trackvaccines.org/vaccines/6/; 2022 [accessed 22 January 2022].			
573	4.	Heller J. Israel sees probable link between Pfizer vaccine and myocarditis cases. Reuters			
574		2021. https://www.reuters.com/world/middle-east/israel-sees-probable-link-between-pfizer-			
575		vaccine-small-number-myocarditis-cases-2021-06-01/.			
576	5.	Centers for Disease Control and Prevention. Clinical considerations: myocarditis and			
577		pericarditis after receipt of mRNA COVID-19 vaccines among adolescents and young adults,			
578		https://www.cdc.gov/vaccines/covid-19/clinical-considerations/myocarditis.html; 2021			
579		[accessed 22 January 2022].			

- 580 6. Wu KJ. Doctors are puzzled by heart inflammation in the young and vaccinated. The Atlantic
- 581 2021. https://www.theatlantic.com/health/archive/2021/07/vaccination-myocarditis-
- 582 <u>kids/619339/.</u>
- 583 7. Melbourne Institute. Vaccine Hesitancy Tracker,
- 584 https://melbourneinstitute.unimelb.edu.au/publications/research-insights/ttpn/vaccination-
- 585 report; 2021 [accessed 22 January 2022].
- 586 8. Australian Government Department of Health. Who can get vaccinated,
- 587 <u>https://www.health.gov.au/initiatives-and-programs/covid-19-vaccines/who-can-get-</u>
- 588 <u>vaccinated#access-to-comirnaty-pfizer;</u> 2022 [accessed 22 January 2022].
- 589 9. Wong MCS, Wong ELY, Huang J, Cheung AWL, Law K, Chong MKC, et al. Acceptance of
- the COVID-19 vaccine based on the health belief model: A population-based survey in Hong
- 591 Kong. Vaccine 2021;39(7):1148–56.
- 59210. Verger P, Peretti-Watel P. Understanding the determinants of acceptance of COVID-19
- 593 vaccines: a challenge in a fast-moving situation. Lancet Public Health 2021;6(4):e195–6.
- 594 11. Australian Technical Advisory Group on Immunisation. Weighing up the potential benefits
- and risk of harm from COVID-19 vaccine AstraZeneca,
- 596 https://www.health.gov.au/sites/default/files/documents/2021/06/covid-19-vaccination-
- 597 weighing-up-the-potential-benefits-against-risk-of-harm-from-covid-19-vaccine-
- 598 <u>astrazeneca_2.pdf;</u> 2021 [accessed December 2021].
- Australian Government Department of Health. Guidance on myocarditis and pericarditis after
 mRNA COVID-19 vaccines,
- 601 https://www.health.gov.au/sites/default/files/documents/2021/10/covid-19-vaccination-
- 602 guidance-on-myocarditis-and-pericarditis-after-mrna-covid-19-vaccines.pdf; 2021 [accessed
- 603 January 2022].
- 60413. Australian Government Department of Health. COVID-19 vaccination vaccination data 1
- 605 October 2021, <u>https://www.health.gov.au/resources/publications/covid-19-vaccination-</u>
- 606 <u>vaccination-data-1-october-2021;</u> 2021 [accessed January 2022].

607	14.	Australian Government Department of Health. ATAGI statement on revised
608		recommendations on the use of COVID-10 vaccine AstraZeneca, 17 June 2021,
609		https://www.health.gov.au/news/atagi-statement-on-revised-recommendations-on-the-use-of-
610		covid-19-vaccine-astrazeneca-17-june-2021; 2021 [accessed January 2022].
611	15.	Tartof SY, Slezak JM, Fischer H, Hong V, Ackerson BK, Ranasinghe ON, et al. Effectiveness
612		of mRNA BNT162b2 COVID-19 vaccine up to 6 months in a large integrated health system
613		in the USA: a retrospective cohort study. The Lancet 2011;398(10309):1407-16.
614	16.	MacIntyre CR, Veness B, Berger D, Hamad N, Bari N. Thrombosis with thrombocytopenia
615		syndrome (TTS) following AstraZeneca ChAdOx1 nCoV-19 (AZD1222) COVID-19
616		vaccination – A risk-benefit analysis for people <60 years in Australia. Vaccine
617		2021;39(34):4784–7.
618	17.	Lau CL, Mayfield HJ, Sinclair JE, Brown SJ, Waller M, Enjeti AK, et al. Risk-benefit
619		analysis of the AstraZeneca COVID-19 vaccine in Australia using a Bayesian network
620		modelling framework. Vaccine 2021;39(51):7429-40.
621	18.	Mayfield HJ, Lau CL, Sinclair JE, Brown SJ, Baird A, Litt J, et al. Designing an evidence-
622		based Bayesian network for estimating the risk versus benefits of AstraZeneca COVID-19
623		vaccine. medRxiv 2021. https://doi.org/10.1101/2021.10.28.21265588.
624	19.	Immunisation Coalition. CoRiCal: Covid Risk Calculator,
625		https://corical.immunisationcoalition.org.au; 2021 [accessed January 2022].
626	20.	Chodick G, Tene L, Patalon T, Gazit S, Tov AB, Cohen D, Muhsen K. Assessment of
627		effectiveness of 1 dose of BNT162b2 vaccine for SARS-CoV-2 infection 13 to 24 days after
628		immunization. JAMA Network Open 2021.
629		https://doi.org/10.1001/jamanetworkopen.2021.15985.
630	21.	Perez JL. Efficacy and safety of BNT162b2 booster - C4591031 2 month interim analysis,
631		https://www.cdc.gov/vaccines/acip/meetings/downloads/slides-2021-11-19/02-COVID-Perez-
632		508.pdf; 2021 [accessed December 2021].
633	22.	Nasreen S, Chung H, He S, Brown KA, Gubbay JB, Buchan SA, et al. Effectiveness of
634		mRNA and ChAdOx1 COVID-19 vaccines against symptomatic SARS-CoV-2 infection and

- 635 severe outcomes with variants of concern in Ontario. medRxiv 2021.
- 636 https://doi.org/10.1101/2021.06.28.21259420.
- 637 23. Andrews N, Tessier E, Stowe J, Gower C, Kirsebom F, Simmons R, et al. medRxiv 2021.
- 638 https://doi.org/10.1101/2021.09.15.21263583.
- 639 24. Australian Government Department of Health. Coronavirus (COVID-19) case numbers and
- 640 statistics cases and deaths by age and sex, <u>https://www.health.gov.au/news/health-</u>
- 641 <u>alerts/novel-coronavirus-2019-ncov-health-alert/coronavirus-covid-19-case-numbers-and-</u>
- 642 <u>statistics#covid19-summary-statistics;</u> 2021 [accessed December 2021].
- 643 25. Australian Government Department of Health. Coronavirus disease 2019 (COVID-19)
- 644 epidemiology reports, Australia, 2020-2021,
- 645 <u>https://www1.health.gov.au/internet/main/publishing.nsf/Content/novel_coronavirus_2019_n</u>
- 646 <u>cov_weekly_epidemiology_reports_australia_2020.htm</u>; 2021 [accessed December 2021].
- 647 26. Australian Bureau of Statistics. National, state and territory population,
- 648 https://www.abs.gov.au/statistics/people/population/national-state-and-territory-
- 649 population/mar-2021/31010do001_202103.xls; 2021 [accessed December 2021].
- 650 27. Li X, Ostropolets A, Makadia R, Shoaibi A, Rao G, Sena AG, et al. Characterising the
- background incidence rates of adverse events of special interest COVID-19 vaccines in eight
- 652 countries: multinational network cohort study. The BMJ 2021.
- 653 https://doi.org/10.1101/2021.03.25.21254315.
- 654 28. Barda N, Dagan N, Ben-Shlomo Y, Kepten E, Waxman J, Ohana R, et al. Safety of the
- BNT162b2 mRNA COVID-19 vaccine in a nationwide setting. The New England Journal of
 Medicine 2021;385:1078–1090.
- 657 29. Su JR. Myopericarditis following COVID-19 vaccination: updates from the Vaccine Adverse
 658 Event Reporting System (VAERS),
- 659 https://www.cdc.gov/vaccines/acip/meetings/downloads/slides-2021-08-30/03-COVID-Su-
- 660 <u>508.pdf;</u> 2021 [accessed January 2022].

30. Kyto V. Saraste A. Voldo-Pulkki L. Saukko P. Incidence of fatal myocarditis:
--

- based study in Finland. American Journal of Epidemiology 2007;165(5):570–4.
- 663 <u>https://doi.org/10.1093/aje/kwk076</u>.
- 664 31. Therapeutic Goods Administration. COVID-19 vaccine weekly safety report 09-12-2021,
- 665 <u>https://www.tga.gov.au/periodic/covid-19-vaccine-weekly-safety-report-09-12-2021;</u> 2021
- 666 [accessed December 2021].
- 667 32. Vaccines and Related Biological Products Advisory Committee. October 14-15, 2021
- meeting presentation, <u>https://www.fda.gov/media/153086/download;</u> 2021 [accessed
 December 2021].
- December 2021].
- 670 33. Oster M, Shay DK, Su JR, Gee J, Creech B, Broder KR, et al. Myocarditis cases reported
 671 after mRNA-based COVID-19 vaccination in the US from December 2020 to August 2021.
- 672 JAMA 2022;327(4):331–40.
- 673 34. Buckley BJR, Harrison SL, Fazio-Eynullayeva E, Underhill P, Lane DA, Lip GYH.
- 674 Prevalence and clinical outcomes of myocarditis and pericarditis in 718,365 COVID-19
- 675 patients. European Journal of Clinical Investigation 2021;51(11):e13669.
- 676 <u>https://doi.org/10.1111/eci.13679</u>.
- 677 35. Australian Government Department of Health. COVID-19 vaccination vaccination data 3
- 578 January 2022, <u>https://www.health.gov.au/resources/publications/covid-19-vaccination-</u>
- 679 <u>vaccination-data-3-january-2022</u>; 2022 [accessed January 2022].
- 680 36. Therapeutic Goods Administration. COVID-19 vaccine weekly safety report,
- 681 <u>https://www.tga.gov.au/periodic/covid-19-vaccine-weekly-safety-report;</u> 2021 [accessed
 682 December 2021].
- 683 37. Montgomery J, Ryan M, Engler R, Hoffman D, McClenathan B, Collins L, et al. Myocarditis
- 684 following immunization with mRNA COVID-19 vaccines in members of the US military.
- 685 JAMA Cardiology 2021;6(10):1202–6. <u>https://doi.org/10.1001/jamacardio.2021.2833</u>.
- 686 38. GOV.UK. Coronavirus vaccine weekly summary of Yellow Card reporting,
- 687 https://www.gov.uk/government/publications/coronavirus-covid-19-vaccine-adverse-

688		reactions/coronavirus-vaccine-summary-of-yellow-card-reporting; 2022 [accessed January
689		2022].
690	39.	Mevorach D, Anis E, Cedar N, Bromberg M, Haas EJ, Nadir E, et al. Myocarditis after
691		BNT162b2 vaccine against COVID-19 in Israel. The New England Journal of Medicine
692		2021;385:2140-9. https://doi.org/10.1056/NEJMoa2109730.
693	40	Fenton N, Neil M. Risk assessment and decision analysis with Bayesian networks. 2nd ed.
694		Boca Raton: CRC Press; 2019.
695	41	Marcot BG. Common quandaries and their practical solutions in Bayesian network modeling.
696		Ecological Modelling 2017;358(C):1–9.
697	42.	Wang J, Zhai X, Luo Q. How COVID-19 impacts Chinese travelers' mobility decision-
698		making processes: a Bayesian network model. Information and Communication Technologies
699		in Tourism 2021:557-63. https://doi.org/10.1007/978-3-030-65785-7_53.
700	43.	Fenton NE, McLachlan S, Lucas P, Dube K, Hitman GA, Osman M, Kyrimi E, Neil M. A
701		Bayesian network model for personalized COVID-19 risk assessment and contact tracing.
702		medRxiv 2021. https://doi.org/10.1101/2020.07.15.20154286.
703	44.	Prodhan G, Fenton N. Extending the range of COVID-19 risk factors in a Bayesian network
704		model for personalized risk assessment. medRxiv 2020.
705		https://doi.org/10.1101/2020.10.20.20215814.
706	45.	Lai K, Yanushkevich SN. Machine reasoning to assess pandemics risks: case of USS
707		Theodore Roosevelt. arXiv 2020. https://arxiv.org/abs/2008.11040.
708	46	Lampejo T, Durkin SM, Bhatt N, Guttmann O. Acute myocarditis: aetiology, diagnosis and
709		management. Clinical Medicine Journal 2021. https://doi.org/10.7861/clinmed.2021-0121.
710	47.	Drory Y, Turetz Y, Hiss Y, Lev B, Fisman EZ, Pines A, Kramer MR. Sudden unexpected
711		death in persons <40 years of age. The American Journal of Cardiology 1991;68(13):1388-
712		92.
713	48	Pollack A, Kontorovich AR, Fuster V, Dec GW. Viral myocarditis – diagnosis, treatment
714		option, and current controversies. Nat Rev Cardiol 2015;12(11):670-80.

715	49. Luetkens JA.	Schlesinger-Irsch U.	Kuetting DL. Dabir D	. Homsi R. Doerner J	. et al. Feature-
,		,	,, ,	,, ,	,

- tracking myocardial strain analysis in acute myocarditis: diagnostic value and association
- 717 with myocardial oedema. Eur Radiol 2017;27(11):4661–71.
- 50. Luetkens JS, Homsi R, Dabir D, Kuetting DL, Marx C, Doerner J, et al. Comprehensive
- 719 cardiac magnetic resonance for short-term follow-up in acute myocarditis. Journal of the

720 American Heart Association 2016. <u>https://doi.org/10.1161/JAHA.116.003603</u>.

- 51. Friedrich MG, Sechtem U, Schulz-Menger J, Holmvang G, Alakija P, Cooper LT, et al.
- 722 Cardiovascular magnetic resonance in myocarditis: a JACC White paper. J Am Coll Cardiol
- 723 2009;53(17):1475–87.
- 52. Ferreira VM, Schulz-Menger J, Holmvang G, Kramer CM, Carbone I, Sechtem U, et al.
- 725 Cardiovascular magnetic resonance in nonischemic myocardial inflammation: expert
- recommendations. J Am Coll Cardiol 2018;72(24):3158–76.

vaccine.	
Model inputs	Data sources, assumptions, rationale (references)
Vaccine	1 dose [20]
effectiveness	• Data from 503,875 individuals in Israel
against	• Age <60 years: 53.1% effective. Age ≥60 years 46.8% effective
symptomatic	• Study conducted when delta was dominant variant.
infection	2 doses [15]
	Data from large integrated health system in the USA
	• Data not specifically for delta variant but for a mix so we assumed there would be negligible difference between variants.
	• Our model focuses on risk of symptomatic infection, but this study reports estimates for total risk of infection (not necessarily symptomatic).
	Our model may therefore have underestimated vaccine effectiveness against symptomatic infection.
	• The study reports vaccine effectiveness at <1 month, 1 to <2 months, 2 to <3 months, 3 to <4 months, 4 to <5 months, and \geq 5 months since
	the second dose. When transforming these data to the time categories used in our model (0 to <2 months, 2 to <4 months and 4 to <6 months),
	we averaged the reported vaccine effectiveness of the respective months in each group.
	• In transforming the reported age groups to those used in our model, we assumed that in age group 12-19 years, 50% were aged 12-15 years
	and 50% were aged 16-19 years. Likewise for age group 40-49 years we assumed that 50% of people were aged 40-44 years and 50% were
	aged 45-49 years. Similar assumptions were used for 50-59 and 60-69 year-olds.
	• See Table S1 for summary of final assumptions.
	3 doses [21]
	 Data from Pfizer third dose efficacy study conducted in the USA, Brazil and South Africa
	• Age 16-55 years: 96.5% effective. Age ≥56 years: 93.1% effective
	• Study conducted when delta was the dominant variant.
	 We assumed vaccine effectiveness in ages 12-15 years was the same as in ages 16-55 years.
	• In transforming reported age groups to those used in our model, we assumed that in age group 50-59 years, 60% were 50-55 years and 40%
	were 56-59 years.
	See Table S1 for summary of final assumptions.
Vaccine	1 dose [22]
effectiveness	 Data from Ontario study, reporting vaccine effectiveness against hospitalisation or death from delta variant. These data may therefore
against death if	underestimate effectiveness against death.
infected	• Age <60 years: 89% effective. Age ≥60 years: 74% effective.
	2 doses [23]
	 Data from Public Health England reporting vaccine effectiveness against death from delta variant.
	 In transforming reported time since second dose into the categories used in our model, we used weighted averages of the vaccine effectiveness
	in different time groups reported in the study, with weighting being proportionate to the number of weeks in each category.
	• In transforming the reported age groups to the categories used in our model, we assumed that for age group 60-69 years, 50% were 60-64
	years and 50% were 65-69 years.
	 Data were reported only for age groups ≥16 years (which includes ≥65 years) and ≥65 years. As data were not provided for ages 16-64 years
	only, we assumed estimates were the same as for the ≥ 16 years age group. It is therefore possible that vaccine effectiveness for this age group
	was underestimated due to influence of the lower effectiveness within the \geq 65-year-olds.

Table 1. Summary of data sources, assumptions, and prior distributions for a Bayesian network to assess risks versus benefits of the Pfizer COVID-19 vaccine.

 See Table S2 for summary of final assumptions. 3 doses [23] As no data have yet been published on the effectiveness of a third dose against death, we assumed the same effectiveness as 'Two doses (last dose 0 to <2 months ago)'. Relative risk of symptomatic infection by age and sex distribution of Sec 2021. We subtracted data from the Australian Government Department of Health Epidemiology Reports 32 and 43 [25] reporting age and sex distribution of COVID-19 cases in Australia in 2020, and Jan to June 2021, respectively, to obtain age and sex distribution of covID-19 cases in Australia in 2020, and Jan to June 2021, respectively, to obtain age and sex distribution of covID-19 cases in Australia in 2020, and Jan to June 2021, respectively, to obtain age and sex distribution of covID-19 cases in Australia in 2020, and Jan to June 2021, respectively, to obtain age and sex distribution of the answitch of infection in each age-sex group if overall probability of infection in the community was 1%. See Table S3 for final assumptions. Risk of symptomatic infection under current over 2 months). Also included transmission as defined by Australian to Europe in January 2021 (equivalent to 1.920% of population infected over 2 months). Medium – similar to second wave in Victoria, Australia in 2020 (equivalent to 0.149% of population infected over 2 months). High – similar to Europe in January 2021 (equivalent to 1.920% of population. See Table S4 for final assumptions. Chance of infection over 2 months calculated for different levels of community transmission. See Table S4 for final assumptions. CovID-19 cases reported in Australia from January 2020 to 18/11/2021 were used to provide estimates of age-sex-specific case fatality rates. Data sourced from Australian NINDSS [24]. To convert reported age groups into those used in our model, calculations were based on age distribution of the Australian population [26]. See Table S5 for final assumptions.<!--</th-->
 3 doses [23] As no data have yet been published on the effectiveness of a third dose against death, we assumed the same effectiveness as 'Two doses (last dose 0 to <2 months ago)'. Relative risk of symptomatic infection by age and sex distribution of all COVID-19 cases in Australian National Interoperable Notifiable Diseases Surveillance System (NINDSS) [24] reports age and sex distribution of all COVID-19 cases in Australian Government Department of Health Epidemiology Reports 32 and 43 [25] reporting age and sex distribution of COVID-19 cases in Australia in 2020, and Jan to June 2021, respectively, to obtain age and sex distribution of coverall probability of infection in each age-sex group if overall probability of infection in the community was 1%. See Table S3 for final assumptions. Risk of symptomatic infection under to 0.016% of population infected over 2 months). Medium – similar to second wave in Victoria, Australia in 2020 (equivalent to 0.149% of population infected over 2 months). High – similar to Europe in January 2021 (equivalent to 1.920% of population infected over 2 months). Also included transmission scenarios equivalent to: zero transmission. See Table S4 for final assumptions. Risk of dying from COVID-19 cases reported in Australia from January 2020 to 18/11/2021 were used to provide estimates of age-sex-specific case fatality rates. Data sourced from Australian NINDSS [24]. To convert reported age groups into those used in our model, calculations were based on age distribution of the Australian population [26]. See Table S5 for final assumptions. Risk of getting Multinational network cohort study from Australia, France, Germany, Japan, Netherlands, Spain, the UK and the USA reports background incidence of for durating and provide entry of the of the
 As no data have yet been published on the effectiveness of a third dose against death, we assumed the same effectiveness as 'Two doses (last dose 0 to <2 months ago)'. Relative risk of symptomatic infection by age area in Australia National Interoperable Notifiable Diseases Surveillance System (NINDSS) [24] reports age and sex distribution of all COVID-19 cases in Australia up to 8 Dec 2021. We subtracted data from the Australian Government Department of Health Epidemiology Reports 32 and 43 [25] reporting age and sex distribution of COVID-19 cases in Australia in 2020, and Jan to June 2021, respectively, to obtain age and sex distribution of cases from 6 June to 8 Dec 2021 to represent the delta variant. We calculated relative risk of infection by age group and sex by estimating the probability of infection in each age-sex group if overall probability of infection in the community was 1%. See Table S3 for final assumptions. Risk of Definitions of low, medium, and high transmission as defined by Australian Technical Advisory Group on Immunisation (ATAGI) [11]. Low – similar to first wave in Australia (equivalent to 0.016% of population infected over 2 months). Medium – similar to second wave in Victoria, Australia in 2020 (equivalent to 0.149% of population infected over 2 months). High – similar to Europe in January 2021 (equivalent to 1.920% of population infected over 2 months). Also included transmission scenarios equivalent to: zero transmission. See Table S4 for final assumptions. Chance of infection over 2 months calculated for different levels of community transmission. See Table S4 for final assumptions. CovID-19 cases reported in Australia from January 2020 to 18/11/2021 were used to provide estimates of age-sex-specific case fatality rates. Data sourced from Australian NINDSS [24]. To convert reported age groups into those used in our model, calculations were based on age distribution of the Australian population [26]. See Table S5 for
dose 0 to <2 months ago)'.Relative risk of symptomatic infection by age and sexData from Australian National Interoperable Notifiable Diseases Surveillance System (NINDSS) [24] reports age and sex distribution of all COVID-19
Relative risk of symptomatic infection by age and sexData from Australian National Interoperable Notithable Diseases Surveillance System (NINDSS) [24] reports age and sex distribution of all COVID-19 cases in Australia up to 8 Dec 2021. We subtracted data from the Australian Government Department of Health Epidemiology Reports 32 and 43 [25] reporting age and sex distribution of COVID-19 cases in Australia in 2020, and Jan to June 2021, respectively, to obtain age and sex distribution of cases from 6 June to 8 Dec 2021 to represent the delta variant. We calculated relative risk of infection by age group and sex by setimating the probability of infection in each age-sex group if overall probability of infection in the community was 1%. See Table S3 for final assumptions.Risk of current transmission and vaccinationDefinitions of low, medium, and high transmission as defined by Australian Technical Advisory Group on Immunisation (ATAGI) [11]. Low – similar to first wave in Australia (equivalent to 0.016% of population infected over 2 months). Medium – similar to second wave in Victoria, Australia in 2020 (equivalent to 0.149% of population infected over 2 months). High – similar to Europe in January 2021 (equivalent to 1.920% of population infected over 2 months). Also included transmission scenarios equivalent to: zero transmission. See Table S4 for final assumptions.Risk of dying from COVID- 19COVID-19 cases reported in Australia from January 2020 to 18/11/2021 were used to provide estimates of age-sex-specific case fatality rates. Data sourced from Australian NINDSS [24]. To convert reported age groups into those used in our model, calculations were based on age distribution of the Australian population [26]. See Table S5 for final assumptions.Risk of getting (harding from Low of the contervel of the contervel of the contervel of the contervel o
 symptomatic infection by age index distribution of COVID-19 cases in Australia in 2020, and Jan to June 2021, respectively, to obtain age and sex distribution of cases from 6 June to 8 Dec 2021 to represent the delta variant. We calculated relative risk of infection by age group and sex by estimating the probability of infection in each age-sex group if overall probability of infection in the community was 1%. See Table S3 for final assumptions. Risk of Definitions of low, medium, and high transmission as defined by Australian Technical Advisory Group on Immunisation (ATAGI) [11]. Low – similar to first wave in Australia (equivalent to 0.016% of population infected over 2 months). Medium – similar to second wave in Victoria, Australia in 2020 (equivalent to 0.149% of population infected over 2 months). High – similar to Europe in January 2021 (equivalent to 1.920% of population infected over 2 months). Also included transmission scenarios equivalent to: zero transmission. See Table S4 for final assumptions. Covid from Australia from January 2020 to 18/11/2021 were used to provide estimates of age-sex-specific case fatality rates. Data sourced from Australian NINDSS [24]. To convert reported age groups into those used in our model, calculations were based on age distribution of the Australian population [26]. See Table S5 for final assumptions. Risk of getting Risk of getting Risk of getting Multinational network cohort study from Australia, France, Germany, Japan, Netherlands, Spain, the UK and the USA reports background incidence of mean population equivalent to population and the feith end exist population.
Intertion by ageReporting age and sex distribution of COVID-19 cases in Australia in 2020, and fail to fulle 2021, respectively, to obtain age and sex distribution of cases from 6 June to 8 Dec 2021 to represent the delta variant. We calculated relative risk of infection by age group and sex by estimating the probability of infection in each age-sex group if overall probability of infection in the community was 1%. See Table S3 for final assumptions.Risk ofDefinitions of low, medium, and high transmission as defined by Australian Technical Advisory Group on Immunisation (ATAGI) [11]. Low – similar to first wave in Australia (equivalent to 0.016% of population infected over 2 months). Medium – similar to second wave in Victoria, Australia in 2020 (equivalent to 0.149% of population infected over 2 months). High – similar to Europe in January 2021 (equivalent to 1.920% of population infected over 2 months). Also included transmission scenarios equivalent to: zero transmission. See Table S4 for final assumptions.Risk of dyingCOVID-19 cases reported in Australia from January 2020 to 18/11/2021 were used to provide estimates of age-sex-specific case fatality rates. Data sourced from Australian NINDSS [24]. To convert reported age groups into those used in our model, calculations were based on age distribution of the Australian population [26]. See Table S5 for final assumptions.Risk of gettingMultinational network cohort study from Australia, France, Germany, Japan, Netherlands, Spain, the UK and the USA reports background incidence of for a study assumption set or and on [27]. We assume device for a case or and on [27]. We assume device for a case or and on [27]. We assume device for a case or and on [27]. We assume device for a case or and on [27]. We assume the for for a case or and on [27]. We assume the for form a case or and on [27]. We assume the form a case or and on [27]. We assume the form a case case
and sexCases from or the to 3 Dec 2021 to represent the derivativation, we carculated relative first of the community was 1%. See Table S3 for final assumptions.Risk of symptomatic infection underDefinitions of low, medium, and high transmission as defined by Australian Technical Advisory Group on Immunisation (ATAGI) [11]. Low – similar to first wave in Australia (equivalent to 0.016% of population infected over 2 months). Medium – similar to second wave in Victoria, Australia in 2020 (equivalent to 0.149% of population infected over 2 months). High – similar to Europe in January 2021 (equivalent to 1.920% of population infected over 2 months). Also included transmission scenarios equivalent to: zero transmission; 1%, 2%, 5% and 10% chance of infection over 2 months. Chance of infection over 2 months calculated for different levels of community transmission. See Table S4 for final assumptions.Risk of dying from COVID- 19COVID-19 cases reported in Australia from January 2020 to 18/11/2021 were used to provide estimates of age-sex-specific case fatality rates. Data sourced from Australian NINDSS [24]. To convert reported age groups into those used in our model, calculations were based on age distribution of the Australian population [26]. See Table S5 for final assumptions.Risk of gettingMultinational network cohort study from Australia, France, Germany, Japan, Netherlands, Spain, the UK and the USA reports background incidence of merver with a reports background incidence of merver end en [27]. We accurrent end en [27]. We accurrent end en [27].
Risk of symptomatic urrentDefinitions of low, medium, and high transmission as defined by Australian Technical Advisory Group on Immunisation (ATAGI) [11]. Low – similar to first wave in Australia (equivalent to 0.016% of population infected over 2 months). Medium – similar to second wave in Victoria, Australia in 2020 (equivalent to 0.149% of population infected over 2 months). High – similar to Europe in January 2021 (equivalent to 1.920% of population infected over 2 months). Also included transmission scenarios equivalent to: zero transmission. See Table S4 for final assumptions.Risk of dying from COVID- 19COVID-19 cases reported in Australia from January 2020 to 18/11/2021 were used to provide estimates of age-sex-specific case fatality rates. Data sourced from Australian NINDSS [24]. To convert reported age groups into those used in our model, calculations were based on age distribution of the Australian population [26]. See Table S5 for final assumptions.Risk of gettingMultinational network cohort study from Australia, France, Germany, Japan, Netherlands, Spain, the UK and the USA reports background incidence of meter and perior backgrou
 Symptomatic infection under current in Australia (equivalent to 0.016% of population infected over 2 months). Medium – similar to second wave in Victoria, Australia in 2020 (equivalent to 0.149% of population infected over 2 months). High – similar to Europe in January 2021 (equivalent to 1.920% of population infected over 2 months). Also included transmission scenarios equivalent to: zero transmission; 1%, 2%, 5% and 10% chance of infection over 2 months. Chance of infection over 2 months calculated for different levels of community transmission. See Table S4 for final assumptions. Risk of dying from Australian NINDSS [24]. To convert reported age groups into those used in our model, calculations were based on age distribution of the Australian population [26]. See Table S5 for final assumptions. Risk of getting Multinational network cohort study from Australia, France, Germany, Japan, Netherlands, Spain, the UK and the USA reports background incidence of mean and the t 66% of prevented were prevented were prevented that 66% of prevented were pr
SymptomateSolution infection under (equivalent to 0.149% of population infected over 2 months). High – similar to Europe in January 2021 (equivalent to 1.920% of population infected over 2 months). Also included transmission scenarios equivalent to: zero transmission; 1%, 2%, 5% and 10% chance of infection over 2 months. Chance of infection over 2 months calculated for different levels of community transmission. See Table S4 for final assumptions.Risk of dying from COVID- 19COVID-19 cases reported in Australia from January 2020 to 18/11/2021 were used to provide estimates of age-sex-specific case fatality rates. Data sourced from Australian NINDSS [24]. To convert reported age groups into those used in our model, calculations were based on age distribution of the Australian population [26]. See Table S5 for final assumptions.Risk of getting Risk of gettingMultinational network cohort study from Australia, France, Germany, Japan, Netherlands, Spain, the UK and the USA reports background incidence of mucearditic and population [26]. See Table S5 for final assumptions.
current transmission and vaccinationover 2 months). Also included transmission scenarios equivalent to: zero transmission; 1%, 2%, 5% and 10% chance of infection over 2 months. Chance of infection over 2 months calculated for different levels of community transmission. See Table S4 for final assumptions. Chance of infection over 2 months calculated for different levels of community transmission. See Table S4 for final assumptions.Risk of dying from COVID- 19COVID-19 cases reported in Australia from January 2020 to 18/11/2021 were used to provide estimates of age-sex-specific case fatality rates. Data sourced from Australian NINDSS [24]. To convert reported age groups into those used in our model, calculations were based on age distribution of the Australian population [26]. See Table S5 for final assumptions.Risk of getting hast of getting hast of gettingMultinational network cohort study from Australia, France, Germany, Japan, Netherlands, Spain, the UK and the USA reports background incidence of the user divide user 100 000 represented on the user provide det 65% of any or to device divide user divid
transmission and vaccination statusChance of infection over 2 months calculated for different levels of community transmission. See Table S4 for final assumptions.Risk of dying from COVID- 19COVID-19 cases reported in Australia from January 2020 to 18/11/2021 were used to provide estimates of age-sex-specific case fatality rates. Data sourced from Australian NINDSS [24]. To convert reported age groups into those used in our model, calculations were based on age distribution of the Australian population [26]. See Table S5 for final assumptions.Risk of getting height convert reported age groups into those used in our model, calculations were based on age distribution of the Australian population [26]. See Table S5 for final assumptions.Risk of getting height convert reported age groups on a convert study from Australia, France, Germany, Japan, Netherlands, Spain, the UK and the USA reports background incidence of the convert reported age groups are 100 0000 represented age groups are presented as a sumption.
and vaccination status Risk of dying from COVID-19 cases reported in Australia from January 2020 to 18/11/2021 were used to provide estimates of age-sex-specific case fatality rates. Data sourced from Australian NINDSS [24]. To convert reported age groups into those used in our model, calculations were based on age distribution of the Australian population [26]. See Table S5 for final assumptions. Risk of getting Multinational network cohort study from Australia, France, Germany, Japan, Netherlands, Spain, the UK and the USA reports background incidence of the approximate of age and population [26]. See Table S5 for final assumptions.
statusRisk of dying from COVID-from COVID-19Risk of getting Risk of gettingRisk of getting (heducreum)Multinational network cohort study from Australia, France, Germany, Japan, Netherlands, Spain, the UK and the USA reports background incidence of (heducreum)Risk of gettingMultinational network cohort study from Australia, France, Germany, Japan, Netherlands, Spain, the UK and the USA reports background incidence of (heducreum)
Risk of dying from COVID- 19COVID-19 cases reported in Australia from January 2020 to 18/11/2021 were used to provide estimates of age-sex-specific case fatality rates. Data sourced from Australian NINDSS [24]. To convert reported age groups into those used in our model, calculations were based on age distribution of the Australian population [26]. See Table S5 for final assumptions.Risk of getting (healwareward)Multinational network cohort study from Australia, France, Germany, Japan, Netherlands, Spain, the UK and the USA reports background incidence of muncarditie and population [26]. See Table S5 for final assumptions.
from COVID- 19sourced from Australian NINDSS [24]. To convert reported age groups into those used in our model, calculations were based on age distribution of the Australian population [26]. See Table S5 for final assumptions.Risk of getting (healersound)Multinational network cohort study from Australia, France, Germany, Japan, Netherlands, Spain, the UK and the USA reports background incidence of muccorditie and pericorditie and pericordities
19 Australian population [26]. See Table S5 for final assumptions. Risk of getting Multinational network cohort study from Australia, France, Germany, Japan, Netherlands, Spain, the UK and the USA reports background incidence of (healwarewal) muscarditic and nericorditic and 100 000 person users hu are small and an [27]. We commod that 65% of any study muscarditic and pericorditic and p
Risk of getting Multinational network conort study from Australia, France, Germany, Japan, Netherlands, Spain, the UK and the USA reports background incidence of
(background) myocarditis and pericardius per 100,000 person-years by age group and sex [27]. We assumed that 05% of reported invopericardius cases were myocarditis haved on proportions from other studies that differentiate between them post-vaccination [28, 29]. We converted incidence to probability
of infection per person over 2 months. To convert reported age groups into those used in the model, calculations were based on age distribution of the
Australian population [26]. See Table S6 for final assumptions.
Risk of dving Study reports incidence of fatal myocarditis in Finland per 100,000 person-years by age group and sex as total risk [30], but not as case fatality rate.
from We converted incidence per 100,000 person-years to probability per person over 2 months (in the general population), then used these values for each
(background) age-sex subgroup as the numerator and the respective values for node 'Risk of getting (background) myocarditis' as the denominator to calculate case
myocarditis fatality rate. When converting reported age groups to the age groups used in our model, calculations were based on the age distribution of the
Australian population [26]. See Table S6 for final assumptions.
Risk of getting Therapeutic Goods Administration (TGA) reports rates of myocarditis from the Pfizer vaccine per 100,000 doses in Australia, from all doses and
Pfizer vaccine- second doses [31]. From this we calculated rates from first doses. At the time of writing, the only data available for the third dose in Australia cited
associated four reports of likely myocarditis from a third dose of Pfizer up to 09/01/2022 with 3,651,855 third doses given nationally up to that date (with no
myocarditis breakdown of proportion of doses by brand). As this information is very limited, we assumed the same rate of vaccine-associated myocarditis as the
second dose. This assumption was based on data from Istael reporting that fates of Pfizer vaccine-induced invocations from the unit dose was inglier than after the first dose but lower than after the second dose [32]. To provide a conservative estimate and avoid underestimating the potential risk of
myocarditis after the third dose, we assumed the same rates as the second dose, i.e. the 'worst case scenario'. See Table S7 for final assumptions.
Risk of dving Case fatality rate from mRNA vaccine-associated mvocarditis has not been reported widely, in part due to very low numbers. Data from USA Centers
from Pfizer for Disease Control and Prevention (CDC) Vaccine Adverse Event Reporting System (VAERS) [33]. Reported 1195 myocarditis cases after mRNA
vaccine- vaccination (dose number not specified) in those aged under 30 years, of which two likely died from myocarditis, giving a case fatality rate of 0.17%
associated (2/1195). We assumed the same case fatality rate for Pfizer and other mRNA COVID-19 vaccines, and the same case fatality rate in those aged \geq 30

myocarditis	years.
Risk of getting SARS-CoV-2 infection- induced	Study reports that 5.0% of patients with COVID-19 developed new-onset myocarditis [34] based on electronic medical records in TriNetX, a global federated health research network. Published data were insufficient to stratify by age and sex. Age-sex breakdown of the patient cohort with COVID-19 and related myocarditis cases were provided by the authors through personal communication. Data from the original patient cohort in the study were no longer available: the patient data provided through personal communication was from an updated cohort and showed a lower total prevalence of
myocarditis	myocarditis (~2.3%). See Table S8 for final assumptions.
Risk of dying from SARS- CoV-2 infection- induced myocarditis	Study reports a six-month all-cause mortality of 3.9% in COVID-19 patients with myocarditis, assuming that deaths were attributable to myocarditis [34]. Published data were insufficient to stratify by age and sex. Age-sex breakdown of the myocarditis cases and deaths were provided by the authors through personal communication. Data provided through personal communication were based on electronic medical records in TriNetX, reported with patient counts ≥ 10 rounded up to 10 to safeguard protected healthcare data. The case fatality rate for age-sex subgroups with 10 deaths was thus assumed to be <1.00\%, with a value of 1.00\% used in the model to assume the worst-case scenario. For males aged 12-19 and 20-29 years, there were zero deaths out of 152 and 661 cases of myocarditis, respectively. To avoid using a 0% case fatality rate in the model, we assumed that 12-19 and 20-29 year old males had the same case fatality rate as 30-39 year old males (1.00%). We believe this is a reasonable assumption because in females there was no significant difference in case fatality rate between ages 12-19 and 20-29 years. See Table S8 for final assumptions.
Prior	
Age distribution of population	Distribution based on Australian Bureau of Statistics national population estimates from September 2021 [26]. See Table S9 for final assumptions. Note age group 0-11 years was excluded from this version of the model because they were not yet eligible for vaccination in Australia at time of writing. This age group can be added into the model when vaccine coverage increases and data on vaccine effectiveness become available.
Sex distribution of population	Assumed 50% male, 50% female.
Pfizer vaccine coverage in population*	Assumed 5% had no doses, 5% had one dose only, 60% had two doses only, 30% had three doses for ages \geq 12 years. These approximations were based on vaccine coverage data from Australian Government Department of Health COVID-19 vaccination data on 3 Jan 2022 [35], and our estimates of how coverage will increase over the coming months.
Community transmission at x% over 2	Chance of infection $(x\%)$ over 2 months, based on different levels of community transmission. Priors set to even distribution between categories, assuming that community transmission level will be selected when using the CoRiCal tool or running public health-level scenario analyses. See explanation above under 'Risk of symptomatic infection under current transmission and vaccination status'.
*Note that prior d	istributions do not affect results of scenario analysis but anables the model to provide population level estimates. Assumptions can be changed as the situat

*Note that prior distributions do not affect results of scenario analysis but enables the model to provide population-level estimates. Assumptions can be changed as the situation evolves.

Node name (number)	Description	Potential values	Node type	Parent nodes	Child nodes
Pfizer vaccine dose & time since dose 2 (n1)	Vaccine dose number	None, 1^{st} dose (<3 weeks ago), 2^{nd} dose (last dose 0 to <2 months ago), 2^{nd} dose (last dose 2 to <4 months ago), 2^{nd} dose (last dose 4 to <6 months ago), 3^{rd} dose	Input	Age group (n2)	n5, n7, n8
Age group (n2)	Age group (years)	12-19, 20-29,30-39, 40-49, 50-59, 60-69, ≥70	Input	N/A – Default priors: population distribution of Australia by age	n1, n5-9, n11, n13-15
Sex (n3)	Sex	Male, female	Input	N/A – Defaults to uniform distribution	n5, n6, n9, de n11, n13-15 a
Community transmission at x% over 2 months (n4)	Probability of infection over 2 months based on different levels of community transmission	None, ATAGI definitions of low, med, high, 1%, 2%, 5%, 10%	Input	N/A – Defaults set to uniform distribution	n10 able unc
Vaccine-associated myocarditis (n5)	Probability of developing myocarditis from the Pfizer COVID-19 vaccine	Yes, no	Intermediate	Pfizer vaccine dose & time since dose 2 (n1), Age group (n2), Sex (n3)	n12 er a
Background myocarditis over 2 months (n6)	Probability of developing myocarditis over 2 months (background rate in those who have not had vaccine or infection)	Yes, no	Outcome	Age group (n2), Sex (n3)	n13 HR
Vaccine effectiveness against symptomatic infection (n7)	Effectiveness of the vaccine at preventing symptomatic SARS-CoV-2 infection	Effective, ineffective	Intermediate	Pfizer vaccine dose & time since dose 2 (n1), Age group (n2)	n10 0
Vaccine effectiveness against death (n8)	Effectiveness of the vaccine at preventing deaths from symptomatic SARS-CoV-2 infection	Effective, ineffective	Intermediate	Pfizer vaccine dose & time since dose 2 (n1), Age group (n2)	n14 Internation
Relative risk of symptomatic infection by age and sex (n9)	Relative risk of symptomatic SARS-CoV-2 infection depending on age and sex	Yes, no	Intermediate	Age group (n2), Sex (n3)	n10 al
Risk of symptomatic infection under current transmission and vaccination status (n10)	Probability of symptomatic COVID-19	Yes, no	Intermediate	Community transmission at x% over 2 months (n4), Vaccine effectiveness against symptomatic infection (n7), Relative risk of symptomatic infection by age and sex (n9)	n11, n14 8
Myocarditis from COVID-19 (n11)	Probability of developing myocarditis related to SARS-CoV-2 infection	Yes, no	Intermediate	Age group (n2), Sex (n3), Risk of symptomatic infection under current transmission and vaccination status (n10)	n15
Die from vaccine-associated myocarditis (n12)	Probability of dying from COVID-19 vaccine-associated myocarditis	Yes, no	Outcome	Vaccine-associated myocarditis (n5)	N/A

Table 2. Summary of nodes and relationships between nodes in a Bayesian network for assessing risks versus benefits of the Pfizer COVID-19 vaccine.

Die from myocarditis (background) (n13)	Probability of dying from myocarditis (background rate in those who have not had	Yes, no	Outcome	Age group (n2), Sex (n3), Background myocarditis over 2 months (n6)	N/A
	infection)				
Die from COVID-19 (n14)	Probability of dying from COVID-19	Yes, no	Outcome	Age group (n2), Sex (n3), Vaccine effectiveness against death (n8), Risk of symptomatic infection under current transmission and vaccination status (n10)	N/A
Die from COVID-19-related myocarditis (n15)	Probability of dying from COVID-19- related myocarditis	Yes, no	Outcome	Age group (n2), Sex (n3), Myocarditis from COVID-19 (n11)	N/A

ATAGI: Australian Technical Advisory Group on Immunisation.

Age group (years)	Estimated incidence of myocarditis per million 2 nd doses ^a			Estimated deaths per million 2 nd doses based on 0.34% CFR ^b			Difference in estimated cases per million 2 nd doses compared to 14/10/21		Difference in estimated deaths per million 2 nd doses compared to 14/10/21			
	14/10/21		09/	12/21	14/10/21 09		09/	12/21	09/1	2/21	09/12/21	
	Male	Female	Male	Female	Male	Female	Male	Female	Male	Female	Male	Female
12-19	75	14	103	25	0.128	0.024	0.175	0.043	28	11	0.048	0.019
20-29	22	12	59	19	0.037	0.020	0.100	0.032	37	7	0.063	0.012
30-39	6	3	15	6	0.010	0.005	0.026	0.010	9	3	0.015	0.005
40-49	10	10	11	9	0.017	0.017	0.019	0.015	1	1	0.002	0.002
50-59	3	3	1	4	0.005	0.005	0.002	0.007	2	1	0.003	0.002
60-69	0	0	0	0	0	0	0	0	0	0	0	0
≥70	0	0	0	0	0	0	0	0	0	0	0	0

Table 3. Evolving evidence on incidence of Pfizer vaccine-associated myocarditis by age and sex in Australia in October-December 2021.

^aIncidence of myocarditis in Australia reported by Therapeutic Goods Administration (TGA). [31]

^bCFR: Case fatality rate for all ages combined, calculated to be 0.17%, from [33].

	Current	If 5% less	If 10% less	
	model	effective	effective	
	assumptions			
Average vaccine effectiveness for all ages ≥12				
against symptomatic infection after				
1 st dose (<3 weeks ago)	51.5%	46.5%	41.5%	
2^{nd} dose (last dose 0-<2 months ago)	85.3%	80.3%	75.3%	
2 nd dose (last dose 2-<4 months ago)	72.1%	67.1%	62.1%	
2^{nd} dose (last dose 4-<6 months ago)	52.6%	47.6%	42.6%	
3 rd dose	95.4%	90.4%	85.4%	
% Increase in estimated symptomatic cases				
compared to current model assumptions of	N/A	17.7%	35.4%	
vaccine effectiveness				
Average vaccine effectiveness for all ages ≥12				
against death after				
1 st dose (<3 weeks ago)	85.1%	80.1%	75.1%	
2^{nd} dose (last dose 0-<2 months ago)	98.0%	93.0%	88.0%	
2 nd dose (last dose 2-<4 months ago)	95.2%	90.2%	85.2%	
2 nd dose (last dose 4-<6 months ago)	91.8%	86.8%	81.8%	
3 rd dose	98.0%	93.0%	88.0%	
% Increase in estimated deaths compared to				
current model assumptions of vaccine	N/A	23.8%	54.9%	
effectiveness				

Table 4. Impact of theoretical reduction in vaccine effectiveness against delta variant on estimated deaths, assuming 5% of population is unvaccinated, 5% had one dose, 60% had two doses and 30% had three doses.