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Abstract 

Objective: Polygenic scores (PGS) are widely used in psychiatric genetic associations studies 

due to their impressive power to predict focal outcomes. However, they lack in discriminatory 

power, in part due to the high degree of genetic overlap between psychiatric disorders. The lack 

of prediction specificity limits the clinical utility of psychiatric PGS, particularly for diagnostic 

applications. The goal of the study was to enhance the discriminatory power of psychiatric PGS 

for two highly comorbid and genetically correlated neurodevelopmental disorders in ADHD and 

autism spectrum disorder (ASD). Methods: Genomic structural equation modeling 

(GenomicSEM) was used to generate novel PGS for ADHD and ASD by accounting for the 

genetic overlap between these disorders (and eight others) to achieve greater discriminatory 

power in non-focal outcome predictions. PGS associations were tested in two large independent 

samples – the Philadelphia Neurodevelopmental Cohort (N=4,789) and the Simons Foundation 

Powering Autism Research for Knowledge (SPARK) ASD and sibling controls (N=5,045) 

cohort. Results: PGS from GenomicSEM achieved superior discriminatory power in terms of 

showing significantly attenuated associations with non-focal outcomes relative to traditionally 

computed PGS for these disorders. Additionally, genetic correlations between GenomicSEM 

PGS for ASD and ADHD were significantly attenuated in cross-trait associations with other 

psychiatric disorders and outcomes. Conclusions: Psychiatric PGS associations are likely 

inflated by the high degree of genetic overlap between the psychiatric disorders. Methods such as 

GenomicSEM can be used to refine PGS signals to be more disorder-specific, thereby enhancing 

their discriminatory power for future diagnostic applications.   
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Psychiatric disorders all have polygenic bases by which numerous DNA variants of 

individually small effects contribute to their etiologies (1). However, gene identification efforts 

via genome wide association studies (GWAS) are likely confounded by the fact that psychiatric 

disorders also feature a high degree of genetic overlap (2). That is, some genes that were 

previously identified in univariate psychiatric GWAS may not be unique to the disorder, but in 

fact be contributing to pleiotropy (3,4). Despite this likely confound, single-disorder polygenic 

scores (PGS) remain widely employed in genetic association studies due to their impressive 

power to predict focal outcomes. Yet, these advantages are offset by their lack of discriminatory 

power as they also tend to be associated with a myriad of non-focal outcomes as well. For 

example, PGS for attention-deficit/hyperactivity disorder (ADHD) are not only predictive of 

ADHD (5), but they also predict major depression (6), autism spectrum disorder (ASD) (7), 

substance use disorders (8), and conduct problems (9). Improving the discriminatory power of 

PGS is critical if they are to be employed in diagnostic applications (10).  

This limitation can be addressed by modeling the genetic components of a single disorder 

via GWAS summary statistics simultaneously with other psychiatric disorders to produce a 

genetic covariance matrix, using an approach called Genomic Structural Equation Modeling 

(GenomicSEM) (3). Phenotypically, this model is referred to as the Hierarchical Taxonomy of 

Psychopathology (HiTOP) (11), in which distinct higher order dimensions capture the etiological 

commonalities between discrete disorders that tend to cluster (i.e., correlate) together. These 

include internalizing (e.g., depression, anxiety), externalizing (e.g., attention and behavioral 

disorders), thought (e.g., schizophrenia, bipolar disorder), and neurodevelopmental (e.g., ASD, 

ADHD) dimensions. Genetically-informed studies using GWAS summary statistics have 

uncovered a similar hierarchical structure (2,3,12).  With this approach, genetically unique 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 10, 2022. ; https://doi.org/10.1101/2022.02.09.22270697doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.09.22270697
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 
 

components (i.e., residuals) can be estimated separately from the genetic components that 

contribute to pleiotropy. PGS can then be weighted by the residual genetic components which 

are disorder specific and thus, more discriminative in their predictive performance relative to 

traditionally computed PGS. 

For this investigation, we focused on enhancing the discriminatory power of PGS for 

ADHD and ASD specifically. ADHD and ASD are classified as neurodevelopmental disorders 

(13), where ADHD is characterized by deficits in the inattention and/or hyperactivity/impulsivity 

domains, and ASD is characterized by deficits in social communication and interaction skills and 

impairing restrictive or repetitive behaviors. These disorders are challenging to study in tandem, 

as not only do their clinical presentations overlap considerably, resulting in a high rate of co-

morbidity (14),  but they are also genetically correlated with one another (15). ADHD and ASD 

PGS are also associated with a myriad of other phenotypes, and thus should provide a proof-of-

concept for the utility of GenomicSEM to enhance discriminatory power for other psychiatric 

PGS more broadly. Finally, there is a critical need to identify differentiated risk factors for 

ADHD and ASD given that the appropriate early intervention for this population depends on a 

precise diagnosis.  

Method 

GWAS Summary Statistics 

In order to identify the genomic structure for multiple psychiatric disorders, we used 

GWAS summary statistics for 10 disorders via the Psychiatric Genomics Consortium and other 

genetic repositories: ADHD (16), anorexia (AN) (17), anxiety disorders (ANX) (18,19), ASD 

(15), bipolar disorder (BIP) (20), major depressive disorder (MDD) (21), obsessive compulsive 

disorder (OCD) (22), post-traumatic stress disorder (PTSD) (23,24), schizophrenia (SCZ) (25), 
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and Tourette syndrome (TS) (26). Details for each GWAS are provided in Table S1. The current 

investigation prioritized GWAS for those of European ancestry, given that most discovery 

samples are based on individuals of European ancestry and concerns have been raised about the 

generalizability of PGS associations in non-European ancestries (10). Following precedent (4), in 

cases where more than one GWAS was conducted for a disorder, a meta-analysis of the summary 

statistics was conducted in GenomicSEM while also accounting for overlapping samples.  

Target Samples  

Two independent samples were used to examine associations between PGS and focal 

(ADHD and ASD) versus non-focal (non-ADHD or ASD) outcomes.  

The Philadelphia Neurodevelopmental Cohort (PNC) is a population-based dataset of 

children, adolescents, and young adults (ages 8-21) with data on psychiatric disorders, medical 

history, neuroimaging, genetics, and neurocognition. Participants were recruited in the greater 

Philadelphia, Pennsylvania area between November 2009 to December 2011. Additional 

information of this study are detailed elsewhere (27). Individuals of European ancestry with both 

genotypic and phenotypic data were included in the analyses (N=4,789). Psychiatric disorders 

were assessed using a semi-structured, computerized clinical interview adapted from the Kiddie 

Schedule for Affective Disorders and Schizophrenia (K-SADS). The interview was administered 

to the caregivers or legal guardians (i.e., collaterals) of participants aged 8 to 10, participants and 

collaterals who were ages 11 to 17, and the participants themselves if they were between the ages 

of 18 to 21. To minimize reporter inconsistency between the age groups, we used data from 

collaterals for participants between 8 to 17 years of age, and from self-report for those older than 

18. For our PGS analyses, we analyzed the number of symptoms for the following disorders: 

MDD, manic episodes (MAN), generalized anxiety disorder (GAD), social anxiety disorder 
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(SOC), separation anxiety disorder (SEP), specific phobias (PHB), agoraphobia (AGR), panic 

disorder (PAN), AN, ADHD, oppositional defiant disorder (ODD), conduct disorder (CDD), 

OCD, and psychosis (PSY) (Table S2).  

The Simons Foundation Powering Autism Research for Knowledge (SPARK) is 

comprised of individuals with a diagnosis of ASD, their biological parents, and an unaffected 

sibling from 31 sites in the United States. A total of 251,082 individuals were recruited, 

including 84,005 ASD individuals under the age of 18. Additional information for this study is 

available here (28). Two subgroups were examined for our analyses – ASD probands and sibling 

controls. ASD probands were individuals under the age of 18 with a diagnosis of ASD that also 

had no affected siblings in the sample (n=3,248, mean age=8.27, S.D.=4.05). Controls were 

under the age of 18 without an ASD diagnosis and had a sibling who was enrolled as an ASD 

proband (n=1,797, mean age =8.10, S.D.=4.50) (see Tables S3-S4). These restrictions accounted 

for the impact of genetic relatedness among individuals in our analyses. Psychiatric disorders 

were assessed via a medical screening questionnaire, including for ADHD, ODD, CDD, ANX, 

BIP, MDD, OCD, SCZ, learning disability (LD), intellectual disability (ID) and TS. ASD 

outcomes were assessed via parent-reported measures for the two dimensions of ASD: the 

Repetitive Behavior Scale-Revised (RBSR) (29) and the Social Communication Questionnaire 

(SCQ) (29). Total scores for the RBSR and SCQ were treated as separate outcomes. 

GenomicSEM and PGS Computations 

GenomicSEM calculates the genetic covariance among multiple disorders using GWAS 

summary statistics, and accounts for any sample overlap across studies via linkage 

disequilibrium (LD) score regression (30). To identify an optimal GenomicSEM model, we first 

performed an exploratory factor analysis (EFA) with each available GWAS summary statistic. 
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The genetic covariance matrix was calculated using LD score regression and was used as the 

input for EFA. EFA models ranged from 2-5 factors with oblique rotations. Following the 

identification of an optimal EFA factor structure (based on eigenvalues >1), we specified 

confirmatory factor analysis (CFA) models based on the EFA loading patterns and assessed 

model fit using standard fit indices. After an optimal CFA GenomicSEM model was identified, 

we then estimated each SNP’s association with ADHD and ASD simultaneously, independent of 

its associations with the latent factors (i.e., adding “SNP edges” to the GenomicSEM model). 

This model tested for three additional paths of association for each SNP, where SNP associations 

are generated for each estimated path.  

Two versions of ADHD and ASD PGS were computed in our association analyses: 1) 

“traditional” PGS, which used univariate summary statistics for ADHD and ASD respectively, 

and 2) “disorder-specific” PGS, computed using summary statistics from our GenomicSEM 

analysis. A third PGS was computed from GenomicSEM genetic effects estimated for the latent 

genetic dimension that included ASD and ADHD. In sum, we generated a total of five separate 

PGS. We used PLINK (31) to clump the GWAS summary statistics using the CEU samples in 

1000 Genome Project Phase III cohort (32) as the LD reference panel. We then specified an LD 

window size of 1000 kb and a LD threshold of 0.1 for clumping. PGS association analyses 

covaried for biological sex, age, and the first 10 genetic principal components (PCs). All PGS 

were standardized to a mean of 0 and a variance of 1. 

Results 

Model Fitting and GenomicSEM  

Factor loadings and eigenvalues for the EFA 2-5 factor genetic models are provided in 

Tables S5-S8. CFA models were tested based on what was observed in the EFA factor loadings, 
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thus allowing the data to guide our final model selection in GenomicSEM.  CFA models were 

specified where EFA loadings onto factor dimensions were above .30. For disorders that had no 

EFA loadings above .30, we specified the disorder to load onto the factor with the highest 

loading. Five different CFA models were tested, ranging from a unidimensional to a 5-factor 

model (Table S9). The 3-factor model exhibited the best fit among the five models 

(AIC=343.091, CFI=.935, SRMR=.101), and the loadings were interpretable. Following 

empirical precedent (2), and further supported by findings from our EFA model, the optimal 

GenomicSEM model was one in which ANX, MDD, PTSD, and AN loaded on an Internalizing 

factor, SCZ, BIP, and OCD on to a Thought Disorders factor, and ADHD, ASD, PTSD, and TS 

on to a Neurodevelopmental factor (Figure 1).  

From this model, SNP effects were estimated for ADHD, ASD and the 

Neurodevelopmental latent factor in GenomicSEM. Manhattan and QQ plots for the 

GenomicSEM ADHD GWAS, GenomicSEM ASD GWAS and the Neurodevelopmental GWAS 

are provided in Figure S1. A list of the top SNP associations for each GWAS is provided in 

Tables S10-S12.  Briefly, no SNP in the GenomicSEM ADHD GWAS reached threshold for 

genome-wide significance (p < 5 x 10-8). Only a single SNP – SOX7 (rs10099100) – reached 

significance in the GenomicSEM ASD GWAS.  Notably, rs10099100 was also one of five loci 

identified in the univariate ASD GWAS (15). In contrast, 19 independent loci were detected in 

the Neurodevelopmental GenomicSEM GWAS. The strongest SNP associations were near genes 

previously identified for neuronal development and neurodevelopmental disorders, including 

PAPPA2 (rs147036913) (33), SEMA6D (rs35175834) (34), PDE4B (rs10789205) (35), and 

CSMD1 (rs7830752) (36).  

Genetic Correlations 
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 Figure 2A shows the genetic correlations of the PGS models with the 8 other GWAS 

summary statistics for psychiatric disorders. Figure 2B shows genetic correlations of the same 

PGS models with 17 GWAS of additional complex traits and diseases (also see Table S16 for 

effect sizes). Genetic correlations were robustly attenuated when comparing traditional PGS 

models to the GenomicSEM-tuned PGS models.  

PGS Associations with Focal (ADHD and ASD) Outcomes  

PNC. First, we examined ADHD PGS associations with ADHD in a population-based 

sample in PNC (Table S13; Figure 3A). We expected all three PGS associations (traditional 

ADHD, GenomicSEM ADHD, and Neurodevelopmental) to be predictive of ADHD, with the 

GenomicSEM ADHD PGS having a weaker effect size compared to the traditional ADHD PGS. 

Indeed, all three PGS associations with ADHD were statistically significant: ADHD PGS 

(B=.332, se=.042, p.fdr<.001, r2=.012), GenomicSEM ADHD PGS (B=.207 se=.042, p.fdr<.001, 

r2=.005) and the Neurodevelopmental PGS (B=.147, se=.047, p.fdr<.001, r2=.002), with the 

GenomicSEM ADHD PGS showing an attenuated r2 relative to the ADHD PGS (Δr2=.007).  

Then, we examined the traditional ASD PGS, GenomicSEM ASD PGS, and 

Neurodevelopmental PGS associations with ASD (Table S13; Figure 4A). Notably, both the 

traditional ASD and GenomicSEM ASD PGS associations were significant: ASD PGS (B=.359, 

se=.084, p.fdr<.001, r2=.005) and GenomicSEM ASD PGS (B=.301, se=.082, p.fdr<.001, 

r2=.004). The GenomicSEM ASD PGS showed an attenuated r2 (Δr2=.001). 

SPARK. Among SPARK probands, we expected the GenomicSEM ADHD PGS to show 

little to no prediction for ADHD given that this PGS was tuned to predict ADHD alone, rather 

than comorbidity (i.e., ASD + ADHD). Indeed, the traditional ADHD PGS was associated with 

ADHD (B=.045, se=.012, p.fdr=.003, r2=.004) (Table S14; Figure 3B) whereas the 
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GenomicSEM ADHD PGS showed no association (B=-.001, se=.023, p.fdr=.992, r2=0).  The 

Neurodevelopmental PGS was associated with ADHD status (B=.111, se=.034, p.fdr=.012, 

r2=.003). In other words, the GenomicSEM ADHD PGS demonstrated good discriminatory 

power within the ASD clinical sample, whereas the Neurodevelopmental PGS successfully 

predicted co-occurring status (i.e., ADHD + ASD).  

We then examined the association of traditional ASD PGS, GenomicSEM ASD PGS, and 

the Neurodevelopmental PGS with RBSR and SCQ scores (i.e., ASD phenotypes) (Table S14, 

Figure 4B). The traditional ASD PGS was associated with the SCQ total score (B=.104, se=.036, 

p.fdr=.027, r2=.002), while no other PGS association was significant. Neither the traditional 

ADHD PGS, GenomicSEM ADHD PGS, nor the Neurodevelopmental PGS were associated 

with ADHD in SPARK controls (Table S15, Figure 3C). Similarly, the ASD PGS, GenomicSEM 

ASD PGS and the Neurodevelopmental PGS were not associated with ASD in SPARK controls 

(Table S15, Figure 4C).  

PGS Associations with Non-Focal Outcomes  

PNC. Next, we tested the association of ADHD PGS and GenomicSEM ADHD PGS 

with non-focal outcomes in PNC (Table S13, Figure 3A). We expected ADHD PGS to 

demonstrate association signals across the psychiatric disorders, reflecting its genetic overlap 

with non-focal psychiatric disorders. GenomicSEM ADHD PGS should show attenuated or null 

prediction signals with non-focal psychiatric outcomes. For ease of interpretation, we report the 

number of significant (FDR corrected) associations that emerged, as individual effect sizes for all 

associations are reported in the supplemental tables.  

The traditional ADHD PGS was not only associated with ADHD, but also for ODD, 

CDD, MDD, AN, MAN, and PSY (6 out of 14 outcomes, not including ADHD). In contrast, 
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GenomicSEM ADHD PGS was only associated with ODD, CDD, and SOC (3 out of 14 

outcomes). Associations between GenomicSEM ADHD PGS and ODD and CDD were 

attenuated compared to the models with ADHD PGS (Δr2 = .008 and .001, respectively).  

Next, we tested the discriminative performance of the traditional ASD PGS, 

GenomicSEM ASD PGS and the Neurodevelopmental PGS with non-focal (i.e., non-ASD) 

outcomes in PNC (Table S13, Figure 4A). The traditional ASD PGS was not only associated 

with ASD, but also for ADHD, ODD, AGR, AN, OCD, and PSY (6 out of 14 outcomes). 

Impressively, GenomicSEM ASD PGS was not associated with any non-focal outcomes (0 out of 

14 outcomes), with the only signal emerging for ASD.  

Not surprisingly, the Neurodevelopmental PGS was associated with half of the outcomes, 

including ODD, GAD, MDD, AN, MAN, OCD, and PSY (7 out of 14 outcomes) (Table S13). 

SPARK. First, we examined the discriminatory performance of the traditional ADHD 

PGS and GenomicSEM ADHD PGS with non-focal outcomes in SPARK probands (Table S14, 

Figure 3B). ADHD PGS was associated with three non-ADHD outcomes – ODD, BIP, and the 

RBSR total score (3 out of 11 outcomes). GenomicSEM ADHD PGS was not associated with 

any of the non-ADHD outcome.  

Next, we tested the discriminatory performance of the traditional ASD PGS and 

GenomicSEM ASD PGS with non-ASD outcomes. Again, as this subsample is entirely 

comprised of ASD cases, we did not expect the GenomicSEM ASD PGS to be free of non-focal 

associations as any residual GenomicSEM ASD PGS association may be reflective of ASD 

caseness. Indeed, the traditional ASD PGS was not associated with any non-focal outcome, 

whereas the GenomicSEM ASD PGS was associated with two non-ASD outcomes – ADHD and 

BIP (Table S14, Figure 4B).  
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In the SPARK controls, several outcomes exhibited low prevalence rates which resulted 

in model fitting errors (CDD, ODD, ID, BIP, TIC had lower than 1% prevalence). Additionally, 

the RBSR was not administered for control participants. ADHD PGS, ASD PGS, GenomicSEM 

ADHD PGS, GenomicSEM ASD PGS and the Neurodevelopmental PGS were not significantly 

associated with any of the disorders or traits (Table S15, Figures 3C and 4C). 

Discussion 

 Psychiatric PGS offer impressive predictive power but they suffer from poor 

discriminatory power. In this study, we used GenomicSEM to derive novel PGS for ADHD and 

ASD that provided superior discriminatory power for non-focal outcomes relative to traditionally 

computed PGS for these disorders. Moreover, a Neurodevelopmental PGS from GenomicSEM 

predicted genetically correlated multivariate phenotypes (i.e., co-occurring ADHD and ASD) 

across samples. This approach has clear clinical implications, as PGS that have better 

discriminative properties can be useful for psychiatric screening and diagnostic applications 

down the line.  

 Traditionally computed PGS for ADHD and ASD may be overgeneralized, as evidenced 

by their high degree of genetic correlation with other complex traits, as well as the inflated r2 for 

both focal and non-focal outcomes across two independent datasets. After we accounted for 

genetic covariation in GenomicSEM, the genetic correlations between ASD and ADHD with 

other psychiatric and complex traits were significantly attenuated. Additionally, no genome-wide 

significant variants were identified in the GenomicSEM ADHD GWAS, while only a single 

variant was detected in the GenomicSEM ASD GWAS. As a comparison, the ADHD GWAS 

conducted by the Psychiatric Genomics Consortium yielded 12 significant loci, whereas the ASD 

GWAS yielded five. Furthermore, the GenomicSEM GWAS for the Neurodevelopmental 
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dimension (for which ADHD, ASD, PTSD, and TS all loaded on to) revealed 19 independent 

loci, with the top hits near genes that were identified for different disorders within this 

dimension. These findings suggest that many of the previously identified variants for ADHD 

(16) and ASD (15) are likely pleiotropic. Univariate psychiatric GWAS may not be suitable for 

identifying “genes for [psychiatric disorder]” as these GWAS often do not simultaneously assess 

for other, genetically correlated disorders in their samples. Statistical methods such as 

GenomicSEM may be suitable until psychiatric GWAS account for multiple phenotypes within 

the same discovery sample. 

 Next, we showed that GenomicSEM PGS for ADHD and ASD featured enhanced 

discriminatory power in outcome predictions, particularly in discriminating between phenotypes 

that are genetically correlated and challenging to differentiate clinically. Notably, the 

Neurodevelopmental PGS, which captures the genetic commonalities between ASD and ADHD 

via a higher order dimension, was predictive of ADHD within the ASD subgroup in SPARK. 

Thus, GenomicSEM was also useful for estimating pleiotropic genetic effects in terms of 

predicting psychiatric comorbidities (i.e., ADHD in an ASD subpopulation). Thus, one 

promising application of GenomicSEM is the uncovering of transdiagnostic etiological 

mechanisms.   

While the superior discriminatory power of the GenomicSEM ADHD PGS held across 

both the non-clinical sample in PNC and the clinical ASD sample in SPARK, GenomicSEM 

ASD PGS was only more discriminative (compared to the traditional ASD PGS) in the non-

clinical PNC sample, and not in the SPARK clinical sample. It should be noted that SPARK 

probands were entirely comprised of ASD cases such that GenomicSEM ASD PGS was highly 

unlikely to be free of non-focal associations in this subpopulation. The residual GenomicSEM 
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ASD PGS associations in the ASD sample may be reflective of ASD caseness and the relatively 

high rate of comorbidity (specifically with ADHD and BIP) within the SPARK probands.   

 This study has a few limitations. First, we limited our analyses to individuals of European 

ancestry. As noted by Martin and colleagues (10), PGS perform poorly in non-European 

populations because genetic effect sizes are trained on predominantly European-ancestry 

discovery samples. Statistical methods are just now emerging that leverage GWAS from diverse 

populations to boost the statistical power of PGS models for non-European samples (37). 

However, these applications are still limited to non-psychiatric phenotypes. Another limitation is 

that the majority of PNC and SPARK individuals were children (i.e., individuals < age 18). 

Given the potential for confounding due to mixed-informant effects (i.e., adult self-report vs. 

parent-report of children’s psychiatric disorders), as well as the limited power to detect effects in 

the adult subsamples for PNC and SPARK, we limited our PGS association analyses to children. 

The issue of whether or not psychiatric PGS models can be made to be more developmentally 

sensitive is critical to address in future studies, as emerging studies have shown that psychiatric 

PGS may be better in predicting certain trajectories of psychopathology over others (38).  

 PGS may become a critical part of clinical assessments in the not-to-distant future (10). 

However, efforts to increase GWAS sample size for the sake of improving prediction r2 likely 

come at the cost of weaker specificity in the prediction signal as well, thus limiting its diagnostic 

utility. The current study demonstrates that statistical methods, like GenomicSEM, can be used 

to improve the discriminatory power of PGS from existing GWAS for single psychiatric 

outcomes by accounting for the genetic covariance of multiple psychiatric outcomes. This 

application could prove especially useful from a clinical perspective, as easy-to-administer and 
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biologically informed assessment tools that are both sensitive and specific to the outcome are 

sorely needed.  
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Figure 1. GenomicSEM model with 10 disorders, with specific SNP effects estimated for ASD, ADHD and the Neurodevelopmental 
latent factor 
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Figure 2. Genetic correlations. Panel A (left) shows genetic correlations between ADHD (traditional vs. GenomicSEM), ASD 
(traditional vs GenomicSEM), Neurodevelopmental PGS with 8 other psychiatric disorders that were included in the GenomicSEM 
model; Panel B (right) shows genetic correlations between ADHD (traditional and GenomicSEM), ASD (traditional vs. 
GenomicSEM), Neurodevelopmental PGS with 17 other complex traits and diseases (see Table S16 for details). 
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Figure 3. r2 of the ADHD PGS versus GenomicSEM ADHD PGS in predicting focal and non-focal outcomes across populations. 
Panel A (top) shows PGS associations with 15 psychiatric disorders in PNC; Panel B (middle) shows PGS associations with 12 
psychiatric disorders or traits in SPARK probands; Panel C (bottom) shows PGS associations with 6 psychiatric disorders or traits in 
SPARK controls; ASD: autism spectrum disorder; AGR: agoraphobia; GAD: generalized anxiety disorder; OCD: obsessive 
compulsive disorder; PAN: panic disorder; SEP: separation anxiety disorder; AN: anorexia; PSY: psychosis; SOC: social anxiety 
disorder; PHB: specific phobia; MDD: major depressive disorder; MAN: mania; ODD: oppositional defiant disorder; CDD: conduct 
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disorder; ADHD: attention-deficit hyperactivity disorder; ANX: anxiety disorder; SCQ: social communication questionnaire; ID: 
intellectual disability; LD: learning disability; BIP: bipolar disorder; RBSR: repetitive behavior scale – revised. 
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Figure 4. r2 of the ASD PGS versus GenomicSEM ASD PGS in predicting focal and non-focal outcomes across populations. Panel A 
(top) shows PGS associations with 15 psychiatric disorders in PNC; Panel B (middle) shows PGS associations with 12 psychiatric 
disorders or traits in SPARK probands; Panel C (bottom) shows PGS associations with 6 psychiatric disorders or traits in SPARK 
controls; ASD: autism spectrum disorder; AGR: agoraphobia; GAD: generalized anxiety disorder; OCD: obsessive compulsive 
disorder; PAN: panic disorder; SEP: separation anxiety disorder; AN: anorexia; PSY: psychosis; SOC: social anxiety disorder; PHB:
specific phobia; MDD: major depressive disorder; MAN: mania; ODD: oppositional defiant disorder; CDD: conduct disorder; 
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ADHD: attention-deficit hyperactivity disorder; ANX: anxiety disorder; SCQ: social communication questionnaire; ID: intellectual 
disability; LD: learning disability; BIP: bipolar disorder; RBSR: repetitive behavior scale – revised. 
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