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Abstract 

Background: Large-scale genome-wide association studies have identified hundreds of 

single-nucleotide variants (SNVs) significantly associated with coronary artery disease (CAD). 

However, collectively, these explain <20% of the heritability. 

Hypothesis: Here, we hypothesize that mitochondrial (MT) SNVs might present one 

potential source of this “missing heritability”. 

Methods: We analyzed 265 MT-SNVs in ~500,000 UK Biobank individuals, exploring two 

different CAD definitions: a more stringent (myocardial infarction and/or revascularization; 

HARD=20,405), and a more inclusive (also angina and chronic ischemic heart disease; 

SOFT=34,782). 

Results: In HARD cases, the most significant (P<0.05) associations were for m.295C>T 

(control region) and m.12612A>G (ND5), found more frequently in cases (OR=1.05), 

potentially related to reduced cardiorespiratory fitness in response to exercise, as well as for 

m.12372G>A (ND5) and m.11467A>G (ND4), present more frequently in controls (OR=0.97), 

previously associated with lower ROS production rate. In SOFT cases, four MT-SNVs survived 

multiple testing correction (at FDR<5%), all potentially conferring increased CAD risk. Of 

those, m.11251A>G (ND4) and m.15452C>A (CYB) have previously shown significant 

associations with body height. In line with this, we observed that CAD cases were slightly 

less physically active and their average body height was ~2.00 cm lower compared to 
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controls, both traits known to be related to an increased CAD risk. Gene-based tests 

identified CO2 associated with HARD/SOFT CAD, whereas ND3 and CYB associated with 

SOFT cases (P<0.05), dysfunction of which has been related to MT oxidative stress, 

obesity/T2D (CO2), BMI (ND3) and angina/exercise intolerance (CYB). Finally, we observed 

that macro-haplogroup I was significantly (P<0.05) more frequent in HARD cases vs. controls 

(3.35% vs. 3.08%), potentially associated with response to exercise. 

Conclusions: We found only spurious associations between MT genome variation and 

HARD/SOFT CAD and conclude that more MT- SNV data in even larger study cohorts may be 

needed to conclusively determine the role of MT-DNA in CAD. 

1. Introduction 

Coronary artery disease (CAD) and its major complication myocardial infarction is the most 

common cardiovascular disease and the main leading cause of morbidity and mortality 

worldwide. CAD is posing a huge socio-economic burden to the society and health systems 

[65] and its prevalence is expected to increase in the coming years [29, 71, 87]. CAD is a 

multi-factorial disease with complex etiology, considered to be driven by both 

environment/lifestyle and genetic factors [22, 28, 101]. Over the last 14 years, several large-

scale genome-wide association studies and their meta-analysis have identified numerous 

common genetic variants associated with CAD risk [20, 27, 44, 77, 79, 85, 88, 96, 97, 106] 

and explored their functional consequences [1, 12, 49–51, 63, 76, 89, 102, 109]. However, 

collectively, these variants explain only a small proportion (~20%) of the disease heritability 

[20, 56]. Genetic variations of the mitochondrial (MT) DNA have remained out of focus for a 

long time and present an underexplored potential source of the “missing heritability” of 

several complex traits, including CAD [11, 45, 91]. 

The human MT-DNA is a maternally-inherited, double-stranded, circular, histone-

free “chromosome” of 16,596 base pairs (bp). Each mitochondrion contains 2 to 10 copies 

of MT-DNA and, depending on the tissue energy requirement, each human cell may contain 

hundreds of mitochondria [4]. MT-DNA encodes 37 genes corresponding to subunits ND1 to 

6 (and 4L) of respiratory complex I, catalytic subunits I-III (CO1-3) of cytochrome c oxidase 

(respiratory complex IV), subunits adenosine triphosphate 6 and 8 (ATP6 and 8) of F1F0 

ATPase and cytochrome b of respiratory complex III. The remaining genes encode 2 

ribosomal RNAs (16S and 12S rRNAs) and 22 transfer RNAs (tRNAs), used for mitochondrial 

protein synthesis [11, 92, 104]. All of them are involved in oxidative phosphorylation 

(OXPHOS), the process by which ATP, the major source of energy, is being synthesized [25, 

37, 74]. 

A toxic by-product of OXPHOS is the production of reactive oxygen species (ROS), 

unstable compounds which can generate free radicals [58]. Mitochondria are the primary 

source of endogenous ROS [58]. By antioxidant defense, cells can manage certain levels of 

free radical production. However, if threshold levels are exceeded, a state of oxidative stress 
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occurs [68], which is known to play a vital role in the pathogenesis of atherosclerosis and 

CAD [69, 102]. Many of the common CAD risk factors such as age, hypertension, 

hyperglycemia, high cholesterol levels and smoking are also known to perturb mitochondrial 

function and increase oxidative stress [11]. In particular, the lifestyle of modern societies is 

increasingly related to reduced physical activity and calorically excessive diets [21, 70], 

favoring ROS production and possibly increasing the risk of CAD [61, 82], due to 

mitochondrial dysfunction, reduced bioenergetic capacity and disrupted redox homeostasis 

[6, 67]. 

Although the role for mitochondrial dysfunction in CAD etiology is well-established, 

the role of the mitochondrial genome in this process has not been extensively investigated 

[11]. Several forms of cardiovascular disease have been related to the presence of 

pathogenic mitochondrial genome mutations. However, the vast majority of mitochondrial 

genetic variation, "natural" single nucleotide variants (SNVs) have not been directly linked to 

disease pathogenesis [11]. During evolution, a number of such MT-SNVs have accumulated 

in mitochondrial genomes subdividing the human population into several discrete 

(geographic region specific) mitochondrial phylogenetic clades or haplogroups [95]. As the 

mitochondrial genome does not undergo DNA recombination, haplogroups are relatively 

stable and enable the clustering of individuals based on their shared maternal ancestry [95]. 

These clusters are often associated with different racial/ethnic groups [11]. Considering that 

family history and race/ethnicity is known to influence CAD risk, it is reasonable to assume 

that mitochondrial haplogroups may contribute to this heritable modulator of CAD 

susceptibility [11]. 

Increasing evidence suggests that non-pathogenic "natural" MT-SNVs and 

haplogroups may be associated with alterations in mitochondrial function [11, 25, 103], 

including subtle differences in OXPHOS capacity and the generation of ROS [30, 84], thus, 

potentially influencing the onset of and differences in CAD risk of different human 

populations [11, 80]. For example, MT-SNVs m.8701A>G and m.10398A>G have been 

demonstrated to lead to lower matrix pH and alterations in intracellular calcium levels [48]. 

In addition, several other MT-SNVs have been previously identified as significantly 

associated with HDL cholesterol and triglycerides levels [34], as well as with several 

metabolic traits including insulin levels and body weight [57]. Mitochondria bearing macro-

haplogroup H-defining SNVs have been observed to possess several differences in basal 

oxygen consumption, maximal respiratory capacity and oxidant production relative to other 

European haplogroups, especially macro-haplogroup J [72] and African macro-haplogroup L 

[59]. Similarly, macro-haplogroup T has been associated with CAD and diabetic retinopathy 

in Middle European Caucasian populations [55]. On the other hand, several haplogroups in 

both Europe and Asia have been related to increased longevity, likely via reduced oxidant 

generation, which is a driver of the ageing process [16, 23]. 
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In this study, we hypothesize that mitochondrial genome variation might present a 

potential source of the “missing heritability” of CAD. To explore this hypothesis, we 

performed: (1) association analyses of common/low-frequency MT-SNVs (MAF>0.01; 

N=111) with CAD; (2) gene-based tests to investigate the cumulative impact of all MT-SNVs 

on the mitochondrial genes in relation with CAD and (3) comparisons of mitochondrial 

haplogroup frequencies of individuals with CAD. In all cases, we explored two different CAD 

definitions (as previously used by Nelson et al. [77]): a more stringent (HARD=20,405), 

considering only myocardial infarction and/or revascularization and a more inclusive 

(SOFT=34,782), including all HARD CAD cases, as well as also angina and chronic ischemic 

heart disease vs. controls in a cohort of ca. 500,000 UK Biobank individuals. The complete 

workflow of this analysis is summarized in Fig.1. 

2. Materials and Methods 

2.1. Study population, disease phenotypes and quality filtering 

The UK Biobank [13] is a large population-based prospective cohort study from the United 

Kingdom with genetic and deep phenotypic (~7,221 phenotypes http://www.nealelab.is/uk-

biobank) data on ca. 500,000 individuals aged 40 to 69. We downloaded these data 

(application ID 61684) and used similar CAD case definition, as previously described by 

Nelson et al. [77] for UK Biobank. HARD CAD cases included individuals with fatal or non-

fatal myocardial infarction (MI), percutaneous transluminal coronary angioplasty (PTCA) or 

coronary artery bypass grafting (CABG). SOFT CAD included individuals meeting the HARD 

CAD definition as well as those with chronic ischemic heart disease (IHD) and angina (Fig.1). 

In HESIN hospital episodes’ data and death registry data from diagnosis and operation 

(primary and secondary causes), MI was defined as hospital admission or cause of death due 

to ICD9 410-412, ICD10 I21-I24, I25.2; PTCA was defined as hospital admission for PTCA 

(OPCS-4 K49, K50.1, K75); CABG was defined as hospital admission for CABG (OPCS-4 K40-

K46); and angina or chronic IHD was defined as hospital admission or death due to ICD9 413, 

414.0, 414.8, 414.9, ICD10 I20, I25.1, I25.5-I25.9. In UK Biobank self-reported data, cases 

were defined as having ’vascular/heart problems diagnosed by doctor’ or ’non-cancer 

illnesses that self-reported as angina or heart attack’. Self-reported surgery included PTCA, 

CABG or triple heart bypass. All participants not defined as CAD cases using the SOFT 

definition were considered as controls in the analysis. For a complete list of definition codes, 

see Supplementary Table 1. We subsequently performed individual-level filtering (Fig.1) by 

removing missingness or heterozygosity outliers, participants with self-reported vs. 

genetically inferred sex mismatches or putative sex chromosome aneuploidy, individuals 

that were not of European (EUR) ancestry and individuals having withdrawn their consent at 

the time of analysis. We also identified closely related participants (kinship coefficient 

>0.088 i.e., first or second-degree relative pairs), preferentially retaining CAD cases or 

relative with the highest call-rate. 
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The following individual characteristics were also extracted in order to characterize 

HARD/SOFT CAD cases vs. controls: age at recruitment (field #21022), sex (field #31), BMI 

(field #21001), height (field #50), hypertension (fields #4080 and #4079 ), 

hypercholesterolemia (self-reported data and ICD9/10) and (self-reported) use of 

cholesterol lowering drugs, insulin and blood pressure medications (field #6153), type 2 

diabetes (T2D, fields #41201, #41202 and #4120, E11), glycemic control, obesity, smoking 

status (’ever smoked’: field #20160 and ’current’ from ’smoking status’ field #20116), family 

history of heart disease (fields #20107, #20110, #20111 in any first-degree relative, i.e. 

father, mother or sibling, respectively). Data at the time of first assessment were obtained 

and processed to binary (yes / no) values or mean values for fields with continuous data 

with multiple readings at the time of first assessment. The statistical tests used were Mann-

Whitney test for comparison of the continuous measures between HARD vs. SOFT cases vs. 

controls and the Chi-square test for goodness of fit, when comparing nominal/binary data in 

the same groups. 

2.2. Genotype data quality control 

In UK Biobank [13], genotyping was performed using Affymetrix UK biobank Axiom (450,000 

samples) and Affymetrix UK BiLEVE Axiom (50,000 samples) arrays (Fig.1) and the autosomal 

genetic data were then imputed to the Haplotype Reference Consortium panel and UK10K4 

+ 1000 Genomes panel. We downloaded the genotype data for the 265 MT DNA variants for 

all 500,000 individuals and pre-processed MT DNA data as previously described in ref. [57]. 

In brief, we first made sure that the reference alleles match the latest MT Cambridge 

Revised Sequence (rCRS) of the Human MT DNA positions. After setting all potential 

heterozygotes to missing, further quality control of genotyped individuals included filtering 

for missingness by individual <0.1 and missingness by SNV<0.1 with PLINK [14]. For 

common/low-frequency variant association analyses, we also required that the minor allele 

frequency (MAF)>0.01. An overview of the filtering of MT-SNVs is provided in Fig.1 

2.3. MT-SNV association analyses 

For common and low-frequency (MAF >0.01; n=111) variants, we performed single marker 

tests to explore their associations with HARD and SOFT CAD (Fig.1) using SNPTEST v2.5.4 

with the frequentist test and expected method, as previously described by ref. [9]. We used 

as covariates the array (UK Biobank vs UK BiLEVE), sex, birth year and the first five principal 

components of the autosomal genotype data, provided by the UK Biobank, similar to ref. 

[77] and Benjamini-Hochberg (BH) [8] adjustment for multiple testing was applied to 

calculate the false discovery rate (FDR). MT-SNV annotations were performed using the 

manually-curated database, HmtVar (https://www.hmtvar.uniba.it/). 

2.4. MT-gene-based association analyses 

To also consider the potential effects of rare (MAF ≤ 0.01) variants on CAD risk, we assigned 

all SNVs to MT genes based on MITOMAP https://www.mitomap.org/MITOMAP and used 
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the R software package SKAT (v2.0.1) [62] to perform MT-gene-based (additionally including 

the whole mitochondrion as our region of interest, MT) association analyses with HARD and 

SOFT CAD phenotypes (Fig.1), again using as covariates the array (UK Biobank vs UK BiLEVE), 

sex, birth year and the first five principal components of the autosomal genotype data, 

provided by the UK Biobank, similar to ref. [77] and obtain resampled residuals 

(n.Resampling=1000, type.Resampling="bootstrap") to compute resampling P value. 

2.5. Haplogroup assignment 

We used the PhyloTree Build 17 [98] as implemented in HaploGrep (v2.2.8) [53] to estimate 

mitochondrial haplogroups in our dataset. Thereafter, we assigned individuals to one of the 

major European haplogroups (H, I, J, K, R, T, U, V, W, X), or to a group of ’others’ 

https://www.mitomap.org/foswiki/pub/MITOMAP/WebHome/simple-tree-mitomap-

2019.pdf. Fisher’s exact test [31] was used to calculate the statistical significance of the 

overlaps between haplogroups and HARD and SOFT CAD phenotypes. Benjamini-Hochberg 

(BH) [8] adjustment for multiple testing was applied to calculate the false discovery rate 

(FDR) (Fig.1). 

3. Results 

3.1. Characteristics of study subjects 

The current study included ca. 500,000 genotyped individuals from the UK Biobank [13] 

48,700 with an inclusive CAD phenotype (SOFT) that incorporated self-reported angina or 

other evidence of chronic coronary heart disease, of which 28,503 had a more stringently 

defined CAD phenotype (HARD) of myocardial infarction (Fig.1), similarly as in ref. [77]. All 

participants (N=453,805) not defined as CAD cases using the SOFT definition will be 

considered as controls in the analysis. After this step of quality control 45,285 individuals 

were removed, 24,770 cases with the HARD, 42,079 cases with the SOFT CAD phenotype 

and 415,271 controls remained. Finally, further quality control of genotyped individuals 

included filtering for missingness by individual <0.1 and missingness by SNV<0.1 was 

performed, considering the 265 mitochondrial variants present on the UK Biobank or UK 

BiLEVE arrays (as described in section 2.2. in Methods). As a result, a further set of 54,474 

individuals were removed, leaving us with 20,405 cases with the HARD and 34,782 cases 

with the SOFT phenotype vs. 356,563 controls. Individual characteristics, in terms of 

common CAD risk factors, of these individuals are summarized in Table 1. 

On average, 77/67% vs. 43% of the individuals were men in HARD/SOFT CAD cases 

vs. controls, respectively and the individuals’ mean age was 63 years in cases vs. 57 years in 

controls. 49.88%/50.04% vs. 41.52% of the individuals displayed Systolic blood pressure 

>140 mmHg. Hypercholesterolemia was reported by 51.20%/44.78% vs. 6.00% HARD/SOFT 

CAD cases vs. controls, respectively, while hypertriglyceridemia and poor glycemic control 

(defined as serum triglyceride levels >5.6 mmol/dL and HbA1c levels >64 mmol/mol, 

respectively) was found in 1.55%/1.43% and 3.59%/3.20% HARD/SOFT CAD cases vs. 0.80% 
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(both traits) in controls, respectively. 20.80%, 19.41% and 4.14% had T2D. On average, the 

BMI of cases was 28.00 kg/m2 vs. 26.51 kg/m2 in controls and 35.17%/36.10% HARD/SOFT 

CAD cases vs. 22.65% controls displayed obesity (defined as BMI ≥ 30 kg/m2). The average 

body height of HARD/SOFT CAD cases was 173.92/174.16 cm (male) and 160.37/160.68 cm 

(female) vs. 175.95 cm and 162.61 cm in male and female controls, respectively. Sufficient 

physical activity (i.e., meeting the 2017 UK Physical activity guidelines of 150 minutes of 

moderate activity per week or 75 minutes of vigorous activity) was seen in 51.31%/51.08% 

and 54.60% of HARD/SOFT CAD cases vs. controls, respectively. 72.23%/69.56% vs. 60.21% 

of the individuals had a positive smoking history (answered ’yes’ to ’ever smoked’) and 

13.74%/12.90% vs. 9.27% were current smokers. Finally, 59.14%, 57.35% and 41.41% had 

positive family history of heart disease. In all cases, the differences between CAD cases and 

controls were statistically significant (P<0.001, Table 1). 

3.2. MT-SNV associations with HARD and SOFT CAD phenotypes 

After quality control of genotyped individuals (including filtering for missingness by 

individual <0.1 and missingness by SNV<0.1, as described in section 2.2. in Methods), from 

the 265 MT-SNVs present on the UK Biobank or UK BiLEVE arrays, 243 remained for further 

analyses. For the genotyped common and low-frequency MT-SNVs (MAF>0.01; N=111, of 

those N=39 with MAF>0.05; genotyping rate >0.99) in UK Biobank, we performed single 

marker association analyses with HARD (N=20,405) and SOFT (N=34,782) CAD phenotypes, 

adjusting for the array, sex, birth year and first five principal components. 

In HARD cases, no MT-SNVs survived multiple testing correction, the most significant 

(nominal P<0.05) findings (Table 2 and Fig.2) being for m.295C>T (rs41528348, P=0.0118, 

MAF=0.10, OR=1.05; 95% CI 1.02-1.09, in control region/CR, tagging macro-haplogroup J) 

and m.12612A>G (rs28359172, P=0.0158, MAF=0.10, OR=1.05; 95% CI 1.02-1.08, 

synonymous, in ND5 gene, tagging macro-haplogroup J), both more frequent in cases, thus 

potentially conferring increased CAD risk. In addition, four more MT-SNVs were found more 

frequently in controls: m.12372G>A (rs2853499, P=0.0059, MAF=0.22, OR=0.97; 95% CI 

0.95-0.99, synonymous, in ND5 gene, tagging macro-haplogroup U), m.11467A>G 

(rs2853493, P=0.0065, MAF=0.22, OR=0.97; 95% CI 0.95-1.00, synonymous, in ND4 gene, 

tagging macro-haplogroup U), m.15301G>A (rs193302991, P=0.0115, MAF=0.04, OR=0.97; 

95% CI 0.92-1.03, synonymous, in CYB gene) and m.7768A>G (rs41534044, P=0.0185, 

MAF=0.04, OR=0.91; 95% CI 0.86-0.96, synonymous, in CO2 gene). For a complete list of 

MT-SNV associations with HARD CAD phenotypes, see Supplementary Table 2. 

In SOFT cases, four MT-SNVs survived multiple testing correction (at FDR<5%; Table 3 

and Fig.3), all potentially conferring increased CAD risk: m.10400C>T (rs28358278, P=0.0007, 

MAF=0.02, OR=1.28; 95% CI 1.21-1.35, non-synonymous/Thr → Ala, in ND3 gene, tagging 

macro-haplogroup M), m.11251A>G (rs869096886, P=0.0011, MAF=0.20, OR=1.03; 95% CI 

1.01-1.05, synonymous, in ND4 gene, tagging macro-haplogroups J and T), and two MT-SNVs 
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in CYB gene - m.15452C>A (rs193302994, P=0.0017, MAF=0.20, OR=1.03; 95% CI 1.01-1.05, 

non-synonymous/Leu → Ile, tagging macro-haplogroups J and T) and m.15301G>A 

(rs193302991, P=0.0010, MAF=0.04, OR=1.03; 95% CI 0.99-1.07, synonymous). For a 

complete list of MT-SNVs associations with SOFT CAD phenotype, see Supplementary Table 

3. 

3.3. MT gene-based associations with HARD and SOFT CAD phenotypes 

We next sought to also consider the potential effects of rare (MAF ≤0.01) MT-SNVs on CAD 

risk, hence we performed MT-gene-based association analyses with HARD and SOFT CAD 

phenotypes, additionally including the whole mitochondrion as our region of interest (MT). 

As a result, we observed that in both, HARD and SOFT cases, CO2 displayed gene-based 

association at nominal significance (P<0.05), while CYB and ND3 were also associated 

(nominal P<0.05) with SOFT CAD phenotype (Table 4). When considering the whole 

mitochondrion (MT), no significant associations with CAD were observed (N=243; P=0.07, 

Table 4). 

3.4. MT-haplogroup associations with HARD and SOFT CAD phenotypes 

Different human mitochondrial haplogroups may result in differences in mitochondrial 

function that may influence susceptibility to CAD. Hence, we estimated all the mitochondrial 

haplogroups in our dataset (Table 5 and Supplementary Tables 4 and 5). 

Three haplogroups survived multiple testing correction (at FDR<5%) in both HARD 

and SOFT cases vs. controls: M45a (0.59% and 0.55 % vs. 0.39%, OR=1.52 and OR=1.42, 

respectively), G2b1a2 (0.28% and 0.26% vs. 0.16%, OR=1.73 and OR=1.60, respectively) and 

U2b2 (0.11% and 0.09% vs. 0.04%, OR=2.56 and OR=2.31, respectively). In HARD cases, also 

haplogroup M57b1 was significantly (at FDR<5%) over-represented in cases vs. controls 

(0.02% vs. <0.01%, OR=33.06), while haplogroup L2c was significantly (at FDR<5%) under-

represented cases vs. controls (0.01% vs.0.07%, OR=0.18) (Table 5 and Supplementary Table 

4). In SOFT cases, also haplogroup M3a was significantly (at FDR<5%) over-represented in 

cases vs. controls (0.21% vs. 0.13%, OR=1.67, Table 5 and Supplementary Table 5). 

When further assigning individuals to one of the major European haplogroups (Fig.4). 

As a result, 43.28%, 3.19%, 10.70%, 8.25%, 0.22%, 9.52%, 13.70%, 2.65%, 2.01%, 1.34% and 

5.14% of individuals belonged do the haplogroup H, I, J, K, R, T, U, V, W, X or ’Others’, 

respectively. Overall, the frequencies of the major European mitochondrial haplogroups did 

not differ significantly (at FDR<5%) between CAD patients and control subjects (Fig.4). Only 

the frequency of haplogroup I was significantly (nominal P<0.05) higher in patients with 

HARD CAD phenotype vs. controls (3.35% vs. 3.08%, OR=1.09) and the haplogroup R was 

significantly (nominal P<0.001 and P<0.01) higher in patients with HARD and SOFT CAD 

phenotype vs. controls (0.26% and 0.23% vs. 0.16%, OR=1.70 and OR=1.49, respectively; 

Fig.4). 
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4. Discussion 

Over the last 14 years, several large-scale genome-wide association studies have found 

hundreds of single-nucleotide variants (SNVs) significantly associated with CAD, however, 

these explain <20% of the heritability. In this study, we hypothesize that mitochondrial (MT) 

SNVs might present one potential source of the “missing heritability”. 

We analyzed 265 common/low-frequency (MAF ≥1%) and rare (MAF<1%) MT-SNVs 

in ~500,000 UK Biobank individuals, exploring two different CAD definitions, HARD 

(N=20,405) and SOFT (N=34,782) (Fig.1.), as previously proposed by [77], and using the 

array, sex, birth year and first five principal components as covariates. Overall, the 

differences in the prevalence of common risk factors among CAD cases (both HARD and 

SOFT phenotypes) and controls were statistically significant (P<0.001; Table 1), male gender, 

older age, hypertension, hypercholesterolemia, obesity, T2D, physical inactivity, shorter 

body statue, smoking and positive family history demonstrating predominance in CAD 

patients. 

When performing common and low-frequency MT SNVs (MAF>0.01; N=111) 

association analyses in these individuals, we observed that in HARD cases, no MT-SNVs 

survived multiple testing correction, the most significant (nominal P<0.05) findings being for 

m.295C>T, m.12612A>G, m.12372G>A, m.11467A>G, m.15301G>A and m.7768A>G (Table 2 

and Fig.2). m.295C>T (rs41528348, P=0.0118, MAF=0.10), is a control region (CR) sequence 

variant, and the non-coding regions are well known to contain regulatory elements affecting 

gene expression [24]. m.295C>T has been previously associated with low maximal oxygen 

uptake (VO2max) in response to a standardized aerobic exercise training program [100]. 

VO2max is a heritable trait, demonstrating a maternal effect [24]. VO2max is defined by the 

ability of the cardiorespiratory system to deliver oxygen to the exercising muscles, e.g., the 

heart rate and maximal cardiac output [7]. High VO2max (i.e., cardiorespiratory fitness) 

have been associated with a reduction in cardiovascular events and vice versa - low VO2max 

plays a role in increasing the risk of cardiovascular disease [54, 60, 93, 107]. Interestingly, an 

earlier study in UK Biobank [108], reported a significant association between m.295C>T and 

mean corpuscular hemoglobin (MCH) as well as mean corpuscular volume (MCV) (Fig.5). 

Both traits have been shown to increase with training [10]. In line with these earlier reports, 

our results show that m.295C>T was more frequent (OR=1.05; 95% CI 1.02-1.09, P=0.0118) 

in HARD cases, thus, potentially conferring a decreased cardiorespiratory fitness/exercise 

capacity and increased CAD risk. Of note, m.295C>T is also tagging macro-haplogroup J, and 

it has been previously shown that VO2max is lower in J than in non-J macro-haplogroup 

individuals [72] and excellence in endurance performance was less frequent among macro-

haplogroup J individuals [52]. 

m.12612A>G (rs28359172, P=0.0158, MAF=0.10) is a synonymous (V92V) sequence 

variant in the subunit 5 of NADH dehydrogenase (ND5), also tagging macro-haplogroup J 
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and demonstrating significant associations with MCH and MCV (Fig.5) in UK Biobank [108]. 

In our study, it was also more frequent (OR=1.05; 95% CI 1.02-1.08, P=0.0158) in HARD 

cases. Therefore, it is reasonable to assume that m.295C>T also may be related to a 

decreased cardiorespiratory fitness/exercise ability and increased CAD risk. m.12372G>A 

(rs2853499, P=0.0059, MAF=0.22) is a synonymous (L12L) sequence variant in the ND5 gene, 

found more often in controls vs. HARD CAD cases (OR=0.97; 95% CI 0.95-0.99) and tagging 

macro-haplogroup U, members of which have been shown to represented higher brain pH 

than others [83]. m.11467A>G (rs2853493, P=0.0065, MAF=0.22) represents another 

synonymous (L236L) sequence variant also tagging macro-haplogroup U and more 

frequently found in controls vs. HARD CAD cases (OR=0.97; 95% CI 0.95-1.00), however, it is 

located in the subunit 4 of NADH dehydrogenase (ND4). m.11467A>G (rs2853493) has also 

been also associated with altered brain pH [83]. Higher brain pH has been shown to 

correlate with a lower brain activity and conferring protection against psychiatric disorders 

[41] and attention deficit/hyperactivity [15]. This protective role of macro-haplogroup U 

could be partially explained by reduced load of harmful reactions [15], as pH is known to 

play a role in mitochondrial ROS generation [90] and cybrids of macro-haplogroup U have 

been demonstrated to display lower inner mitochondrial membrane potential and 

mitochondrial protein synthesis and cell growth capacity [39]. Moreover, macro-haplogroup 

U has been associated with increased longevity that may be at least partly explained by its 

lower ROS production rate [17]. In our study, m.12372G>A (rs2853499) was found more 

frequently in controls, suggesting potential favorable differences in pH and ROS production 

in these subjects. Interestingly, in addition to associations with MCH and MCV, m.12372G>A 

displayed significant (P< 1e - 5) associations with eight additional blood cell and kidney-

related traits in UK Biobank (Fig.5) [108]. Endurance time during exercise has been related 

to pre-exercise blood pH and demonstrated to increase with increasing pH [47]. m.7768A>G 

(rs41534044, P=0.0185, MAF=0.04) represents another synonymous (M61M) sequence 

variant located in the subunit 2 of mitochondrial encoded cytochrome c oxidase (CO2), 

more frequently found in controls vs. HARD CAD cases (OR=0.91; 95% CI 0.86-0.96) and 

displaying significant (P< 1e - 5) associations with several phenotypic traits in UK Biobank 

[108], including MCH and MCV, as well as the Monocyte percentage of white cells (MONO%) 

and Plateletcrit (PCT)(Fig.5). 

In SOFT cases, four MT-SNVs survived multiple testing correction (at FDR<5%; Table 3 

and Fig.3), all potentially conferring increased CAD risk: m.10400C>T, m.11251A>G, 

m.15452C>A and 15301G>A. m.11251A>G (rs869096886, P=0.0011, MAF=0.20) represents a 

synonymous sequence variant in ND4 gene and m.15452C>A (rs193302994, P=0.0017, 

MAF=0.20) is a non-synonymous (Leu → Ile) sequence variant in CYB gene, both were found 

more frequently in SOFT CAD cases vs. controls (OR=1.03; 95% CI 1.01-1.05). m.11251A>G 

(rs869096886) and m.15452C>A (rs193302994) are tagging macro-haplogroups J and T, 
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potentially related to a decreased cardiorespiratory fitness/exercise capacity [52, 72] and 

thus increased CAD risk, as discussed above. Moreover, both MT-SNVs displayed significant 

(P< 1e - 5) associations with body height in UK Biobank (Fig.5) [108]. In line with this, we 

observed that the average body height of both male and female CAD cases was ~2.00 cm 

lower compared to controls (Table 1). Previous studies have demonstrated that shorter 

body height is related to an increased CAD risk [78], which could be partly explained by 

altered lipid profile. 

Gene-based tests revealed that in both, HARD and SOFT cases, CO2 displayed gene-

based association at nominal significance (P<0.05, Table 4). The CO2 gene encodes for the 

second subunit of cytochrome c oxidase (COX, complex IV). Dysfunction of COX has been 

previously associated with mitochondrial oxidative stress, obesity and T2D [43]. CYB and 

ND3 were also associated (nominal P<0.05) with SOFT CAD phenotype (Table 4). Somatic 

variations in CYB have been previously related to hypertrophic cardiomyopathy (one of its 

clinical manifestations being angina) and exercise intolerance [40]. Recently, a large gene-

based meta-analysis of mitochondrial genes with several metabolic traits identified ND3 

associated with BMI (P<1e-03) [57]. 

All haplogroups demonstrating significant (at FDR<5%) associations in our study 

(M45a, G2b1a2, U2b2 with both HARD/SOFT, M57b1 and L2c (under-represented) with 

HARD and M3a with SOFT CAD phenotypes; Table 5 and Supplementary Table 4) were with 

a frequency <1%, while other studies have considered only haplogroups with a frequency 

≥5% [26]. Low counts in the less common haplogroups may lead to a false-positive result 

[86]. Although, this should be addressed by performing multiple testing correction, grouping 

the less frequent haplogroups may be another approach to tackle this [86]. Hence, we also 

assigned individuals to one of the major European haplogroups (Fig.4) for comparison. As a 

result, we observed that 43.28% of the individuals belonged to the macro-haplogroup H, 

13.70% to the macro-haplogroup U, 10.70% to the macro-haplogroup J and 9.52% to the 

macro-haplogroup T (Fig.4), in line with earlier reports in other European populations [2]. 

Overall, the frequencies of the major European mitochondrial haplogroups did not differ 

significantly (at FDR<5%) between CAD patients and control subjects (Fig.4). Only the 

frequency of haplogroup I was significantly (nominal P<0.05) higher in patients with HARD 

CAD phenotype vs. controls (3.35% vs. 3.08%, OR=1.09) and the macro-haplogroup R was 

significantly (nominal P<0.001 and P<0.01) higher in patients with HARD and SOFT CAD 

phenotype vs. controls (0.26% and 0.23% vs. 0.16%, OR=1.70 and OR=1.49, respectively) 

(Fig.4). A recent study [108] identified a significant effect of macro-haplogroup I on the MCH 

levels in UK Biobank. As previously discussed, this trait is known to increase with training 

[10], thus, again being potentially related to cardiorespiratory fitness/exercise capacity and 

thus CAD risk. Of note, however, we were able to assign most samples reliably into 

haplogroups as the mtDNA haplogroups were deduced from genotyping arrays with limited 
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numbers of (high quality) SNVs being profiled, hence the quality score for haplogroup 

assignment ranged from 0.50 to 0.86, with a median of 0.68. Hence, we were not able to 

exclude samples with quality scores for haplogroup assignment <0.8 (as in ref. [36]). 

Moreover, we performed Fisher’s exact test that did not allow us to adjust for co-variates, 

hence it is possible that known and unknown potential confounding factors might have 

influenced these results. Though, in which cases to adjust for which covariates and whether 

it will increase or decrease the study power and/or bias, is still a matter of intense debate 

[5, 99]. 

Several other limitations should also be acknowledged. It is well-known that 

exceptionally large cohorts are required to reliably associate genetic variations with 

complex traits 86. The power for detecting causal MT-SNVs and haplogroups has been 

compared with that in the nuclear genome given equal effect sizes, estimating that the 

sample size needed for the mitochondrial studies would be roughly the same as that needed 

for the nuclear genome studies 73. Previous power calculations for ischemic stroke 

(assuming an additive model) [3] revealed a maximum power of 73% to detect SNVs with 

OR=1.4 and MAF=0.30, while for SNVs conferring OR=1.20 and MAF=0.20, the study power 

dropped to 4.6% and further to 0.001% for OR=1.10 and MAF=0.10. This study concluded 

that "prohibitively large sample sizes" would be needed to achieve sufficient power to 

detect individual MT DNA variants [3]. In line with this, we observe that in HARD CAD cases, 

where N=20,405, no MT-SNVs survived multiple testing correction, while when increasing N 

to 34,782 in SOFT CAD cases, four MT-SNVs survived multiple testing correction (FDR<5%). 

Hence, even larger sample sizes may be needed to reliably associate MT SNVs and 

haplogroups with CAD. 

In addition to study individuals, also the number of MT-SNVs studied was limited. In 

UK Biobank [13], genotyping was performed using Affymetrix UK biobank Axiom (450,000 

samples) and Affymetrix UK BiLEVE Axiom (50,000 samples) arrays, which included 265 

genotyped MT DNA variants. After quality control procedures (Fig.1), 243 MT-SNVs 

remained for further analyses, 111 of those where common or low-frequency (MAF>0.01) 

and could be used for single marker association analyses. However, this is clearly not a 

representative set of MT-SNVs and, as previously recognized, some regions may be not well-

covered, such as the hypervariable regions [32, 34]. Clearly, whole genome sequencing or 

targeted-sequencing of MT-DNA, considering their ability to achieve a deep genome 

coverage, would allow the identification many more MT-SNV (especially the low-

frequency/rare variants; MAF<0.01), also improving the detection of haplogroups and 

allowing to investigate heteroplasmy, a phenomenon characteristic to MT DNA [18, 92]. 

Heteroplasmy denotes the coexistence of MT DNA genomes with wild-type inherited 

SNVs and somatic variants in varying ratios, which are dynamically determined and display 

patterns of cell and tissue specificity, and may differ even within the same mitochondrion 
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[92], determining the clinical presentation of disease phenotypes [32, 33, 81]. In this study, 

we were limited to genotype calls from arrays, which are restricted in terms of minor alleles 

and do not allow to capture heteroplasmy [32, 33]. Moreover, MT DNA content was 

assessed only in blood cells, whereas previous studies have identified additional six vascular 

and metabolic tissues relevant to CAD [35, 94]. Therefore, whole genome 

sequencing/targeted-sequencing of MT-DNA, across several vascular and metabolic tissues 

relevant to CAD may be necessary [35, 94, 101] in order to characterize the full landscape of 

mitochondrial genetic variations and their potential contribution to these complex disease 

phenotypes. Especially, considering that the energy requirements and thus sensitivity to the 

changes in mitochondrial function differ for different cells and tissues and hence may be 

important in determining the phenotypic effect of MT SNVs [11]. 

We also do not consider mitochondrial DNA copy number (MT DNA-CN), 

representing the number of mitochondria per cell and the number of MT DNA per 

mitochondrion [6, 19]. Each mitochondrion contains multiple copies of MT DNA and 

different cells and tissues contain different numbers (up to 7,000) of mitochondria, again 

displaying patterns of cell and tissue variability [6, 19]. MT DNA-CN is believed to serve as an 

indirect biomarker that would capture the underlying mitochondrial activity and function, 

such as energy production capacity and metabolic characteristics, thus possibly playing a 

causative role in health and disease [19]. Decreased MT DNA-CN has been previously 

associated with an increased risk of developing cardiovascular disease (CVD) outcomes [6]. 

More recently, similar analyses in the UK Biobank demonstrated a possible causal role of 

lower MT DNA-CN on higher CAD risk [67]. In an even larger cohort (of 408,361 individuals 

from TOPMed and UK Biobank), a decline in MT DNA-CN was observed in elderly individuals 

(>65 years) and lower MT DNA-CN levels also demonstrated an age-independent 

associations with hypertension, hyperlipidemia, T2D and obesity, i.e., the well-known CAD 

risk factors [64]. However, none of these studies compared the MT DNA-CN levels between 

HARD vs. SOFT CAD phenotypes, which could be a subject of future studies. However, 

considering that MT DNA-CN varies greatly across cell and tissue types, again profiling of 

several vascular and metabolic tissues relevant to CAD may be necessary for such 

investigations [35, 94, 101]. 

Yet another important aspect not considered here is the nuclear genome, 

considering the co-evolution of mitochondria and eukaryotic cells [74]. The mitochondrial 

genome encodes only 37 genes, mainly components of the OXPHOS machinery, whereas the 

remaining ~1000-1500 mitochondrial proteins are all encoded by the nuclear genome [42]. 

The importance of common genetic variation in the nuclear genome regulating MT 

heteroplasmy and DNA-CN is an active area of research [19, 38, 46, 75]. Moreover, genetic 

variants in nuclear genes could lead to oxidative disorders or modulate the mitochondrial 

variants [81] and mild nuclear gene variants could potentially become clinically relevant 
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when combined with an incompatible MT DNA [105]. Additive interactions (epistasis) 

between mitochondrial variants in MT-ND2 gene and nuclear variants in genes responsible 

for mitochondrial replication and transcription have been demonstrated to influence the 

BMI and obesity phenotype [66]. Similarly, our previous investigations have demonstrated 

the role of nuclear encoded mitochondria imported genes in coordinating the response to 

hypercholesterolemia and atherosclerotic lesion expansion, and foam cell formation [102]. 

Hence, further analyses also considering these additional variations will be required. 

Finally, similar to SNVs in nuclear genome, even if (mitochondria) genome-wide 

significant associations with HARD/SOFT CAD phenotypes would be identified, their 

functional consequences would need to be determined in the CAD relevant tissues [35, 94]. 

Currently, functional studies for MT-SNVs are not readily available, however, several novel 

experimental animal models (e.g. mice strains displaying DNA haplogroups similar to those 

observed in humans) may be available in the near future, allowing to investigate/define the 

potential causality of the relationship between inherited "natural" non-pathogenic MT-SNVs 

and potential alterations in mitochondrial function (e.g. oxygen consumption and oxidant 

production, cellular ATP levels) and their relation to alterations in cardiovascular function 

and CAD risk [11, 74, 81]. 

In conclusion, we found only spurious MT-SNV, gene and haplogorup associations 

with HARD and SOFT CAD phenotypes and conclude that whole genome 

sequencing/targeted-sequencing of MT-DNA, across several vascular and metabolic tissues 

relevant to CAD in even larger study cohorts (N>50,000), followed by functional studies in 

animal models, may be necessary to conclusively determine the role of MT- SNVs, genes and 

haplogorup in modulating the risk of CAD. Therefore, whole genome sequencing/targeted-

sequencing of MT-DNA, across several vascular and metabolic tissues relevant to CAD may 

be necessary [35, 94, 101] in order to characterize the full landscape of mitochondrial 

genetic variations and their potential contribution to these complex disease phenotypes. 

Especially, considering that the energy requirements and thus sensitivity to the changes in 

mitochondrial function differ for different cells and tissues and hence may be important in 

determining the phenotypic effect of MT SNVs [11]. 
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Table and Figure Legends 

Table Legends 

Table 1 Individual characteristics of HARD and SOFT CAD cases vs. controls. *** Represents 

statistically significant (of P<0.001) difference between HARD and SOFT CAD cases vs. 

controls, whereas +++ represents statistically significant (of P<0.001) difference between 

HARD vs. SOFT CAD cases. 

 

Table 2 HARD CAD and common and low-frequency (MAF>0.01; N=111) MT SNV most 

significant associations. CR=control region. 
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Table 3 SOFT CAD and common and low-frequency (MAF>0.01; N=111) MT SNV most 

significant associations. CR=control region. *MT-SNVs that survived multiple testing 

correction (at FDR<5%). 

 

Table 4 MT gene-based associations with HARD and SOFT CAD phenotypes. 

MT=mitochondrion; N (ALL)=the number of MT-SNVs in the region; N (TESTED)=the number 

of MT-SNVs from the region considered in the gene-based test. 

 

Table 5 Haplogroup assignment in HARD and SOFT CAD cases vs. controls prior to further 

assigning individuals to one of the major European haplogroups. * Indicates that a 

haplogorup survived multiple testing correction (at FDR<5%). 

Figure Legends 

Figure 1 A complete workflow of the analyses performed. 

 

Figure 2 A solar plot of HARD CAD and common and low-frequency (MAF>0.01; N=111) MT 

SNV associations. 

 

Figure 3 A solar plot of SOFT CAD and common and low-frequency (MAF >0.01; N=111) MT 

SNV associations. CR=control region. 

 

Figure 4 Frequencies (%) of mitochondrial (MT) haplogroups within HARD and SOFT CAD 

phenotypes vs. controls. 

 

Figure 5 Previous findings for HARD and SOFT CAD-MT-SNV associations in UK Biobank by 

ref. by ref. [108]. MCH: Mean corpuscular hemoglobin; MCV: Mean corpuscular volume; 

RDW: Red blood cell distribution width; RBC#: Red blood cell count; WBC#: White blood cell 

count; LYMPH#: Lymphocyte count; MONO%: Monocyte percentage of white cells; MCV: 

Mean corpuscular volume; PCT: Plateletcrit; Cr: Creatinine; eGFRCr: Estimated glomerular 

filtration rate creatinine; eGFRCrCy: Estimated glomerular filtration rate creatinine and 

cystatin C. Created with BioRender.com. 
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Risk factors HARD*** SOFT*** CONTROL 

Men (%) 77 67 43 

Age, years (mean±SD, range) 63 (61.33±6.35, 58-66) 63 (61.14±6.43, 58-66) 57 (56.08±8.05, 50-63) 

Diastolic blood pressure >90 mmHg (%) 21.23 21.54 22.41 

Systolic blood pressure >140 mmHg (%) 49.88 50.04 41.52 

Hypercholesterolemia (%) 51.20 44.78 6.00 

Hypertriglyceridemia (%) 1.55 1.43 0.80 

Poor glycemic control (%) 3.59 3.20 0.80 

Type 2 Diabetes (%) 20.80 19.41 4.14 

BMI, kg/m2  (mean±SD, range) 
28.29  (28.91± 4.72, 25.72-

31.47) 

28.34 (29.03±4.98, 25.66-

31.66) 

26.51 (27.18±4.69, 23.96-

29.60) 

Obesity (BMI > 30 kg/m2, %) 35.17 36.10 22.65 

Central obesity (%) 63.39
+++

 60.40 36.61 

Body height              Male                   

(mean±SD, range):  Female 

173.92±6.76
+++

 (Med=174) 174.16±6.82 (Med=174) 175.95±6.82 (Med=176) 

160.37±6.38
++

 (Med=160) 160.68±6.33 (Med=161) 162.61±6.29 (Med=163) 

Physically active (%) 51.31 51.08 54.60 

Smoking history (ever smoked, %) 72.23
+++

 69.56 60.21 

Current Smoker (%) 13.74
+

 12.90 9.27 

History of Heart Disease in First Degree 

Relative(%) 
59.14

+++

 57.35 41.41 
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Locus RSID Variation MAF AA OR 95% CI P HG 

ND5 rs2853499 m.12372G>A 0.22 Syn 0.97 0.95-0.99 0.0059 U 

ND4 rs2853493 m.11467A>G 0.22 Syn 0.97 0.95-1.00 0.0065 U 

CYB rs193302991 m.15301G>A 0.04 Syn 0.97 0.92-1.03 0.0115 . 

CR rs41528348 m.295C>T 0.10 . 1.05 1.02-1.09 0.0118 J 

ND5 rs28359172 m.12612A>G 0.10 Syn 1.05 1.02-1.08 0.0158 J 

CO2 rs41534044 m.7768A>G 0.04 Syn 0.91 0.86-0.96 0.0185 . 

ND4 rs28358285 m.11299T>C 0.08 Syn 0.94 0.91-0.98 0.0227 K 

CYB rs41518645 m.15257G>A 0.02 Asp � Asn 1.11 1.04-1.19 0.0231 . 

ND1 rs28358584 m.3480A>G 0.08 Syn 0.94 0.91-0.98 0.0390 . 

tRNA
Ser(UCN) 

 rs201950015 m.7476C>T 0.02 . 1.01 1.03-1.19 0.0400 . 

rRNA
12S

 rs2853518 m.750A>G 0.02 . 0.87 0.80-0.95 0.0420 . 

ND4L rs28358280 m.10550A>G 0.08 Syn 0.95 0.91-0.98 0.0435 K 

ND6 rs193302977 m.14167C>T 0.08 Syn 0.95 0.91-0.98 0.0476 . 

ATP6 rs193303045 m.9055G>A 0.09 Ala � Thr 0.95 0.92-0.98 0.0476 . 

ND5 rs869156190 m.13965T>C 0.01 Syn 1.10 1.00-1.21 0.0484 . 

ND5 rs28359178 m.13708G>A 0.12 Ala � Thr 1.04 1.01-1.07 0.0499 J 
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Locus RSID Variation MAF AA OR 95 % CI P HG 

ND3 rs28358278 m.10400C>T 0.02 Thr � Ala 1.28 1.21-1.35 0.0007* M 

CYB rs193302991 m.15301G>A 0.04 Syn 1.03 0.99-1.07 0.0010* . 

ND4 rs869096886 m.11251A>G 0.20 Syn 1.03 1.01-1.05 0.0011* JT 

CYB rs193302994 m.15452C>A 0.20 Leu � Ile 1.03 1.01-1.05 0.0017* JT 

ND5 rs869156190 m.13965T>C 0.01 Syn 1.13 1.05-1.21 0.0035 . 

ND4 rs2857284 m.10873T>C 0.03 Syn 1.03 0.99-1.07 0.0048 . 

ND1 rs1599988 m.4216T>C 0.20 Tyr � His 1.03 1.01-1.05 0.0055 . 

CR rs41528348 m.295C>T 0.10 . 1.04 1.01-1.06 0.0084 J 

ND4 rs2853493 m.11467A>G 0.22 Syn 0.98 0.96-0.99 0.0084 U 

ND5 rs2853499 m.12372G>A 0.22 Syn 0.98 0.96-0.99 0.0089 U 

ND5 rs28359172 m.12612A>G 0.10 Syn 1.03 1.01-1.06 0.0190 J 

CR rs41419246 m.16145G>A 0.03 . 1.08 1.03-1.12 0.0242 . 

CYB rs41518645 m.15257G>A 0.02 

Asp � 

Asn 1.08 1.02-1.14 0.0256 . 

rRNA
12S

 rs2853517 m.709G>A 0.15 . 1.04 1.01-1.01 0.0256 L6,G,N2,T,B5 

CO2 . m.8269G>A 0.03 Syn 1.06 1.02-1.11 0.0273 . 

tRNA
Ser(UCN) 

 rs201950015 m.7476C>T 0.02 . 1.08 1.02-1.14 0.0371 . 

rRNA
12S

 rs2853518 m.750A>G 0.02 . 0.90 0.84-0.96 0.0392 . 
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 HARD SOFT 

Set P N (ALL) N (TESTED) P N (ALL) N (TESTED) 

CO2 0.04 5 5 0.03 5 5 

CYB 0.05 20 20 0.02 20 20 

ND3 0.10 8 8 <0.01 8 8 

ND4L 0.19 2 2 0.30 2 2 

ND5 0.10 35 33 0.14 35 33 

rRNA
12S

 0.08 11 11 0.05 11 11 

rRNA
16S

 0.17 13 13 0.07 13 13 

MT 0.07 243 226 0.07 243 226 
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 HARD SOFT 

Haplogroup OR Cases (%) Controls (%) P OR Cases (%) Controls (%) P 

G1a 4.86 0.02 <0.01 7.02e-03 4.54 0.02 <0.01 1.51e-03 

G2b1a2 1.73 0.28 0.16 1.20e-04* 1.60 0.26 0.16 2.80e-05* 

L2c 0.18 0.01 0.07 2.00e-04* 0.60 0.04 0.07 0.04 

M27b 3.99 0.03 0.01 3.79e-03 3.00 0.02 0.01 7.42e-03 

M3a 1.71 0.22 0.13 8.80e-04 1.67 0.21 0.13 5.70e-05* 

M45a 1.52 0.59 0.39 1.00e-05* 1.42 0.55 0.39 4.00e-06* 

M57b1 33.06 0.02 <0.01 1.40e-04* 19.31 0.01 <0.01 9.97e-04 

M65a1 2.24 0.08 0.04 2.84e-03 2.00 0.07 0.04 1.37e-03 

U2b2 2.56 0.11 0.04 1.20e-04* 2.31 0.09 0.04 2.90e-05* 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 10, 2022. ; https://doi.org/10.1101/2022.02.09.22270723doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.09.22270723

