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Past major epidemic events showed that when an infectious disease
is perceived to cause severe health outcomes, individuals modify
health behavior affecting epidemic dynamics. To investigate the ef-
fect of this feedback relationship on epidemic dynamics, we devel-
oped a compartmental model that couples a disease spread frame-
work with competition of two mutually exclusive health opinions
(health-positive and health-neutral) associated with different health
behaviors. The model is based on the assumption that individuals
switch health opinions as a result of exposure to opinions of oth-
ers through interpersonal communications. To model opinion switch
rates, we considered a family of functions and identified the ones
that allow health opinions to co-exist. In the disease-free popula-
tion, either the opinions cannot co-exist and one of them is always
dominating (monobelief equilibrium) or there is at least one stable
co-existence of opinions equilibrium. In the latter case, there is mul-
tistability between the co-existence equilibrium and the two mono-
belief equilibria. When two opinions co-exist, it depends on their
distribution whether the infection can invade. If presence of the in-
fection leads to increased switching to a health-positive opinion, the
epidemic burden becomes smaller than indicated by the basic repro-
duction number. Additionally, a feedback between epidemic dynam-
ics and health opinion dynamics may result in (sustained) oscillatory
dynamics and a switch to a different stable opinion distribution. Our
model captures feedback between spread of awareness through so-
cial networks and infection dynamics and can serve as a basis for
more elaborate individual-based models.
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The notion that the relationship between epidemic dynam-1

ics and reactive collective behavior plays an important2

role in the course of an outbreak of an infectious disease has3

been recognized in theoretical epidemiology (1–5). This no-4

tion is supported by data collected during various outbreaks5

of infectious diseases, dating back as far as the Spanish flu6

pandemic of 1918 (1, 3, 5) to SARS pandemic (6, 7) and swine7

flu pandemic (8), and ending with the ongoing SARS-CoV28

pandemic (9). Two types of societal reactions to an infectious9

disease outbreak can be distinguished, namely centralized10

top-down and individual-based bottom-up reactions. First,11

governing authorities may impose public health interventions12

aiming at protecting the most vulnerable groups, and miti-13

gating the spread of infection. Typical measures are school14

closures, limitation of the number of persons in indoor spaces,15

and travel restrictions. Second, individuals may change their16

behavior by self-imposing protective measures such as hygiene17

measures or mask wearing in an effort to defend themselves18

from infection and its consequences (10). It has been observed19

that practicing of self-protective measures increased during20

outbreaks of infectious diseases and declined when the disease21

was eliminated (6–8). Thus, there is an indication for a feed- 22

back relationship between epidemic dynamics and uptake of 23

self-protective measures. 24

It was not until the 2000s that the importance of this type 25

of reaction for epidemic dynamics was recognized and investi- 26

gated using mathematical modeling (2, 4, 11). Accounting for 27

the behavior-infection feedback relationships in epidemic mod- 28

els has helped to explain patterns observed in real world data. 29

Multiple epidemic peaks and relatively small outbreaks, where 30

much larger ones were expected, were convincingly shown to 31

be the result of changes in individual human behavior during 32

an epidemic (4, 5). 33

Health behaviors are a subject to (health) opinion held. The 34

dynamics of circulation of ideas and beliefs in a population is 35

studied in the field known as sociophyics. Even the simplest 36

sociophysics models can have rich dynamics where a number 37

of distinct opinion distributions is possible with a potential 38

for bistability between them (12–14). To understand the ef- 39

fect of the feedback loop between disease spread and health 40

opinion circulation on epidemic dynamics, it is important to 41

understand the role of assumptions about the propagation 42

of opinions on their distribution in the population. In this 43

work we consider the effect of interpersonal communications 44

on the dynamics of health opinion competition using different 45

functional representations for opinion switch rates. We show 46

that depending on the shape of the functional response quali- 47

tatively different opinion distributions appear, which in turn 48
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affects outlook of an epidemic.49

In the context of health-related opinions and the associated50

self-imposed preventive behaviors, pro- and anti-vaccination51

sentiments garnered a lot of attention (11, 15–17), while other52

investigations focused on non-pharmaceutical interventions53

such as mask wearing and social distancing (2, 4, 9, 18). While54

ideally vaccination is a nearly instantaneous event that pro-55

tects an individual for a long time, the latter measures only56

confer protection while they are being practiced. For emerg-57

ing infectious diseases for which pharmaceutical interventions58

are not available, as was the case with COVID-19 in 2020,59

the extent of the outbreak depends on the uptake rate of60

non-pharmaceutical measures by the population (19).61

Health opinions can fall on a spectrum ranging from health-62

promoting, adaptors of which practice self-protective measures,63

to health-indifferent, whereupon individuals having such opin-64

ions do not modify their behavior with the aim of protect-65

ing their health. The health belief model (10) posits that66

adopting health promoting measures is motivated by several67

constructs: (i) perceived susceptibility (risk of contracting a68

specific health problem), (ii) perceived severity (estimation69

of the consequences of this problem), (iii) perceived barri-70

ers (impediments for adopting a relevant health behavior),71

(iv) perceived benefits (assessment of effectiveness in avoiding72

the health problem if the health behavior is adopted), and73

(v) cues to action (events that bring on adoption of a specific74

behavior). If an individual believes the disease to be a threat,75

they may modify their health behavior in a number of ways76

that affect their susceptibility, the probability of encountering77

an infectious individual, and duration of infection. In contrast78

to beliefs, which support adoption of health protective behav-79

iors, individuals may also be indifferent to health-related risks.80

Indifferent individuals may make little to no effort to protect81

their health or limit the disease spread. For example, during82

the AH1N1/09 (“swine flu”) outbreak in 2009, people who83

were uncertain about the disease and felt that the extent and84

danger of the outbreak were exaggerated were less likely to85

change their behavior (20).86

Individuals may form and change their opinions when being87

exposed to communications by a.o. health officials, newscasts,88

social media, and interpersonal interactions. Ideally, communi-89

cations by health officials provide accurate information about90

an epidemic outbreak and possible self-protective measures91

that individuals can adopt. On the other hand, social media92

and interpersonal communications can be carriers of misinfor-93

mation and opinions that may downplay or exaggerate the94

risks of acquiring infection. Individuals may feel a pressure95

to conform to their social environment and may adopt an96

opinion even if it contradicts available evidence or information97

distributed by health authorities (13). Moreover, by means of98

digital social media interpersonal communications can spread99

more widely and rapidly than through the physical contact100

network, such that the propagation may be stimulated by101

ongoing communication in media (21).102

Here we focus on a health opinion switching process that103

arises due to interpersonal communication. To investigate104

the effect of interpersonal communication on the competi-105

tion of health opinions in the population, we developed a106

deterministic compartmental model that stratifies the popu-107

lation by opinions. To improve the analytic tractability of108

the mathematical model, we restrict ourselves to the case of109

two mutually exclusive opinions, namely health-positive and 110

health-neutral. While health opinions in reality can range on 111

a continuous scale between health awareness and indifference 112

(22), our choice can also be justified by the argument that 113

health related behavior is either practiced or not. So, we as- 114

sume that holding the health-positive opinion invariably leads 115

to adoption of health protective measures in the face of an out- 116

break (e.g., mask wearing, increased hands washing, keeping a 117

distance of 1.5 meters from others), while individuals holding 118

the health-neutral opinion will not take these measures. 119

In earlier modelling work, sustained circulation of the health 120

opinions from both sides of the spectrum required the presence 121

of an outbreak (2, 4, 23). However, frequently, the opinions 122

persist without the disease being present. In this case, the 123

opinion switching rates depend on the number/density of the 124

carriers of these opinions. Another important consideration is 125

the functional definition of the opinion switching rate. Often 126

it is captured by a mass action term (2, 4, 14, 18) that may 127

not necessarily reflect the reality. We address both of these 128

considerations. In our model, individuals switch between 129

opinions as a result of communication with individuals of 130

the opposing opinion, with a switch rate that is a positive 131

non-decreasing function of the density of individuals holding 132

the opposing opinion. Here we consider a broader family of 133

functions to describe the rate of switching, which includes 134

linear, saturating, and sigmoidal functions. We couple opinion 135

dynamics with an epidemic model by allowing the rate of 136

switching to the health-positive opinion to depend on the 137

disease prevalence. With respiratory diseases as influenza 138

or COVID-19 in mind, we consider a population that mixes 139

assortatively by opinions. 140

Using bifurcation and stability analysis, we investigate the 141

opinion distribution landscape in the absence of disease. The 142

dynamics in a disease-free state both highlight the key con- 143

siderations for the design of information intervention prior to 144

the outbreak, as well as set the stage for epidemic dynamics 145

in case an infectious disease enters the population. We ana- 146

lyze for which distributions of opinions in the population an 147

outbreak of an infectious disease can occur, i.e. how the distri- 148

bution of opinions impacts the basic reproduction number of 149

the infection. We then explore the coupled opinion-epidemic 150

dynamics using numerical bifurcation analysis. Finally, we 151

describe parameter regions, for which damped/sustained oscil- 152

latory dynamics may appear, and give conditions under which 153

a disease can be eradicated even when the basic reproduction 154

number is above 1. 155

Results 156

A model for competing opinions. In the context of an infec- 157

tious disease, we consider a scenario where two relevant mutu- 158

ally exclusive health opinions, a and b, circulate in a population. 159

We denote with a a health-positive opinion whereupon an indi- 160

vidual holding it adapts measures that reduce the probability 161

of contracting the disease, and b denotes a health-neutral opin- 162

ion such that its holder does not modify their behavior. Thus, 163

the population is split into individuals who believe a, Na and 164

those who believe b, Nb. In this work we use word “density” to 165

denote a proportion of total population. Thus, the proportion 166

of population (density) that holds opinion a is denoted by na, 167

while the density of population Nb is nb. 168

We assume that individuals regardless of their opinion have 169
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on average c social contacts per week. We use the term “social170

contacts” to denote interactions that may lead to switching of171

opinions. Additionally, we consider the possibility of assorta-172

tive preference to mix with individuals of the same opinion.173

The degree of assortative mixing is denoted by ω, 0 ≤ ω ≤ 1,174

with ω equal to 0 describing the situation where individuals175

interact without regard about the opinion held (fully propor-176

tionate mixing) and ω equal to 1 denotes fully assortative177

mixing where individuals only mix with individuals which178

share their opinion. For 0 ≤ ω ≤ 1, ω indicates the proportion179

of contacts that occur only with individuals sharing the same180

opinion, while 1 − ω fraction of contacts occur with holders181

of each opinion, proportionate to the density of respective182

population.183

Individuals Nl̄, l̄ ∈ {a, b} may change their opinion upon con-184

tact with individuals with the opposing opinion, Nl, l ∈ {a, b},185

l 6= l̄. The rate of switching is described by a density-dependent186

function fl(nl), multiplied by social contact rate c, and the187

likelihood of mixing with individuals regardless of their opin-188

ion, 1− ω. We assume the switch rate functions fl(nl) to be189

positive, continuous and increasing, and define190

fl(nl) = pln
k
l

1 + θlnk
l

, l ∈ {a, b}, [1]191

where pl, 0 ≤ pl ≤ 1 is the per contact probability of switching192

from opinion l̄ to opinion l. Parameters θl̄, θl ≥ 0, and k,193

k ≥ 1 specify the shape of the response function. Observe that194

the switch rate to an opinion is zero, if there are no individuals195

with that opinion in the population.196

Three types of response functions can be distinguished de-197

pending on parameters k and θ (Figure 1a): (1) for k = 1 and198

θa = θb = 0 the switch rate function is linear; (2) for k = 1199

and θa, θb > 0 the switch rate function is saturating for large200

densities; (3) for k > 1 and θa, θb > 0 the switch rate function201

is sigmoidal. In ecology, very similar functions have been de-202

rived from first principles to describe the functional response203

of predator population density to the density of available prey,204

and are known as Holling type I, II, III functional response205

(24).206

In this work we investigate long term opinion dynamics for207

each one of these response functions. However, note that, to208

describe the diffusion of innovations or opinions in a population,209

sigmoidal functions have been used (25). These functions210

capture the trend whereupon the spread of an opinion l is211

very slow as long as only a small proportion of the population212

holds this opinion, and slows down again when the proportion213

of the population Nl is large, with fast growth in between.214

The saturation for high density of Nl mimics the saturation of215

information effect, whereupon the information loses its impact216

once it has been received several times. In our model, both217

opinions spread according to a sigmoidal response function,218

possibly with different shapes. This leads to a system in which219

opinions compete and may either co-exist or drive each other220

to extinction.221

We assume that opinion dynamics are fast compared to the222

natural demographic processes, and therefore do not include223

demographic processes in the model.224

A model coupling opinion dynamics and epidemic dynamics.225

We consider a disease that follows a Susceptible-Infected-226

Recovered (SIR) or a Susceptible-Infected-Susceptible (SIS)227

model. To investigate the effect of feedback between disease 228

dynamics and opinion dynamics on the course of an epidemic, 229

we couple the above described framework of opinion competi- 230

tion with a SIR or SIS infection transmission model (Figure 231

1c). For both types of disease dynamics, individuals become 232

infected and infectious at rate λ, which depends on the preva- 233

lence of infection, i. Infectious individuals recover with rate γ, 234

either becoming susceptible again (SIS model) or becoming 235

immune (SIR model). 236

Each individual has an opinion and an infection status. We 237

denote the density of susceptible individuals holding opinion a 238

with sa, the density of infectious individuals holding the same 239

opinion with ia, and the density of recovered individuals with 240

ra. Similarly, sb, ib, and rb denote the densities of individuals 241

who hold opinion b in the respective epidemiological states. 242

Individuals Na have a lower probability of acquiring infection
than individuals Nb, i.e. βa ≤ βb. We assume that the
measures taken by Na only reduce their susceptibility, and
that infectivity and the recovery rate are the same for the two
types of individuals. Note that the parameters βa, βb implicitly
include the transmission-relevant contact rate, which may differ
from the social contact rate c. Finally, we consider the case
where assortativity also applies to infection-relevant contacts,
such that in terms of physical contacts, the individuals can
prefer to mix with individuals who have the same health
opinion. Therefore the rates with which individuals sa and sb

are specified by the following equations:

λa(t) = βa

(
ω
ia(t)
na(t) + (1− ω)(ia(t) + ib(t))

)
,

λb(t) = βb

(
ω
ib(t)
nb(t) + (1− ω)(ia(t) + ib(t))

)
, [2]

The infection status of individuals does not modify the rate 243

with which they switch their opinion. However, infection 244

spread in the population can affect opinion dynamics. Here, 245

we consider the case of individuals obtaining information about 246

disease spread that is available publicly via media and health 247

authorities. In our model, with increasing prevalence of in- 248

fection i = ia + ib, opinion a gains in popularity, which is 249

represented by an increase in the probability of switch to 250

opinion a per contact, pa. We assume that 251

pa(i) = pa(0) + (pa(1)− pa(0)) (1 +m)i
1 +mi

, [3] 252

where pa(0) is the switching rate per contact in the disease- 253

free state, and pa(1) is the switching rate when the entire 254

population is infected; m is a constant that determines how 255

fast pa increases with increasing prevalence (see Figure 1b). 256

Thus, as prevalence of infection increases, so does the switch 257

rate to opinion a (Eq. (1)). Probability of switching to opinion 258

b per contact, pb, remains fixed throughout the outbreak. 259

The dynamics are described by a flow diagram shown in Fig- 260

ure 1c and are captured by system of ordinary differential 261

equations (6) in Methods section. 262

Model parameters are summarized in Table 1. In numerical 263

analysis, we use the indicated parameter values, unless stated 264

otherwise. We give the justification for the selection of the 265

values later in the text. 266

To calculate the basic reproduction number R0 for this model, 267

we used the Next Generation Matrix method described in (26). 268
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Fig. 1. Coupling of opinion dynamics and infection transmission dynamics. a
Switch rate function to opinion a depending on density na. For θ = 0 and k = 1
the switch rate is linear (blue); for θ > 0 and k = 1 the switch rate is saturating
(red); for θ > 0 and k > 1 the switch rate is sigmoid (yellow and violet). b Per
contact probability of switching to opinion a for different values of m as a function
of the density of infected individuals, i. c Flowchart of coupled opinion and infection
transmission model for two types of infectious diseases: SIS model (G = 1) and SIR
model (G = 0); black dashed arrows denote opinion transitions, red solid arrows
denote epidemiological transitions.

Then R0 is given by the spectral radius of matrix FV −1 with269

F =

na(0)βa

(
ω

na(0) + (1− ω)
)

na(0)βa(1− ω)

nb(0)βb(1− ω) nb(0)βb

(
ω

nb(0) + (1− ω)
) ,

V =

(
γa + c(1− ω)fb(nb(0)) −c(1− ω)fa(na(0))

−c(1− ω)fb(nb(0)) γb + c(1− ω)fa(na(0))

)
,

[4]270

Here (na(0), nb(0)) are given by the opinion distribution at271

the start of the outbreak and depend on k, θa, θb, pa/pb.272

For a population, in which only one of the two opinions is273

present (“monobelief” population), the epidemic dynamics are274

reduced to the basic SIS/SIR dynamics with a basic repro-275

duction number that is determined by the parameters of the276

dominating opinion: 277

Rl
0 = βl

γl
, l ∈ {a, b}. [5] 278

Table 1. Summary of model parameters described by system (6) and
ranges of values used in numerical examples.

Name Description (unit) Value*

c Social contact rate (individuals/week) 10 [5, 105]

ω Degree of assortativity 0 [0, 0.95]

pa,
pa(0)

Probability of switching to opinion a per
contact when no infectious cases exist

0.4
[0.1, 1.0]

pa(1) Probability of switching to opinion a per
contact when the whole population is in-
fectious

1 [0.6, 1.0]

pb Probability of switching to opinion b per
contact

0.4
[0.1, 0.4]

θa Saturation constant in switch rate func-
tion fa

5.0

θb Saturation constant in switch rate func-
tion fb

5.0

k Switch rate function shape parameter 2.7
[0.0, 2.7]

m Constant that controls the growth rate of
the switch probability pa as the density of
infected individuals increases

[1, 100]

βa Infection rate of susceptible individuals
holding opinion a (1/week)

0.8

βb Infection rate of susceptible individuals
holding opinion b (1/week)

2.0 (1.5)

γ Recovery rate of infectious individuals
(1/week)

1.0

* Intervals were sampled in bifurcation and sensitivity
analyses.

Dynamics of competing opinions. To understand the effect of 279

the coupling between the disease spread and opinion competi- 280

tion on infection transmission, we first need to consider the 281

dynamics of opinions in the disease-free population. 282

The model indicates that when either one of the two opinions 283

dominates the population (“monobelief” population), then this 284

remains unchanged until individuals of the opposing opinion 285

enter the population from outside. As we are mainly interested 286

in situations where two opinions compete in the population, we 287

investigated for which parameter regions a stable co-existence 288

of two opinions is possible. This co-existence depends on the 289

shape of the switch rate functions, fl, l ∈ {a, b}, but not on the 290

social contact rate c or the assortativity parameter ω, as these 291

are assumed to be the same for both opinions (Supporting 292

information (SI), Supplementary text). 293

For linear switch rate functions (Eq. (1), θl = 0, k = 1), the 294

stable co-existence of opinions is not possible (Figure 2). As 295

there is no density dependence, the growth of the switch rate 296

functions does not slow down even when the majority of the 297

population is following a certain opinion. If initially both 298
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opinions are present, the opinion with the larger probability of299

switching per contact pl will take over. If, for example, opinion300

a is introduced into a monobelief population with opinion b, it301

will only be able to persist if pa is larger than pb. In this case,302

the population will eventually switch to opinion a regardless303

of the initial density of individuals who hold it (Figure 2b).304

Assortativity degree (ω) and contact rate (c) while not affecting305

the outcome of the opinion competition, determine the speed306

with which the mono-belief state is reached, such that higher307

assortativity and lower contact rate prolong the transient308

period.309

0.5 1 1.5 2
0

0.5

1

a

5 10 15 20
0

0.2

0.4

0.6

0.8

1

b

Fig. 2. Opinion competition dynamics for a linear switch rate function. We
consider opinion dynamics in the disease-free population. a Bifurcation diagram
of na as a function of pa/pb. Red lines: unstable equilibria, blue lines: stable
equilibria. Orange area: basin of attraction of the mono-belief b equilibrium, blue area:
basin of attraction of the mono-belief a equilibrium. b Temporal dynamics of na for
pa/pb = 1.5. All solutions where initially both opinions are present converge to the
state where opinion a dominates.

If the switch rate functions are non-linear (Eq. (1), θl > 0,310

k ≥ 1) the opinions can co-exist in a steady state (Figure 3).311

For switch rate functions that are saturating but not sigmoidal312

(θl > 0, k = 1), either stable co-existence is possible, or one313

of the mono-belief solutions is stable. It depends on the two314

switch rate functions, whether co-existence is possible or not315

(Figures 3a, 3d, 3g). Stable co-existence of opinions is possible316

in the case when the switching functions exhibit saturation at317

high density of an opinion. Subsequently, the growth of the318

switch rate function for the dominant opinion slows down when319

the majority of the population is following that opinion. The320

stable co-existence state is attracting for all initial situations, in321

which both opinions are present. The distribution of opinions322

at this steady state depends entirely on the ratio pa/pb and not323

on pa and pb separately (SI, Supplementary text). The larger324

the ratio pa/pb, the higher is the equilibrium density of Na325

individuals. If permanent co-existence of opinions is impossible,326

the opinion with higher switch rate per contact (pl, l ∈ {a, b})327

will take over the population. The interval of pa/pb, in which328

opinions can co-exist, depends on the saturation constants329

of the switch rate functions, θl, l ∈ {a, b}. The higher these330

are (i.e. the faster saturation is achieved) the wider is the331

pa/pb interval, in which opinions can co-exist. Intuitively, the332

faster the switch rate functions become saturated, the larger333

differences between the probabilities of switching per contact334

can be while still allowing stable co-existence of opinions. For335

mathematical derivations and further elaborations, see SI,336

Supplementary text.337

If the switch rate functions are sigmoidal (Eq. (1), θl > 0, k >338

0), at least one stable co-existence state of opinions is possible339

for some parameter regions (Figure 3b, 3e). Additionally,340

monobelief population states are always locally attracting.341

I.e., if, for example, the population starts with a sufficiently342

large majority believing opinion a, then after some time the 343

entire population will hold this opinion. 344

If for a given set of parameters there is only a single unstable 345

co-existence equilibrium (Figures 3b and 3c), the population 346

always ends up as a monobelief population, but it depends 347

on the initial distribution of opinions to which mono-belief it 348

will converge. The proportions of na and nb at this unstable 349

steady state depend on the ratio pa/pb. The higher this ratio, 350

the lower is na. This unstable equilibrium separates the state 351

space into the basins of attraction of the a-monobelief and 352

b-monobelief populations. This implies that the population 353

with the higher associated switch probability per contact pl 354

requires a smaller proportion of individuals of that opinion to 355

invade. This is illustrated in Figure 3g), where pa is 1.5 times 356

higher than pa, hence it requires much fewer individuals of 357

opinion a to take over the population. 358

If, on the other hand, for a given fixed set of parameters several 359

steady states are possible, then their number is odd and at least 360

one of them is locally attractive. For the interpretation of the 361

model, only locally stable steady states are of interest as states 362

in which two opinions can co-exist. Unstable steady states are 363

relevant as boundaries between basins of attraction. In our 364

numerical experiments, we observed at most three different 365

steady states, one of them a stable co-existence state (see 366

Figure 3b). Our analysis and numerical experiments indicate 367

that existence of a stable co-existence state of opinions depends 368

on values of pa/pb, θa, θb, and k (SI, Supplementary text). 369

If there are three steady states, two of them are repelling 370

and one is attracting, such that the density na for the at- 371

tracting state is between the densities na for the repelling 372

states. Therefore, the repelling states mark the boundaries 373

of the basins of attraction for the attracting states. From 374

the bifurcation diagram (Figure 3b) we observe that there 375

are two points where the dynamics of the system change as 376

pa/pb increases from zero (left and right edges of the green 377

region on Figure 3b). These are saddle node bifurcation points 378

which mark the appearance and disappearance of a pair of 379

steady states. If pa/pb is to the left of the green region, then 380

in order to take over the population, nearly the whole popula- 381

tion should hold opinion a. Stable co-existence of opinions is 382

impossible. As pa/pb increases and passes the left edge of the 383

green region, this proportion na needed for opinion a to take 384

over the population declines (Figure 3b, upper red curve in 385

the green region). More importantly, stable co-existence with 386

opinion b is now possible and requires a much smaller initial 387

proportion of na for persistence of a. (Figure 3b, lower red 388

curve in the green region). As pa/pb increases past the right 389

edge of the green region, the “invasion” density threshold for 390

opinion a further declines. Moreover, as stable co-existence is 391

not possible anymore, it becomes the threshold for complete 392

taking over of the population by opinion a. 393

Epidemic dynamics in a population with competing opinions. 394

For the purposes of analysis of the feedback between opinion 395

competition and infection dynamics, we are mainly interested 396

in the situation where health-positive and health-neutral opin- 397

ions can co-exist in a steady state and the monobelief pop- 398

ulation steady states are locally stable. We therefore focus 399

our attention on sigmoidal opinion switch rate functions and 400

on the parameter region where stable co-existence of opinions 401

is possible. We assume that an infectious disease invades a 402

population, in which the two opinions co-exist at the stable 403
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Fig. 3. Opinion competition dynamics for saturating and sigmoidal switch rate functions. The upper row shows bifurcation diagrams of na as a function of pa/pb. For
a a saturating switch rate function; b and c sigmoidal switch rate functions. Red lines: unstable equilibria, blue lines: stable equilibria. Orange area: basin of attraction for the
equilibrium with opinion b dominating; blue area: basin of attraction for the equilibrium where opinion a dominates; green area: basin of attraction of a stable co-existence
equilibrium. d-i Temporal dynamics of na for different switch rate functions and ratios pa/pb. In all panels θa = θb = 5.

steady state.404

The opinion switch rate-related parameters are fixed at k =405

1.6, θa = θb = 5. Thus the switch rates for both opinions406

are sigmoidal functions. We fix pb = 0.4. For most of the407

simulations pa and pa(0) are fixed to 0.4, thus pa/pb = 1408

and the stable co-existence of opinion equilibrium has 50/50409

distribution of health-positive and health-neutral individuals.410

Probability of switching to to opinion a per contact when the411

whole population is infectious pa(1) is bounded by the largest412

possible value it can have, 1. Assortativity degree ω and social413

contact rates c are varied on the intervals which are sufficiently414

wide to recover full range of qualitative dynamics.415

We consider the dynamics of a respiratory non-fatal infectious416

disease similar to flu. We assume that the infectious period417

lasts on average a week, thus we fixed γa = γb = 1 per week.418

Furthermore, we assume that in a population where opinion a419

is dominant, the infection cannot spread because the health-420

positive opinion leads to protective behavior that prevents an421

outbreak of the infection. In a population, where opinion b422

dominates, this health-neutral opinion enables the infection to423

spread. The transmission parameters are set as follows. The424

infection rate of susceptible individuals holding the health-425

positive opinion a is fixed βa = 0.8 per week, and the infection426

rate for individuals holding the health-positive opinion b is427

fixed βb = 2 per week for SIR model and βb = 1.5 per week 428

for SIS model. This difference of values was necessary, since 429

in the case of SIS the pool of susceptible individuals is being 430

constantly replenished. These settings imply that Ra
0 = 0.8 < 1 431

and Rb
0 = 2 > 1. 432

Basic reproduction number. In a situation where both opinions 433

are present at the time the infectious disease comes into the 434

population, the basic reproduction number R0 depends on the 435

proportions na and nb. We assume that these proportions are 436

at steady state at the moment of onset of an epidemic. Recall 437

that c and ω do not influence this steady state distribution 438

of opinions, so the initial situation is the same for all values 439

of those parameters. We therefore can investigate how social 440

contact rate c and degree of assortativity ω impact the epi- 441

demic dynamics without changing the initial steady state of 442

the system. By varying c and ω, we change the way the popu- 443

lation can adapt to an emerging outbreak by communicating 444

about health-positive behavior. With increasing c, opinions 445

can spread faster, while with increasing ω, opinions are more 446

restricted to their subpopulation. 447

In Figure 4 we investigated how the basic reproduction number 448

R0 changes with changing social contact rate c and assortativ- 449

ity degree ω for three settings of the ratio pa/pb: 0.8, 1, and 450
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Fig. 4. Impact of mixing patterns on basic reproduction number R0. a, b, and c show contour maps of R0 as a function of the social contact rate c and the assortativity
ω. a For pa/pb = 0.8 the initial distribution of opinions is (sa(0), sb(0)) = (0.35, 0.65). b For pa/pb = 1 we have (sa(0), sb(0)) = (0.5, 0.5). c For pa/pb = 1.25
we have (sa(0), sb(0)) = (0.65, 0.35). The infection rate of susceptible individuals holding opinion a is fixed βb = 2, the value used to investigate the dynamics for the SIR
system. For the same set of figures with βb = 1.5, the value used to investigate the dynamics of the SIS model, see Figure S2 in SI.

1.25.451

For all three settings of ratio pa/pb, the basic reproduction452

number increases as assortativity ω increases, and decreases453

as the social contact rate (c) increases. As the ratio pa/pb454

increases, the basic reproduction number decreases. We note455

that for high assortativity, the effect of increasing c is smaller456

than for low assortativity. Overall, we conclude that increasing457

assortativity slows down the spread of opinions and therefore458

leads to higher values of R0. Conversely, increasing social459

contact rate c leads to faster opinion spread and therefore to460

lower R0. Therefore, strong assortative mixing by opinions461

can facilitate the outbreak of an infectious disease.462

SIR model with opinion competition. In this section, we consider463

the dynamics beyond the start of an outbreak for an SIR-type464

disease and investigate how it depends on c and ω. We fixed465

pa(0)/pb = 1 and pa(0)/pb = 2.5 and used the respective466

stable co-existence distribution (na = 0.5, nb = 0.5) as the467

initial state of the population. We seeded infection by setting468

ib(0) = 6× 10−8 and sb(0) = nb(0)− ib(0).469

We investigated the effect of the feedback between opinion470

competition and infection dynamics on the epidemic peak471

and on the peak density of the Na population during and472

after the outbreak. We used three settings for parameter m,473

which affects the sensitivity of the population to the growth in474

prevalence of infection. As the prevalence increases, p(a) now475

increases, and this can be slower (m = 25) or faster (m = 75)476

(Figure 5).477

For all three scenarios the peak prevalence is higher for lower478

contact rates and higher assortativity. The higher is the479

sensitivity of the population m, the lower is the prevalence480

peak.481

In Figure 6, the temporal dynamics are shown for some param-482

eter combinations. As a consequence of the feedback between483

the disease and infection dynamics, the density of individu-484

als who hold opinion a temporarily increases, with eventual485

return of the population to the pre-outbreak opinion distribu-486

tion. However, for some parameters settings, the population487

may convert completely to opinion a, thereby preserving the488

memory of the past outbreak. We investigated the parametric489

region, in which this conversion to a occurs (Figure 5 and490

Figure S5 in SI). From Figure ?? it follows that high sensi- 491

tivity of the population to rise in prevalence of infection, as 492

reflected in parameters pa(1) and m and a high social contact 493

enable conversion to opinion a. In addition, a high degree of 494

assortativity also enables opinion a to become dominant (dark 495

blue region in Figures 5a, 5b, and 5c and in Figures S5a and 496

S5b in SI). This is unexpected, since high assortativity slows 497

down opinion exchange. However, since high assortativity 498

also leads to a large R0, it leads to a rise in prevalence, and 499

therefore increases the probability of switching to opinion a. 500

More technically, the convergence of the population to a mono- 501

belief a population requires that the na component crosses 502

into the basin of attraction of the mono-belief a steady state 503

(red lines on Figures 6a and 6d). Several conditions make this 504

event possible: (1) a high prevalence of infection, (2) a fast 505

response of the population to increasing prevalence; (3) a high 506

rate of switching from opinion b to a. 507

In contrast with the standard SIR epidemic, whose dynamics 508

display a single peak only, in a situation with feedback between 509

the disease dynamics and opinions dynamics multiple epidemic 510

peaks may appear (Figure 7). Our numerical analyses indicate 511

that in order for multiple epidemic peaks to appear there 512

should be a pronounced difference between population Na 513

and Nb in terms of the preventative measures they adapt (as 514

reflected in parameters βa and βb). The upper boundary of the 515

region in βa−βb subspace where multiple peaks appear marks 516

the region where the population switches to opinion a (red 517

curve). Therefore, for a fixed βb as βa increases multiple peaks 518

appear as the population moves to the a-monobelief state 519

(Figure 8). The number of peaks grows as βa moves closer 520

to the boundary. Note that in our analyses, we considered a 521

local maximum of prevalence to be a peak if it exceeded 10−8. 522

Moreover, the more sensitive the population is to increases in 523

the prevalence of infection (as reflected by parameter m), the 524

larger is the number of peaks that will appear in the region 525

adjacent to the boundary where switch of the population to 526

opinion a occurs, see Figure 7 and Figure S4 in SI. Finally, if 527

the probability of switch to opinion a in the population without 528

infection, pa(0) is significantly smaller than the probability 529

of switch to opinion b, pb the region in βa − βb space where 530

multiple peaks exist is larger (see Figure S3 in SI). 531
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DRAFTFig. 5. Impact of social contact rate and assortativity on epidemic dynamics. We consider the dynamics of the SIR system for three scenarios for the sensitivity of the
population to increasing prevalence of infection as denoted by parameter m, m = 25 for a and d, m = 50 for b and e, and m = 75 for c and f. a, b, and c show heat maps
of the peak density of the Na population; in the dark blue region the population converts to opinion a. d, e, and f show contour maps of the peak prevalence.
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Fig. 6. Impact of assortativity on the population adopting opinion a. We consider the dynamics of the SIR system. a and d show density of Na population na in time, b
and e show the prevalence of infectious cases in time, c and f show phase diagrams for three different solutions overlaid over a bifurcation diagram for density of Na population,
na, component of permanent distributions. a, b, and c are plotted for degree of assortativity ω = 0.2, a, b, and c - for ω = 0.6. Social contact rate is fixed c = 40.

In summary, for SIR-dynamics we find that feedback between532

opinion dynamics and epidemic dynamics can substantially533

change the epidemic outcomes. The basic reproduction number534

R0 and the peak of an outbreak can be higher if there is535

assortative mixing by opinion. In addition, multiple epidemic 536

peaks can occur and the response to an epidemic can lead 537

to a shift of the population to a state, in which only the 538

health-positive opinion is circulating. 539
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SIS model with opinion competition. Similarly, for a SIS-infection,540

coupling between opinion competition and disease dynamics541

can lead to opinion a taking over the population (Figure 9),542

and to the appearance of oscillatory epidemic dynamics (Figure543

10). For the SIS epidemic, these oscillatory dynamics can be544

sustained epidemic cycles instead of damped oscillations.545

Switching of the whole population to opinion a causes the546

disease to go extinct even when R0 > 1 for the opinion co-547

existence state. Our results indicate that higher sensitivity of548

the population to increasing prevalence, as reflected in high549

values of m and pa(1), will result in higher average densities550

of na, and for some regions na = 1 (Figure 9 and Figure S6551

in SI). The higher is the value of m the lower is the threshold552

value of pa(1) above which the population switches to opinion553

a. Moreover, if pa is larger than a threshold value, the state554

na = 1 occurs for a wide range of sensitivity of the population555

to the prevalence, m. Should pa(1) exceed the threshold value556

significantly, the prevalence reduces considerably. Finally, high557

degree of assortativity in the population, on the one hand,558

leads to higher endemic prevalence. On the other hand, high559

assortativity leads to increase in the pa(1)−m subspace where560

the population switches to opinion a. We hypothesize that561

this is attributed to the positive effect assortativity has on562

infection transmission.563

In addition to causing the population to switch to opinion a564

when a disease invades, the feedback between opinions com-565

petition and disease spread can induce sustained oscillatory566

epidemic dynamics (Figure 10). We investigated the con-567

ditions under which this may happen. We discovered that568

oscillatory dynamics mostly require a pronounced difference569

in epidemiological properties between individuals Na and Nb,570

such that when the whole population holds opinion a, the571

disease becomes extinct and if the whole population believes572

opinion b the disease persists. To show this, we plotted the573

amplitude of the epidemic cycle, its period and average value574

across an interval of infection rates values for two different575

sensitivities of the population reaction to the prevalence of576

infectious cases.577

For a fixed value of infection rate of Nb individuals, βb = 5.5,578

as infection rate of Na individuals βa increases initially, the579

endemic prevalence of infectious cases is constant in time,580

with the prevalence level increasing (Figure 11a). Once βa 581

increases past a threshold value, the constant endemic state is 582

replaced by oscillatory dynamics, such that the average preva- 583

lence decreases as compared to the constant level it replaces 584

(Figure 11b). As βa increase further, the average prevalence, 585

magnitude, and period of the cycle increase (Figure 11c). This 586

pattern continues until the prevalence pushes the population 587

to convert to opinion a, at which point the prevalence becomes 588

zero and oscillatory dynamics disappear (Figure 10d). 589

To summarize, given a disease that follows SIS framework, 590

adaptive behavior can lead to a number of qualitatively dif- 591

ferent outcomes. It can lead to the reduction of infection 592

prevalence, appearance of sustained epidemic cycles, and com- 593

plete eradication of the infection in conditions where the basic 594

reproduction number would indicate that the infection will 595

persist. Moreover, as the degree of assortativity increases 596

and therefore, the basic reproductive number increases, the 597

parametric region where opinion a becomes dominant becomes 598

wider. Similar to the SIR model, the parameter region where 599

oscillations arise is adjacent to the region where opinion a 600

becomes the dominant opinion. 601

Discussion 602

Using a model that couples opinion competition and infection 603

spread, we investigated the effects of feedback between the 604

two on epidemic dynamics. Our main findings were that the 605

opinion distribution landscape can significantly influence the 606

outcome of an epidemic. On the one hand, epidemic peaks can 607

be reduced, and a population can be completely shifted into a 608

health-positive state. On the other hand, damped or sustained 609

oscillations of prevalence can appear as transmissibility of the 610

infection increases. Parameters related to socializing dynamics 611

such as social contact rate and degree of the assortative mixing 612

by opinion were among the most important factors leading to 613

the appearance of the above phenomena. 614

The influence of assortative mixing is two-fold. On the one 615

hand, assortative mixing slows down the switching of opin- 616

ions and therefore the possible reaction of the population to 617

an epidemic. On the other hand, as the basic reproduction 618

number increases as the assortative mixing increases, higher 619

assortative mixing leads to higher incidence and therefore to 620
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Fig. 7. Regions of multiple epidemic peaks resulting from feedback between disease dynamics and opinion dynamics. We consider the dynamics of the SIR model.
a, b, and c are contour plots of the number of prevalence peaks for different values of infection rates βa and βb for different sensitivity m of the population to increasing
prevalence: a m = 25, b m = 50, and c m = 75. The social contact rate is fixed at c = 40, and the probability of switch to opinion a per contact when the entire population
is infected is fixed pa(1) = 1, and the assortativity degree is fixed ω = 0. The area above the red curve denotes the outcome where the population switched to opinion a. As
m increases this region expands.
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Fig. 8. Temporal dynamics with multiple epidemic peaks resulting from feedback between disease dynamics and opinion dynamics. We consider the dynamics of
the SIR system. Panels show time series of infection prevalence, and of the density of the Na population, na for different values of infection rate βa. The social contact rate
was fixed at c = 40, the upper bound of the probability of switching to opinion a was set to pa(1) = 1, the sensitivity parameter m was set to m = 75, the infection rate of
Nb individuals was set to βb = 4.15, and the assortativity degree is fixed ω = 0.

Fig. 9. Impact of social contact rate and assortativity on the average endemic prevalence of infectious cases and average long-term opinion distribution. We
consider the dynamics of the SIS system. a, b, and c show heat maps of the long term average density of the Na population. d, e, and f show heat maps of the long term
average infection prevalence. If the epidemic dynamics are periodic, then the average is taken over a period. a and d show scenarios with sensitivity of reaction to prevalence
given by m = 25. b and e show scenarios with sensitivity of reaction to prevalence given by m = 50. c and f show scenarios with sensitivity of reaction to prevalence given
by m = 75. The dark blue region in the top row and dark blue region in the bottom row denote the outcome where the population switched to opinion a and the disease
becomes extinct. The infection rate of Nb individuals was set βb = 1.5.

a stronger reaction of the population, eventually even pushing621

the population into a state where the health-positive opinion622

is dominating. However, if assortativity is too high, its pro-623

moting effect on prevalence is not sufficient to help spread the624

health-protective opinion, and the population will experience a625

large epidemic peak. This effect on opinion spread is mitigated626

if the social contact rate is high.627

Our model differs from earlier work incorporating awareness628

into epidemic modelling (2, 4) in that we consider both opinions629

as possibly attractive, such that a health-positive individuals630

may switch to a health-neutral opinion through contact with631

others who hold that opinion. This switching, which leads632

individuals to adopt a more risky health behavior, can therefore633

spread in the same way as health-positive behavior. In the 634

papers (2, 4), awareness for the risks of infection decayed, when 635

the infection was not present in the population, eventually 636

leading to a completely unaware population. In contrast, in 637

our model both opinions can co-exist in a steady state, also in a 638

disease-free situation. The possibility of this outcome depends 639

on the shape of opinion switch rate function. The potential 640

of a stable co-existence of the two opinions implies that the 641

impact of a new epidemic depends on the initial proportion 642

of individuals with a health-positive opinion. Such an initial 643

situation can be influenced, e.g., by educational interventions 644

or other types of communication about future epidemic risks. 645

Appearance of oscillatory epidemic dynamics due to the feed- 646
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Fig. 10. Impact of assortativity and sensitivity of reaction to the prevalence
of infectious cases on the appearance of periodic epidemic dynamics. We
consider the dynamics of the SIS system. We consider the dynamics of the SIS
system. a and b show heat maps of the average prevalence. If the epidemic dynamics
are periodic, then the average is taken over a period. c and d show heat maps of
the period of the epidemic cycle. The period is equal to zero if the dynamics are
stationary. e and f show heat maps of the amplitude of epidemic cycle. The amplitude
is zero if the dynamics are stationary. a, c, and e show scenarios with sensitivity of
reaction to prevalence given by m = 50. b, d, and f show scenarios with sensitivity
of reaction to prevalence given by m = 75. The dark blue region above the red line
denotes the outcome where the population switched to opinion a and the disease
becomes extinct. The probability of switch to opinion a when no infectious cases are
present is fixed pa(0) = 0.28, the probability of switch to opinion a when the whole
population is infected is fixed to pa(1) = 0.6. Social contact rate is fixed c = 10.

back between health opinion dynamics and disease spread647

was observed both in the analysis of real world data (1, 5)648

and simulated trajectories produced by socio-epidemiological649

models (27, 28). In the present work, by means of considering650

changes in the dynamics across the parameter landscape, we651

gained insights into which properties of the system cause the652

appearance of oscillations. Pronounced difference between the653

carriers of two opinions in terms of infection rates as well as654

high average infection rate is one of the conditions for which655

oscillatory dynamics arise. Another important factor for the656

appearance of oscillations is a high rate of opinion exchange657

(as captured by the social contact rate) and high sensitivity658

of the population to prevalence. These two factors also con-659
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Fig. 11. Sustained oscillatory dynamics resulting from feedback between dis-
ease dynamics and opinion dynamics. We consider the dynamics of the SIS
system. Panels show time series for the prevalence of infectious cases and density of
Na population, na for different values of infection rate of Na population, βa. The
contact rate for information exchange is fixed c = 10, the probability of switch to
opinion a when no infectious cases are present is fixed pa(0) = 0.28, the probability
of switch to opinion a per contact when the whole population is infected is fixed
pa(1) = 0.6, the constant that controls the growth of the switch rate to opinion a is
fixed m = 75, and the infection rate of Nb individuals is fixed to βb = 5.5.

tribute to the possibility of the population converting to the 660

health positive opinion. In our experiments, the parametric re- 661

gions where these two phenomena take place always appeared 662

adjacent to each other. 663

The model can be extended to address present-day epidemic 664

concerns, such as dynamics of infectious vaccine-preventable 665

diseases. Vaccine uptake rate for well-known infectious dis- 666

eases (e.g., measles, influenza) as well as for emerging ones 667

(e.g., COVID-19) is fraught by reluctance of the part of the 668

population to vaccinate (29–33). While circulation of vaccine 669

uptake-endorsing opinions is subject to both communication 670

from public health authorities as well as to interpersonal ex- 671

changes (30, 34, 35), the circulation of anti-vaccination senti- 672

ment depends on social norms within the local network and 673

interpersonal communications within the network (34–36). 674

The models that considered the role of interpersonal commu- 675

nications on the vaccination uptake and its effect on epidemic 676

dynamics (27, 28), while coupling vaccination strategies with 677

the population epidemic state, modeled the growth of the vac- 678

cinating population contingent on the presence of the disease, 679

while its opposite, non-vaccinating sentiment, did not depend 680

on the population state. Our framework which allows for 681

symmetric treatment of health-positive and health-neutral sen- 682

timents is well-suited for investigation of vaccination opinion 683

dynamics with or without the disease. 684

Our framework can bring interesting qualitative insights for 685

the dynamics of a vaccine preventable disease characterized by 686

waning immunity (e.g. measles, pertussis, influenza). In the 687

conditions of waning immunity, it is highly important to keep 688

up consistently high vaccination uptake rate if not to eradicate 689

the disease, at least to avoid the overcrowding of the health 690

care system. Another important consideration, in the context 691

of infectious diseases characterized by waning immunity, is the 692

process of waning and boosting of immunity which can cause 693

pronounced oscillation dynamics (37). Therefore, for infectious 694
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diseases characterized by waning and boosting of immunity,695

presence of adaptive behavior with respect to vaccination, can696

give rise to rich dynamics highly relevant for the efforts of697

health authorities.698

In this work, we assumed that the social exchange does not699

necessarily require physical contacts (interactions that have700

a probability of infection transmission), i.e. in a situation701

where the physical contact may decrease, the information702

exchange and thus, opinion dynamic will proceed unimpeded.703

However, in real life, at least some of the social contacts704

will terminate if the physical contact rate is reduced. Thus,705

if health-positive individuals practice social distancing then706

opinion dynamics and subsequently epidemic dynamics will707

be altered in a number of ways that may not necessarily708

benefit the population. For example, given a reduction of709

social contact rate for the health-positive individuals, it may710

be necessary they are present at a higher proportion, in order711

to maintain steady presence in the population.712

Our simple model has rich dynamics, appearance of which713

depends on the functional responses and parameter values.714

For example, as our analyses have shown, the shape of the715

functional response plays a key role in the dynamics of health716

opinions/behaviors and subsequently in epidemic dynamics.717

Therefore, to be able to use the model for qualitative and718

quantitative predictions it is paramount to accurately identify719

functional representations for the opinion switch rates and for720

behavioral response to the epidemic spread. Having these at721

hand will enable the design of information interventions to be722

well-tailored to the specific time frame of the epidemic.723

Materials and Methods724

The system of ordinary equations (6)describes the coupled dynamics
of infection spread and opinion competition.

dsa(t)
dt

= − sa(t)c(1 − ω)fb(nb(t)) + sb(t)c(1 − ω)fa(na(t))

−saλa(t) +Gγaia(t)
dia(t)

dt
= − ia(t)c(1 − ω)fb(nb(t)) + ib(t)c(1 − ω)fa(na(t))

+saλa(t) − γaia(t)
dra(t)

dt
= − ra(t)c(1 − ω)fb(nb(t)) + rb(t)c(1 − ω)fa(na(t))

+ (1 −G) γaia(t) [6]
dsb(t)

dt
=sa(t)c(1 − ω)fb(nb(t)) − sb(t)c(1 − ω)fa(na(t))

−sbλb(t) +Gγbib(t)
dib(t)

dt
=ia(t)c(1 − ω)fb(nb(t)) − ib(t)c(1 − ω)fa(na(t))

+sbλb(t) − γbib(t)
drb(t)

dt
=ra(t)c(1 − ω)fb(nb(t)) − rb(t)c(1 − ω)fa(na(t))

+ (1 −G) γbib(t)

where

G =
{

1 for a SIS model,
0 for a SIR model.

[7]

and λa and λb are specified by equations (2).725

Model code The model was implemented in MATLAB R2021b726

(38). The code producing the analyses and figures for this study is727

available at https://github.com/aiteslya/TwoOpinion (39).728
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