
1  

 

 

 

Predicting COVID-19 outbreak using open mobility data for 
minimal disruption on the country’s economy 
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Abstract 

COVID-19 is an infectious disease caused by the SARS-COV-2 coronavirus, which was discovered in late 2019. Within a few 

months, COVID-19 was declared a global pandemic by the WHO. Several countries adopted social distancing measures, such 

as self-quarantine, workplace and mobility restrictions, reducing the probability of contact between non-infected and infected 

people. In general, these measures have a negative impact on low-income economies and small and medium businesses. During 

the outbreak, several predictive models have been proposed in order to assess the level of saturation that health services might 

have. Nevertheless, none of them considers information on the people’s mobility to assess the effectiveness of the social distancing 

policies. In this study, the authors propose a prediction method based on people’s open mobility data from Apple© and Google© 
databases to project potential scenarios and monitor case growth. The proposed method shows the importance of monitoring daily 

case increase for the first 4-6 weeks of the pandemic wave. Active monitoring is crucial to determine the reduction in mobility and 

proper actions. The results can contribute to health authorities for making timely decisions, preventing the spread of viruses while 

balancing the reduction of mobility with minimal disruption in people’s economies in future outbreaks. 
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1. Background 

At the end of 2019, humanity has been challenged with a new pandemic caused by the novel corona virus identified 

as SARS-COV-2, leading to a global pandemic causing the disease called COVID or COVID-19. The outbreak was 

first identified in late December 2019, in the Wuhan province in China, when health authorities identified cases of 

atypical pneumonia of unknown origin and evidence of person-to-person transmission via droplets or direct contact 

[1] [2]. People were affected in different ways, developing mild to severe illness. Among the common symptoms were 

identified: fever, chills, muscle pain, headache, sore throat, cough, and shortness of breath (difficulty of breathing). 

After being infected with the virus, it can take up to 14 days for people to develop symptoms [3] [4]. According to 

World Health Organization (WHO), by the end of January 2020, China had more than 11,800 confirmed COVID- 

19 cases, as well as more than 250 deaths [5]. In a few months, the virus outbreak spread to countries in Asia, 

Europe, and America. On February 15th, 2020, WHO confirmed more than 40,000 cases in 28 countries. On March 

11th, 2020, it also declared the outbreak as the Sixth Public Health Emergency and a global pandemic [6]. In order 

to avoid the increase on infections and overwhelm the health services of each country, WHO made the following 

recommendations: 
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• avoid close contact with sick people or with symptoms of COVID-19, 

• avoid attending massive events as well as family gatherings, 

• washing hands with soap and water for more than 20 seconds, 

• cover mouth and nose with the elbow or a tissue when coughs or sneezes among others [1] [7]. 

Such contingencies measures that lead to greatest impact worldwide is social distancing such as travel and mobility 

restrictions as well as population confinement in their homes [8] [9]. 

Several countries adopted social distancing measures, such as self-quarantine, workplace and mobility restrictions 

in the public space, and facilities closures. Some of them in a voluntary manner by the citizens (such as Latin 

American countries) and others through strict mobility and travel restrictions (such as Spain, the United States, Italy 

or South Korea). All of these policies have the goal to reduce mobility in the public space, hence, reducing the 

probability of contact between non-infected and infected people, leading to avoidance of new community-transmitted 

cases [10][11][12][13]. For some countries, having the ability to measure population mobility variations is a challenge 

that must be solved in order to have data that helps predicting the spread of the disease. During this outbreak, predictive 

models have become a key tool for health authorities in each country to assess the level of saturation that health 

services might have. To date, no model has been able to accurately predict the evolution of future cases, however, 

depending on the variables involved, the number of people who could become infected and die, can be predicted. 

Some authors have proposed different forecasting models. For example, a modified SEIR (Susceptible Exposed 

Infectious – Recovered) model to predict the COVID-19 outbreak was proposed by López and Rodó  [14].  They 

incorporated the effects of varying proportions of containment and fit data to quarantined populations accounting 

for the spread of infection during the outbreak. The proposed model predicts the number of infected individuals 

(undiagnosed) considering the different levels of isolation of the population, to evaluate the effects of the reduction 

of contacts. The model provides results similar to those obtained with more complex models. Li et. al [15] used the 

Gaussian distribution theory to propose a new model of COVID-19 transmission. The simulation results show that 

the curve of the proposed model is quite similar to the curve calculated with official data from different countries such 

as China, South Korea, Italy, and Iran. The model considers the virus incubation period, basic reproduction number, 

and daily infection number. A statistical forecast using time series models with open-data of confirmed cases, deaths, 

and recoveries was proposed by Petropoulos and Makridakis [16]. Using univariate time series models, and assuming 

that the data is accurate and that past patterns will continue to apply, forecast curves are obtained that could be used 

for decision-making and implementing control measures. The results obtained with these models show that forecast 

graphs of the COVID-19 outbreak can be calculated, however, none of them considers information on the people’s 

mobility to assess the effectiveness of the social restriction policies implemented in each country. 

On the other hand, Oliver et. al [17] describe how mobile phone data could be used to design social distancing 

policies and delay the spread of the outbreak. The authors identified reasons why not all countries are able to use 

this information for predicting future cases. During the COVID-19 outbreak, some countries do not provide access to 

accurate information which might help to determine the mobility of their population and evaluate the effectiveness of 

social distancing policies. After WHO declared a global pandemic, Google© [18] and Apple© [19] released public 

mobility data from their platforms to help COVID-19 outbreak spread. Both companies decided to provide data about 

the people’s mobility patterns around the world based on information from mapping and GPS applications. Such 

information can be useful for health authorities as a basis for decision-making considering the volume of people who 

uses private vehicles, walks, or uses public transportation. Mexican government used this information to monitor 

people’s mobility in the public space [20]. 

As contribution, the authors propose a method for forecasting the outbreak using Google© and Apple©’s mo- 

bility trend reports. The authors envisions that this article can contribute to health authorities for making timely 

decisions, preventing the spread of viruses while balancing the reduction of mobility with minimal disruption in 

people’s economies in future outbreaks. 

 
2. Technical Framework 

In any infectious disease, there are a number of parameters to consider when countries are trying to control the 

outbreak. The most known parameter is vaccination, which allows to basically reduce to a manageable number of 
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cases, ideally to zero. In cases with novel infectious agents such as the novel SARS-CoV-2 virus, which causes the 

disease called COVID-19, no vaccination yet exits, making public health officials being challenged to manage cases 

under control. For such cases, another parameter shall be used, called R which refers to the effective reproduction 

number [21] and, basically describes the way of measuring an infectious disease’s capacity to spread. In this study, 

the R number will be limited to understand outbreak spread [22], the use of it on the method and what it means for 

the average number of people that one infected person will pass the virus to [23]. 

The R number shall not be considered as a fixed parameter. Instead, it shall be seen as a parameter that can be 

affected by a range of factors [24], including not just how infectious a disease is but how it develops over time, how 

a population behaves in terms of mobility, containment and immunity. Immunity might be as a result of infection or 

vaccination. 

A particular version of R is called R0 and is referred as the basic reproduction number, which is used when a new 

infection disease is discovered [22]. Another common use of R is called Re or the effective reproduction. Ideally this 

number with vaccination is lower than 1.0 [25] [26]. 

In the case of SARS-CoV-2, R value varies from country to country, people’s behavior and population’s density: 

in urban areas, larger R0 values would be expected versus rural areas otherwise. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. An infection agent such as SARS-COV-2 has a different behavior while reproduction number R0 varies. 

 

In order for any infectious disease such as the COVID-19 pandemic, is under control, R0 should be below 1. If 

R0 is equal to 1, then the outbreak is contained but never will disappear over the time. If R0 is greater than 1, then 

public health systems might suffer depending how lethal the infection agent is. Figure 1 shows different behaviors to 

an infection agent with just 10 identified cases in day 0. Over the time, depending upon the R0 value, cases might 

go down to zero (for R0 values less than 1) or might go up (for R0 values greater than 1). Hence the importance of 

controlling R0 values to manage outbreak spreads. 

According to WHO, one of the main strategies to contain the SARS-CoV-2 outbreak is via social distancing [27], 

meaning that people should maintain a safe separation from another individual, but also avoiding crowded places 

mainly in the public space. National state governments might adopt different measures to maintain social distances, 

some of them aiming public will and some others using enforcement agencies such as the police or national guards. 

The most important aspect is to keep people away from crowded places such as schools, public locations, office 

buildings, shopping centers and manufacturing floors. 

Most of the national governments should keep a balance between public health, domestic macroeconomics and 

society well-being in general. Given the current outbreak conditions where there is no other treatment but keeping 

social distance, it results extremely important to make a decision on when the reduction in mobility should be in 

place and how deep this reduction should be applied in the public life. In this paper the authors propose a method 
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to anticipate the growth of SARS-COV-2 in urban areas using open mobility data coming from Apple© iOS and 

Google© Android mobile phones. In addition, lessons learned from successful countries controlling the pandemic 
are discussed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Preparedness and response framework for novel influenza A virus pandemics, with CDC intervals and WHO phases [28]. 

 
According to WHO there are four phases in a pandemic: Interpandemic phase, Alert phase, Pandemic phase and 

Transition phase, whereas the US Centers for Disease Control and Prevention, CDC, refers to 6 intervals: Investiga- 

tion, Recognition, Initiation, Acceleration, Deceleration and Preparation. Figure 2 describes the pandemic curve of 

any infectious agent and both WHO and CDC phases or intervals. It is of our interest to understand the behavior of an 

outbreak in order to make the intervention measure more effective with the use of mobility data. Most of the current 

forecasting models [14][15][16] use the number of existing cases and make projections of future case growth using 

the expected outbreak scenario with and without interventions. 

According to the Community Mitigation Guidelines to Prevent Pandemic Influenza [29] there shall be a risk 

assessment to understand the deepness of measures such as closure of schools or workplaces as well as the reduction 

of people’s mobility in the public space. 

Table 1 shows the initial assessment in terms of transmissibility and clinical severity. As seen on the table, R0 

greater than 1.8 means a moderate to high risk, as well as a case fatality rate greater than 10%. Hence the importance 

of predictive models that allow health officials to make decisions aiming to keepx R0 at low values. 

For a specific country or location, the future case growth can be expressed as a function of its population mobility 

parameter called m0, and its basic reproduction number R0. 

Table 2 shows that different values of R0 and the impact in future case growth with only 10 cases in day 1 and 

assuming R0 is not affected. According to pandemic mitigation this action would be referred as a scenario with no 

intervention [31]. Equation 1 shows the case growth based on R0: 

Ci = Ci−1 ∗ R0 (1) 

where: 

Ci is number of cases in interval i with i > 0 

R0 is the basic reproduction number 

The importance of mobility parameter m0 in pandemic mitigation for COVID-19 is key to make the cases below 

the health system capacity hc shown in Figure 3. Herein, the main contribution of this method is on finding the 

proper mobility m0 parameter via public mobility data such that cases never overpasses hc. Ideally hc value shall be 

below maximum capacity to avoid saturation of public health system or within a toleration threshold given that health 

capacity will not be overpassed. 
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Table 1. Initial assessment: scaled measures of influenza virus transmissibility and clinical severity (adapted from [30]). 

 
Day Daily Cases R0 Day Daily Cases R0 Day Daily Cases R0 

1 10 1.10 1 10 1.50 1 10 1.80 

2 11 1.10 2 15 1.50 2 18 1.80 

3 12 1.10 3 23 1.50 3 32 1.80 

4 13 1.10 4 34 1.50 4 58 1.80 

5 15 1.10 5 51 1.50 5 105 1.80 

6 16 1.10 6 76 1.50 6 189 1.80 

7 18 1.10 7 114 1.50 7 340 1.80 

8 19 1.10 8 171 1.50 8 612 1.80 

9 21 1.10 9 256 1.50 9 1102 1.80 

10 24 1.10 10 384 1.50 10 1984 1.80 

11 26 1.10 11 577 1.50 11 3570 1.80 

12 29 1.10 12 865 1.50 12 6427 1.80 

13 31 1.10 13 1297 1.50 13 11568 1.80 

14 35 1.10 14 1946 1.50 14 20823 1.80 

15 38 1.10 15 2919 1.50 15 37481 1.80 

A) B) C) 
 

Table 2. Case growth of any given infectious agent with A) R0 = 1.1 B) R0 = 1.5 and C) R0 = 1.8. 

 

3. Model and Data sets 

As explained in section 2, the main goal of this research is to find how mobility impacts in future case growth and, 

eventually, be able to use mobility parameter m0 as the controlling factor to reduce SARS-COV-2 transmission, in a 

form of case future growth reduction, given that there is no current vaccination available. 

In general terms, the case growth can be represented as a function of the number of cases in the period i as Ci and 

its basic reproduction number R0 as described in Equation 1. If i = 1 then C0 is the initial case of the pandemic. In 

our case, this is the first documented case and this will indicate the first day of the epidemic curve. 

When R0 is greater than 1 and there is no intervention [31], then the number of cases tends to grow exponentially 

until the outbreak reaches its natural peak. 

Herein the importance of R0 to be controlled with some mechanism of intervention. In this case, the use of m0 is 

proposed and for that matter, the use of mobility data provided by mobile applications such as Google© and Apple© 
data. 

In this study, Rt means the temporal reproduction number. Consequently R0 can then be represented as a function 

Scale 

Measures of transmissibility and clinical severity 

Low to moderate Moderate to high 

Transmissibility 

 
Secondary attack rate, household ≤20% >20% 

Attack rate, school or university ≤30% >30% 

Attack rate, workplace or community ≤20% >20% 

R0, basic reproductive number 1.0-1.7 

Underlying population immunity Some underlying population immunity 

≥1.8 

Little to no underlying population 

immunity 

Emergency department or other outpatient 

visits for influenza-like illness 
<10% ≥10% 

Virologic characterization 
Generic markers for transmissibility Genetic markers for transmissibility 

absent present 

Animal models, transmission studies 
Less efficient or similar to seasonal 

influenza 
More efficient than seasonal influenza 

Clinical severity 

 
Upper bound of case-fatality ratio <1% ≥1% 

Upper bound of case-hospitalization ratio <10% ≥10% 

Deaths-hospitalizations ratio <10% ≥10% 

Virologic characterization Genetic markers for virulence absent Genetic markers for virulence present 

Animal models, evaluation of morbidity and mortality 
Less virulent or similar to seasonal 

influenza 
More virulent than seasonal influenza 
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Figure 3. Adapted from: CDC. Interim pre-pandemic planning guidance: community strategy for pandemic influenza mitigation in the United States—

early, targeted, layered use of nonpharmaceutical interventions and capping to Health System Capacity [31]. 

 
 

of m0 parameter to smoothen the exponential growth of daily cases. Equation 2 shows this expression: 

R0 = Rt − m0 (2) 

where:   

to make 

Equation 1 can be rewritten as: 

 
m0 < 1 

 
Rt ≤ 1 

Ci = Ci−1 ∗ (Rt − m0 ) (3) 

R0 and m0 parameters are calculated in subsequent sections. 

 
3.1. Data sets 

Data sets for COVID-19 cases were taken from the Journal ”Our world in data” [32]. Mobility data was taken 
from Google© [18] and Apple© [19] public mobility data sets and associated mobility data to May 15th, 2020 for 

Apple© and to May 9th, 2020 for Google©. Eight countries’ data were analyzed based on global representation from 

different regions of the globe and based on existing available public mobility data: 

- Australia 
- Brazil 
- Italy 
- Mexico 
- South Korea 
- Spain 
- United Arab Emirates (UAE) 
- United States (US) 

The analysis period was limited to the dates that Google© and Apple© provided mobility data and up to the date 

mentioned above (first date reported by Apple© was January 13th, 2020 and Google© was February 15th, 2020). At 
least it was able to analyze the first 70 days of the pandemic wave in each country. 

In order to make a fair comparison between the countries’ growth and mobility, dates were not considered, instead 

number of days since the first official case was documented. For the purpose of the research it will be referred to the 

initiation phase or as long as acceleration phase, according to WHO [31], has been identified, instead of a particular 

date. 
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3.2. Determination of m0 

In order to determine a useful index it was necessary to analyze current mobility data provided by Google© and 

Apple©. 

For Apple© [19], mobility data is provided using the maps application and the directions users are looking for. 

Apple© also disclaims that mobility provided it is a representation of the total population, but not the overall by any 
mean. The mobility data is reported to be 100 for the first date (January 13th, 2020), meaning that a greater value than 

100 means more mobility whereas a value lesser than 100 means otherwise. Apple© reports three types of mobility 

data, driving, transit and walking. 

For Google© [18], mobility data is reported as a positive percent of change from baseline when there is more 

mobility, whereas negative means less mobility. First reported date is February 15h, 2020. Google© reports six 
types of mobility data: retail and recreation, grocery and pharmacy, parks, transit stations, workplaces and residential. 

According to Google’s methodology [33], mobility trends are displayed by country or region and how visitors in  
categorized locations change compared to the baseline date mentioned above. Each high-level category contains 
many types of places, so it was needed to understand and select those categories that would impact on mobility for 

potential infection outbreaks. For the purpose of our research and based on Google© methodology to use mobility 

data, only the percent of change associated to retail, recreation, grocery, pharmacy, parks, transit and workplaces will 
be used. 

Based on both Apple © and Google © mobility data sets, a new data set was created for each country for a number 

of days (greater than 70 days) where mobility information was available. Each of the mobility data from both sources 

were averaged to find a single daily mobility score per country. This new data set shows the combined index that 

will be used to evaluate the case growth. This mobility score will be referred as the Combined Mobility Index (CMI), 

which will be used to determine the m0 parameter. 

The CMI data indicates how many people in a particular location is reducing their mobility in the public space. 

Table 3 shows the CMI of different countries, an indication of low mobility reductions is when people reduces their 

mobility less than 25% (represented by red dot), mid mobility reductions represented by a yellow dot is in the range 

of 26% to 50%, and larger mobility reductions represented by a green dot is when reduction is larger than 51%. 

 
Combined Mobility Index (CMI) 

Day since 
first case 

US Mexico Brazil Italy Spain UAE Australia 
South 
Korea 

1    -0.61     3.59    -4.34   14.66   42.04     1.23    -5.93     8.28 

2     0.37   15.76     1.30   27.38   13.09     1.06  -15.20     4.87 

3     4.01   17.92     6.98   11.94     9.41    -2.00    -2.04     6.40 

4   21.48    -2.23     5.48     2.50   10.11     7.47     1.59   18.90 

5   20.80     0.06  -10.39     3.46   11.30   11.47     1.07   18.03 

6  -13.81     0.61     2.02     3.59   16.68     6.52     1.89   23.12 

7    -4.18     1.06     3.04     7.02   38.18    -1.55     3.40   12.55 

8    -2.47     3.64     3.27   21.65   42.17     0.28  -10.08     1.12 

9    -1.96   13.88     3.25   35.62   10.98    -3.46    -5.06     0.56 

10     2.76   16.78   10.38   16.31     9.51     1.31    -3.12    -2.57 

11   20.70    -0.95     7.18     7.33   10.05   12.13     0.04     7.19 

12   22.18  -15.63  -11.16   11.80   14.11   16.71     0.11     8.12 

13  -15.38     0.30    -1.07   15.08   23.61     5.35     2.08  -14.55 

14    -4.08     2.03     4.18   22.13   30.91     1.22     7.03  -20.76 

 
Table 3. Snippet of the Combined Mobility Index per each country. Table shows first 14 days of pandemic wave per each country. 

 

Using CMI allows to provide an understanding on people’s mobility trends and how this might impact in future 

case growth. From Table 3, Italy and Spain show a low decrease in people’s mobility, indicated by the red dots, 

whereas Australia and South Korea show some yellow dots, indicating an early trend in diminishing people’s mobility. 

Contrasting to Mexico and Brazil, which in fact showed some decrease in people’s mobility, is less than the one shown 

by Australia and South Korea. 

 

3.3. Determination of Rt 

An important element to understand any pandemic wave behavior is the reproduction number, either basic R0 or 

effective Re as explained in Section 2. Given the complexity of determining such a number, the daily growth based on 
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daily confirmed cases was used to obtain the R0 that will be used to find the expected Rt. Important to mention that 

confirmed cases might not be dated when symptoms appeared but instead, the date they were reported. Still, it is valid 

for the analysis and for the model. Rt is calculated using Equation 4: 

Rti = 
  Ci   

Ci−1 

Equation 4 shows the calculation of daily reproduction number, hence the i index based on case number i. 

 
(4) 

It is also known that the SARS-COV-2 has an incubation period no longer than 14 days [34] and according to 

WHO’s recommendations [27], this period of quarantine is enough to keep infected individuals safer to not spread the 

virus. 

A rolling average, also known as moving average or running average, is the unweighted mean of the last n values 

of a data set [35]. The rolling average is used to understand the trends of a data set, in this case to understand the trend 

of the Rt and the CMI. Based on these facts, Rt and CMI in 14-days rolling average per each country was calculated. 

Table 4 shows the first 14-day rolling averages of these pandemic wave calculations per country. 

 
14-day Rolling Average 

Day since 

first case 

US Mexico Brazil Italy Spain UAE Australia South Korea 

CMI Rt CMI Rt CMI Rt CMI Rt CMI Rt CMI Rt CMI Rt CMI Rt 

14     3.56 1.26     4.06 1.25     1.44 1.36   14.32 1.00   20.15 1.08     4.12 1.28    -1.73 1.34     5.09 1.27 

15     3.45 1.24     4.04 1.26     2.11 1.36   15.33 1.00   19.36 1.07     4.03 1.26    -2.28 1.32     3.04 1.25 

16     3.29 1.24     3.87 1.24     2.20 1.40   15.77 1.00   19.51 1.07     3.99 1.27    -1.37 1.10     0.96 1.26 

17     3.16 1.25     3.54 1.21     1.97 1.43   16.23 1.00   19.75 1.07     4.26 1.27    -1.08 1.10    -1.42 1.27 

18     2.99 1.25     3.19 1.21     1.15 1.45   16.90 1.00   20.19 1.07     4.66 1.06    -0.95 1.10    -4.59 1.29 

19     3.24 1.18     1.24 1.25     0.31 1.40   17.53 1.00   20.67 1.07     5.05 1.06    -0.61 1.10    -7.01 1.22 

20     3.48 1.18     0.05 1.26    -0.93 1.45   18.35 1.00   21.02 1.07     5.08 1.06     0.37 1.07  -10.09 1.22 

21     3.61 1.07    -1.72 1.28    -2.80 1.46   19.12 1.00   20.91 1.07     5.49 1.04     1.47 1.06  -12.54 1.19 

22     3.87 1.08    -3.98 1.30    -5.04 1.48   19.33 1.00   20.69 1.07     5.69 1.05     2.29 1.04  -13.98 1.17 

23     4.27 1.08    -7.12 1.32    -7.62 1.47   18.77 1.33   21.37 1.07     6.22 1.05     2.91 1.02  -15.55 1.17 

24     4.87 1.08  -10.91 1.34  -10.89 1.39   18.19 1.59   21.78 1.00     6.41 1.05     3.47 1.02  -16.57 1.17 

25     4.96 1.07  -14.16 1.33  -14.43 1.37   17.52 1.64   21.95 1.04     6.31 1.05     3.85 1.02  -18.18 1.17 

26     4.78 1.06  -16.27 1.34  -17.09 1.39   15.82 1.69   22.08 1.18     5.74 1.05     4.38 1.02  -18.97 1.12 

27     6.01 1.05  -19.74 1.35  -20.37 1.35   13.70 1.72   21.94 1.24     5.58 1.04     5.02 1.01  -19.15 1.07 

28     6.60 1.02  -23.47 1.32  -24.38 1.37   11.23 1.74   22.09 1.32     5.51 1.05     5.65 1.01  -18.93 1.05 

29     7.03 1.02  -27.32 1.30  -28.57 1.35     8.49 1.79   22.12 1.36     5.49 1.05     7.04 1.03  -18.34 1.05 

30     7.43 1.02  -31.79 1.27  -32.51 1.32     5.10 1.81   21.89 1.39     5.34 1.04     7.54 1.03  -17.23 1.05 

31     7.67 1.02  -36.14 1.25  -36.49 1.30     2.16 1.83   21.59 1.44     5.10 1.04     7.85 1.03  -16.05 1.08 

32     7.72 1.02  -39.56 1.24  -39.93 1.30    -0.13 1.87   21.19 1.47     4.29 1.04     8.12 1.03  -15.35 1.11 

33     7.59 1.11  -41.33 1.21  -42.61 1.29    -2.16 1.88   20.74 1.50     3.39 1.07     8.24 1.03  -15.86 1.17 

34     8.38 1.11  -43.93 1.20  -45.45 1.25    -4.83 1.90   20.28 1.52     2.85 1.07     7.91 1.04  -16.37 1.26 

35     8.76 1.11  -46.08 1.19  -47.73 1.24    -7.80 1.91   19.73 1.56     2.38 1.08     7.77 1.03  -16.52 1.31 

36     8.98 1.14  -48.10 1.17  -49.61 1.24  -11.08 1.93   19.33 1.59     1.79 1.07     8.39 1.04  -17.65 1.32 

37     9.13 1.14  -49.95 1.16  -51.26 1.22  -14.72 1.61   18.82 1.62     1.04 1.07     8.53 1.04  -18.12 1.33 

38 8.91 1.14 -51.25 1.16 -52.58 1.20 -17.96 1.37 18.15 1.65 0.36 1.09 8.52 1.05 -19.05 1.35 

39 8.83 1.14 -52.24 1.15 -53.55 1.18 -21.21 1.34 17.38 1.65 -0.55 1.09 8.39 1.06 -20.83 1.38 

40 9.04 1.14 -53.18 1.15 -54.39 1.17 -24.44 1.31 15.86 1.54 -1.36 1.10 8.08 1.08 -23.30 1.40 

41 8.97 1.15 -53.93 1.15 -54.86 1.15 -28.24 1.29 12.57 1.50 -1.75 1.08 7.75 1.10 -25.05 1.43 

 
Table 4. Snippet of Combined Mobility Index and Temporal Reproduction Number in 14-day rolling average per each country for the first 28 days 

of the pandemic wave. 

 
When contrasting rolling averages of CMI shown in table 4 with the previous daily values of CMI shown in table 

3, it results evident to find how much progress countries might be having to decrease people’s mobility in the public 

space. A clear example of early measures is shown in South Korea, which consistently decreases to reach 25% in 40 

days. In contrast, Mexico and Brazil shown decreases in the order of 50% in the same period of time. However, the 

use of Rt is particularly useful to identify how quickly the pandemic wave might be evolving. US, Italy and Spain are 

very interesting examples of low reduction on mobility with a quick increase on Rt. 
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4. Results 

Based on the numbers for CMI and Rt shown in Table 4, the behavior of these parameters was analyzed over the 6 

periods of 14-days (with the exception of Mexico and Brazil, which spans for 78 and 81 days respectively). A 14-day 

rolling average of both parameters was calculated in order to understand the trend, if any, and finally a Pearson’s 

correlation between these two data sets of parameters on a per country-basis was done, in order to identify how much 

mobility, would impact the reproduction number. 

In a Pearson’s correlation r statistic [36], when one variable increases the other variable has a tendency to also 

increase. This is called a positive correlation. A negative correlation indicates when one variable increases the other 

variable has a tendency to decrease. Finally, there is no correlation when one variable increases, the other variable 

does not tend to either increase or decrease [37]. 

Cohen [38] and Evans [36] proposed empirical classifications of interpreting correlation strength by using Pearson 

r statistic. Cohen recommended that 0.10 to 0.30 be interpreted as a weak correlation, 0.30 to 0.50 as a moderate 

correlation and greater than 0.50 as a strong correlation. According to Evans’ classification, less than 0.20 is very 

weak, 0.20 to 0.39 is weak, 0.40 to 0.59 is moderate, 0.60 to 0.79 is strong and 0.80 or greater is a very strong 

correlation for the absolute value of r [39]. 

A statistically significant correlation does not necessarily mean that the strength of the correlation is strong. In 

order to determine whether the correlation between variables is significant, it is necessary to compare the p-value to 

a significance level. The p-value shows the probability that this strength may occur by chance [40]. A significance 

level, denoted as α or alpha, of 0.05 is generally acceptable. This means that the risk of concluding that a correlation 

exists when no correlation exists is 5%. 

Based on this analysis, using Evans’ classification and p-value<0.05, countries were classified in three main sets: 

• Countries with Pearson values greater of 0.60 or with a strong to very strong correlation. 

• Countries with Pearson values between 0.40 to 0.59 or with moderate correlation. 

• Countries with Pearson values less than 0.39 or with weak or very weak correlation. 

All of them under the assumption that p-value has a high statistical significance with p-value<0.05. As described, 

correlation strength is not enough, but is necessary to determine the statistical significance. The results of these new 

calculations are also shown in Table 5. 
 

28 days of rolling averages 

Parameter US Mexico Brazil Italy Spain UAE Australia 
South 
Korea 

r -0.56 0.83 0.93 0.37 0.23 -0.18 -0.74 0.15 

p ( = 0.05) 0.00 0.00 0.00 0.01 0.01 0.21 0.00 0.29 

 
Table 5. Pearson correlation and p-value for 28-day rolling averages of CMI and Rt. 

 
As shown in table 5, countries might have a positive or negative correlation, low or high correlation strength, but 

the most important value to make an initial decision if the proposed model would work is the statistical significance 

p-value. If p >0.05, then the correlation has not statistical significance, meaning the correlation between data sets is 

not significant, so can’t lead to any decision. 

From table 5 can be seen that Brazil and Mexico have a strong correlation, meaning that their mobility reduction 

and reproduction rates were strong correlated, whereas Italy and Spain have weak correlations. Impact of cases growth 

for Italy and Spain is expected and could be seen with the correspondent impact on health systems overloads. The 

particular case of United States where there is a negative correlation is a clear indication that case might be out of 

control due to mobility increase. For the cases of South Korea and UAE, the authors do not recommend using this 

method because there is no statistical significance between the CMI and Rt values. 
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5. Discussion 

The main goal of the proposed method is to find m0 that contributes to control number of cases, which is a function 

of Rt subject to the health capacity system hc. 

Maximum number of cases will determine the potential number of people requiring hospitalization services, hence 

controlling Rt via m0 is fundamental. 

The proposed method is described below: 

1. Given initial number of cases, determine Rti as described in Section 3. Authors suggest to have at least two full 

14-day periods of confirmed cases in order to provide an approximation of Rt. Remember that for the purpose 

of the calculations Rt = Re. 

2. Obtain daily CIM as described in Section 3. For the purpose of this research, Apple© and Google© Mobility 

Data was used, but any mobility data can be used. 

3. A valid Pearson correlation of CIM and Rt pairs should be obtained. Authors suggest to calculate a p-value, 

such that p-value < 0.05 provides a valid statistical significance for Pearson correlation. The stronger Pearson 

correlation and the p-value <0.05, the better the validation of CIM and Rt will be. 

4. Obtain 7-day rolling averages of CIM and Rt. For example, if the data set has 30 days of cases, then, 23 7-day 

rolling averages can be obtained. 

5. Using the last CIM and Rt rolling averages as the seed data, projections can be done, where m0 value could be 

changed to make Re<1. 

From Section 4, future case growth depends on initial number of cases but also in two determining factors: 

• Number of confirmed cases in the second 14-day period, ideally in less than 40 days. 

• Daily Effective Reproduction Number for the same period. 

For the purposes of the discussion, Rt (temporal reproduction number) is in fact the Re number for the pandemic 

wave, meaning that the effective reproduction number will be considered as the actual daily case growth. The bigger 

Re were in that second period, a greater mobility reduction would be needed to decelerate future case growth. 

However, the biggest challenge found in most of the predictive models relies on the fact that confirmed cases are 

cumulative and some countries may change their method to identify cases depending upon the pandemic behavior. 

Counting cases and expecting changes on cases is not scalable nor practical to analyze. 

Also, none of the models suggests ways to control the behavior of the pandemic, so this is the opportunity this 

model is intended to address. 

In order to describe the model from a practical perspective, actual cases from one country were chosen and its data 
is shown in Table 6. Number of daily confirmed cases from ”Our World in Data” journal database [32] were used to 

calculate daily Re using Equation 4. Daily CIM was calculated as well for the same period of time using Google© 

[18] and Apple© [19] mobility data. Selected country had a Pearson correlation of 0.58, moderate according to Evan’s 

model [36] with p-value of 0.001 with α = 0.05, in a period of 30 days. 

Using this data, 7-day rolling averages were calculated for Rt and CIM data of both parameters was used as seed 

for projections, also shown in Table 6. Variable parameter for projections is a value of m0 given that resulting Rt is 

less or equal to 1, hence number of cases will tend to stall or decrease over time. For this country, three scenarios 

were projected using the proposed method: 

• Scenario 1: Light constant mobility reductions (CIM=-1) until reach Re<1. Peak number of cases is about 
22,400 cases with a total reduction of mobility of -81.5% to reach Rt=0.99 and keep going down. The disad- 
vantage of this approach is a hard reduction in mobility of more than 80% for more than 60 days. This scenario 

is inviable for low-income economies and small and medium business companies. Figure 4 shows total number 

of cases and behavior over the time. 

• Scenario 2: Moderate reductions (CIM=-3) on mobility for the first 2 weeks and then relaxed measures 

(CIM>0) moving forward. In low income economies, a balance between a lockdown and public health is 
needed, hence, authors suggest a 2-week projections as viable. Peak number of cases is about 2,100 cases and 
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Country A 

Day since 
first case 

Actual data 7-day rolling average 

Cases CIM Rt CIM Rt 

1 1 3.59  0.00 0.00 

2 2 15.76 2.00 0.00 0.00 

3 4 17.92 2.00 0.00 0.00 

4 5 -2.23 1.25 0.00 0.00 

5 5 0.06 1.00 0.00 0.00 

6 5 0.61 1.00 0.00 0.00 

7 5 1.06 1.00 0.00 0.00 

8 5 3.64 1.00 5.05 1.38 

9 5 13.88 1.00 6.34 1.32 

10 5 16.78 1.00 6.47 1.18 

11 7 -0.95 1.40 4.11 1.04 

12 7 -15.63 1.00 2.43 1.06 

13 7 0.30 1.00 2.46 1.06 

14 11 2.03 1.57 2.64 1.06 

15 16 3.39 1.45 2.93 1.14 

16 26 13.25 1.63 4.13 1.20 

17 41 13.39 1.58 4.07 1.29 

18 53 -7.20 1.29 1.07 1.38 

19 82 -27.12 1.55 -2.20 1.36 

20 93 -16.05 1.13 -2.25 1.44 

21 118 -23.79 1.27 -5.26 1.46 

22 164 -28.00 1.39 -9.02 1.41 

23 203 -30.07 1.24 -13.20 1.40 

24 251 -36.25 1.24 -19.39 1.35 

25 316 -46.51 1.26 -26.87 1.30 

26 367 -45.13 1.16 -31.61 1.30 

27 405 -48.29 1.10 -34.26 1.24 

28 475 -50.23 1.17 -38.53 1.24 

29 585 -50.54 1.23 -41.88 1.22 

30 717 -49.27 1.23 -44.54 1.20 

 

Table 6. First 30 days of actual reported cases, Combined Mobility Index and Temporal Reproduction Number. 

 
 

Rt=0.99 before mobility measures were relaxed below -80%, where number of cases started to increase over 

5,000 cases. Figure 5 shows total number of cases and behavior over the time. This scenario illustrates a lack 

of monitoring in mobility causing the virus to spread again, with increased number of cases. 

• Scenario 3: Strong reductions on mobility for the first 5 days (CIM=-5), moderate measures for the next 5 days 
(CIM=-3), and relaxed measures after 2 weeks. After the tenth day, Rt=0.98, peak number of cases is about 

1,400 with a total reduction of mobility of -79.56%. On the projected eleventh day, people can start moving, 

hence a constant surveillance of Rt is needed to avoid cases growth as a result of increased mobility. Figure 6 

shows total number of cases and behavior over the time. 

Looking into real data, a similar scenario 1 corresponds to a similar behavior show by Italy and Spain, both had 

apparently a good control in number of cases however, both had a large Re for that period, more specifically a large 

Re 14-day rolling average in the first 4 weeks. In order to achieve pandemic control, it was necessary to go to levels 

of 80% of mobility reduction over a period of 100 days in order to reach Re<1, making economy practically to stop. 

This measure results inviable from economic and social perspectives plus the risk of crashing the health system as 

occurred unfortunately in both countries. Figure 7 shows the actual number of cases and needed CIM to decelerate 

pandemic wave. 

In contrast, countries like Mexico and Brazil, which still show a growing behavior, even both have strong cor- 

relations, the difference is in the second 14-day period for number of cases. Mexico had around 500 cases whereas 

Brazil had almost 2000 cases in the same period of time. It can be expected that mobility reductions in Brazil might 

be stronger than Mexico ones. Figure 7 also shows the pandemic curves and their CIM. 

 
6. Conclusions 

In this article it was described the impact on mobility reductions in the public space as a measure to stop the 

pandemic wave of SARS-COV-2 virus. Also it was discussed mobility reductions as a way to project potential 
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Figure 4. Country A, Scenario 1 - Peak number of cases were around 22,000 cases on day 66 since first documented case or 36 days after the last 

know data. Number of cases would decrease due to constant mobility measures, which makes this an inviable scenario. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Country A, Scenario 2 - Peak number of cases were around 2,100 cases on day 42 since first documented case or 12 days after the last 

know data. Number of cases would increase due to mobility measures relaxation after day 56 and on. 

 
 

scenarios depending upon a variable called CIM as a method to monitor cases growth but also to control them. 

Three scenarios were discussed: 

• Light measures, large number of cases, heavy mobility reductions, several impact on economies. 

• Moderate measures, manageable number of cases, risk to case growth if not surveillance is applied with potential 
impact on public health system. 

• Strong measures, reduced number of cases, manageable reduction on mobility and constant surveillance of 
cases to manage mobility recommendations. Public health system is not affected nor local economies. 

As discussed, countries like Spain and Italy had to practically stop their economies in order to stop virus spread 

crashing their public health systems due to a poor surveillance program to monitor virus spread and mobility reduc- 

tions. 60 days projections for US might anticipate heavy growing by observing their negative correlation and actual 

number of cases validate the impact on mobility. For Brazil, it can be anticipated that even its strong correlation, 

initial 30 days case growth will impact future case growth, making mobility measures much stronger. 
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Figure 6. Country A, Scenario 3 - Peak number of cases were around 1,400 cases on day 38 since first documented case or 8 days after the last 

know data. Number of cases would increase due to mobility measures relaxation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Italy and Spain behavior of number of cases and CIM. 

 
 

Four main takeaways are made after all this analysis: 

1. The importance of monitor case daily increase for the first 4-6 weeks of the pandemic is crucial to determine 

reduction in mobility and proper actions. 

2. Any 2-digit increase in Re will result in heavy case growth if mobility is not reduced as early as possible at 

levels to at least -20%. 

3. m0 parameter is determined by two factors: mobility reduction change and phase in the pandemic wave, the 

earliest, the better. Every 1% reduction in m0 is variable depending upon the trend of CIM and Rt reductions 

but is in the range of 0.1 and 0.005 for every 1% of CIM. The earliest identification on case increase will require 

less mobility reductions. 

4. A balance between stronger mobility reduction measures and lighter ones depends on Rt value and pandemic 

wave phase (an indirect variable of number of cases as described). CIM reduction can be in the range of -20% 

up to -80%. 
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