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ABSTRACT 

Summary: Making sense of association networks is vitally important to many areas of high-

dimensional analysis.  Unfortunately, as the data-space dimensions grow, the number of 

association pairs increases in O(n2); this means traditional visualizations such as heatmaps 

quickly become too complicated to parse effectively.  Here we present associationSubgraphs: a 

new interactive visualization method to quickly and intuitively explore high-dimensional 

association datasets using network science-derived statistics and visualization. As a use case 

example, we apply associationSubgraphs to a phenome-wide multimorbidity association matrix 

generated from an electronic health record (EHR) and provided an online, interactive 

demonstration for exploring multimorbidity subgraphs.   

Availability: An R package implementing both algorithm and visualization components of 

associationSubgraphs is available at https://github.com/tbilab/associationsubgraphs.  Online 

documentation is available at https://prod.tbilab.org/associationsubgraphs_info/. A demo using 

a multimorbidity association matrix is available at 

https://prod.tbilab.org/associationsubgraphs-example/. 
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1 INTRODUCTION 

Analysis of association or correlations between variables is a very important step in 

exploratory data analysis of high-dimensional datasets.  In these scenarios, a dataset with a large 

number of columns or measured variables but without known or validated patterns of association 

among them is inspected using statistical and visualization methods to gain insight into how the 

variables may interact with each other.  There are many different ways of establishing the 

strength of these interactions, from as simple as the mutual occurrence of binary variables (Cha, 

2007), to complex penalized regression models (Hallac et al., 2015; Tibshirani et al., 2005).   

Examples of areas where association analysis is used include gene regulatory networks 

(Gustafsson et al., 2005), analysis of single-cell sequencing data to determine cell differentiation 

(Chan et al., 2017), networks of comorbidity between diseases (Chen and Xu, 2014), topic 

modeling in natural language processing (Wang and Zhu, 2014). 

Traditional analysis of these association patterns uses heatmaps.   In these visualizations, 

both rows and columns represent all present variables, and the color of the cells represents the 

strength of the association between the two variables.   As the number of variables grows larger 

the effectiveness of heatmap rapidly decreases.  One important issue is the ordering of the rows 

and columns, as the precise placement of a variable in relation to other completely change 

inference made by the analyst(Bojko, 2009) and thus must be done carefully.  Typically, this 

ordering is done by a clustering algorithm(Metsalu and Vilo, 2015; Pryke et al., 2007), which 

injects model assumptions into the visualization that are not immediately clear to the analyst or 

later audience.  Another issue with large heatmaps is the difficulty of discerning the identity of 

cells that fall far from the labeled axes(Bojko, 2009). 
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One way of alleviating the issues with heatmaps is to reduce the association space using 

edge or association filtering and then visualize the results using network visualization tools.  

These methods typically involve parametric tests that do not account for the network structure 

(Benjamini and Yekutieli, 2001) or contain many assumptions (Hallac et al., 2015).  Non-

parametric methods typically based on permutations also exist but, due to the O(n2) complexity 

inherent in association datasets, are computationally infeasible for large datasets (Harris and 

Drton, 2013).  We point the reader to the book by Kolaczyk and Csárdi, 2020 for more 

information on these methods. 

A classic model often studied in network science is the “random graph” (Solomonoff & 

Rapoport, 1951) (often called the Erdos-Renyi graph).  In random graphs, nodes are connected 

by a given number of edges randomly, i.e., without preference for specific nodes.  An emergent 

property of these “random” graphs are “components” or “isolated subgraphs” (Mark Newman, 

2018).  Isolated subgraphs are groups of nodes connected internally but not to any other nodes in 

the network.  Percolation theory (Mark Newman, 2018) is a subfield of network science 

dedicated to understanding how the removal of edges within a network leads to the formation of 

these isolated subgraphs. 

We previously developed PheWAS-ME: an interactive dashboard to visualize individual-

level genotype and phenotype data side-by-side with PheWAS analysis results, allowing 

researchers to explore multimorbidity patterns and their associations with a genetic variant of 

interest(Strayer et al., 2021). In this work, by framing association analysis as a network problem, 

we can utilize the results of percolation theory to design an intuitive set of visualizations for 

exploring the subgraph structure of multimorbidity association networks based around the 

concept of adding and removing edges in the order of the strength of association. We name this 
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algorithm associationSubgraphs and implement it as a interactive visualization method to quickly 

explore high-dimensional association datasets. As a use case example, we applied 

associationSubgraphs to a phenome-wide multimorbidity association matrix generated from an 

electronic health record (EHR) and provide an online, interactive demonstration for exploring 

multimorbidity subgraphs. 

2 METHODS 

2.1 Algorithm 

The algorithm for computing associationSubgraphs at all given cutoffs is closely related 

to single-linkage clustering (Gower and Ross, 1969) but differs philosophically by viewing 

nodes that are yet to be merged with other nodes as unclustered rather than residing within their 

own cluster of size one. 

To calculate the set of subgraphs at every threshold the algorithm starts by sorting 

edges/associations in descending order of strength.  Then, the nodes connected by the highest 

association strength are set as a “cluster”. Next, the second-highest association strength is added.  

If either adjacent node is shared with the first cluster, the non-shared node is added to the 

existing cluster.  Otherwise, a new separate cluster containing the two adjacent nodes is created.  

This procedure is repeated for all association pairs.  If both nodes for a pair already reside in 

separate clusters, then those clusters are merged into a new “super” cluster.  After every edge is 

added, the current cluster state is exported.  For further details, see Algorithm 1. 

2.2 Visualization 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 21, 2022. ; https://doi.org/10.1101/2022.02.17.22271014doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.17.22271014
http://creativecommons.org/licenses/by-nc/4.0/


 6 

The subgraph-clustering algorithm results are visualized through an interactive 

visualization built using the javascript library D3 (Bostock et al., 2011) that allows panning 

through and visualizing all cluster states that occur during the running of the algorithm.   

At every step, all currently clustered nodes are displayed as a grid of force-directed 

subgraphs (de Leeuw, 1988) (Figure 1A).  Accompanying each subgraph is a set of three 

measures as encoded in a chart (Figure 1B).  These are the number of nodes in the subgraph, the 

density (number of edges at current threshold linking nodes relative to maximum possible), and 

the average strength of all those edges.   

By adding edges in one-at-a-time, we are emulating the formation of a random graph.  As 

the edges are added, isolated subgraphs form within the network.  By separating the subgraphs, 

the visualization acknowledges that, at the current association strength threshold, the nodes are 

conceptually isolated and should be represented as such, unlike traditional network or heat map 

visualizations. 

To aid in the selection of association threshold, a series of line-plots below the network 

visualization (Figure 1C) provide summary statistics about the cluster state at every possible 

cutoff.  These include the number of subgraphs, the number of subgraphs with at least three 

members (triples), the average density of those subgraphs, the average size of the subgraphs, the 

size of the largest subgraph relative to all other subgraphs combined, and the current association 

threshold.  By hovering over a state in these line plots the drawn network updates to represent the 

desired threshold.  This updating is done in real-time allowing the user to see exactly what edges 

were added and how those edges changed the subgraph state. 
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Every resulting subgraph can be selected and zoomed into by clicking, which reveals all 

members within the cluster (Figure 1D), the edge strengths between them, and any further 

supplementary node information provided by the user (Figure 1E). 

2.3 Choosing “optimal” threshold 

AssociationSubgraphs is meant to provide an exploratory view of an entire association 

network; this means the concept of the ideal threshold is not particularly important.  However, 

we can draw inspiration from random-graph and percolation theory to provide an estimate of an 

“optimal” threshold value used as the initial point in the visualization. 

When nodes are truly randomly connected together, what is known as a “giant 

component” form very quickly.  A giant component is one in which a very large portion, 

typically n2/3 (Mark Newman, 2018), of the nodes in the network are in the same isolated 

subgraph.  There are three “phase-transitions” regarding the size of the largest isolated subgraph 

in the network relative to the number of edges (e) added. 

If 𝑒 < 𝑛, we would expect many small subgraphs with the largest size on the order 

of log	(𝑛).  If 𝑒 = 𝑛, then we would expect to still have a large number of subgraphs, with an 

expected largest subgraph of size n2/3.  Last, if 𝑒 > 𝑛 we would expect all nodes to be connected 

in one giant subgraph/component. 

When the edges are not purely random, we expect deviation from these patterns, and in 

practice we see these deviations; with a giant component typically forming well after the number 

of included edges surpasses the number of nodes. 

To take advantage of this known behavior, we propose the “largest-smallest” rule for 

finding the optimal threshold.  This rule states that the optimal threshold value for an association 
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network will be just before the giant component starts to form.  This point is estimated by 

tracking the aforementioned size of the largest subgraph relative to all other subgraphs metric.  

When this metric starts to rise, it indicates edges are now being added mostly at random; thus, 

the optimal threshold can be seen as the minimum of this function. 

2.4 Example Usage 

Multimorbidity, defined as the co-existence of two or more concurrent health conditions 

in one patient, can be represented as networks with diseases as nodes and their connections as 

links, typically weighted according to the strength of pair-wise disease associations. Figure 

1 shows the results of running the associationSubgraphs algorithm and visualization on such a 

multimorbidity network of 1,815 phenotypes as “Phecodes” (Denny et al., 2010) constructed 

using Vanderbilt EHR data. The network strength measurements are based on the test statistics 

of a regression analysis assessing the association between each Phecode pairs.  

AssociationSubgraphs provides intuitive and meaningful insights into the subgraph structure of 

the example multimorbidity network.  Using the described smallest-largest point to determine an 

association strength cutoff returns a network with 36 isolated subgraphs.  Figure 1E shows the 

investigation of one of the present subgraphs including the codes 720.00, 720.10, 721.00, 721.10, 

722.00, 722.60, 760.00, 763.00, which are all back pain related Phecodes (e.g., Spinal stenosis of 

the lumbar region: 720.10, and Back pain: 760.00.) More examples and this particular 

visualization are available on the associationSubgraphs R package website (see availability). 

3 CONCLUSIONS 

In this paper we have provided a brief introduction to the algorithm and visualization 

associationSubgraphs for exploring association networks.  By enabling the exploration of high-

dimensional association networks through interactive network visualization guided by basic 
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network-science theory, associationSubgraphs allows researchers to understand their association 

network data with greater precision and intuition. We applied associationSubgraphs to a large-

scale disease multimorbidity association matrix generated from EHR and provided an online, 

interactive demo for exploring multimorbidity subgraphs.   
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Algorithm 1: By simply requiring the association strengths to be sorted, the only 
assumption required of the strength measure is monotonicity.
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Figure 1: Interactive visualization of subgraph clustering results with current threshold set at the optimal threshold 
according to the smallest-largest rule
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