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Abstract 23 

The goal of this study is to develop a classification model that can accurately and 24 

efficiently label human kinematics data. Kinematics data provides information about the 25 

movement of individuals by placing sensors on the human body and tracking their 26 

velocity, acceleration and position in three dimensions. These data points are available in 27 

C3D format that contains numerical data transformed from 3D data captured from the 28 

sensors. The data points can be used to analyse movements of injured patients or patients 29 

with physical disorders. To get an accurate view of the movements, the datasets generated 30 

by the sensors need to be properly labelled. Due to inconsistencies in the data capture 31 

process, there are instances where the markers have missing data or missing labels. The 32 

missing labels are a hindrance in motion analysis as it introduces noise and produces 33 

incomplete datapoints of sensor’s positioning in 3 dimensional space. Labelling the data 34 

manually introduces substantial effort in the analysis process. In this paper, we will 35 

describe approaches to pre-process the kinematics data from its raw format and label the 36 

data points with missing markers using classification models. 37 
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Introduction 46 

Biomechanics refer to the study of mechanical laws relating to the movement of living 47 

organisms.(1) When applied to humans and combined with kinematics, it helps us capture 48 

data which is used to infer a variety of human actions. For example, kinematics data is 49 

used to understand human’s movements in each gesture, through providing quantitative 50 

data to evaluate each individual’s flexibility(2). It is also used to analyse patients’ 51 

movements to track their recovery and assist towards rehabilitation(3). Kinematics data is 52 

captured in dedicated labs setup as motion capture studios. In some cases, the sensor data 53 

may not be labelled completely. This can happen for a variety of reasons like the sensor 54 

not being attached securely or some sensors getting blocked from a camera from certain 55 

angles. This introduces noise and missing values in the dataset and poses a challenge for 56 

further analysis of this data. Capturing movements of these patients and labelling them 57 

can be very tedious and an expensive process. To solve this problem, we describe a 58 

method where we use the labelled data from these sensors for training a classification 59 

model that can then label the unlabelled sensor records with high accuracy, thereby 60 

reducing manual efforts.   61 

The primary objective of this study is to use a classification model to label the sensor data 62 

corresponding to the mounted location on the human subject’s body. We took the records 63 

with pre-labelled information and built classification models that would identify the right 64 

class (sensor label) for the unlabeled dataset. In this study, we firstly clean and 65 

standardize the raw C3D files through data transformation functions. We then use the 66 

processed data to train 4 different machine learning models to classify the sensor data 67 

points into one of the multi-class labels. Lastly, we evaluate the performance of the 68 
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models to auto generate labels with test dataset.  Interpretation and future work is 69 

provided at the end of the paper.  70 

Method 71 

In this section, we go into the details of our method starting with describing the raw 72 

dataset, data processing and feature engineering, modelling approaches including the 73 

choice of algorithms and the evaluation methods. 74 

  75 
Data Description  76 

For the purposes of this study, we downloaded the raw data from CMU Graphics Lab 77 

Motion Capture Database in C3D format(4), which is a file format that has been widely 78 

used in Biomechanics, Animation and Gait Analysis laboratories to record synchronized 79 

3d kinematics data. It contains information needed to read, display, and analyse 3d 80 

motion data and additional analog data from force plates, electromyography, 81 

accelerometers, and other sensors. The dataset contains numerical data extracted from 82 

sensors attached to the human body. It is composed of a list of time-series points. Each 83 

point is composed of x, y and z co-ordinates, time of capturing, frame number and the 84 

labeled location. The choice of number of sensors and locations mounted vary in each 85 

setting as it subjects to the purpose of specific biomedical study. For more details, readers 86 

can refer to  CMU Graphics Lab Motion Capture Database (4) to visualize how the 87 

sensors are mounted on the human body to capture motion data. 88 

  89 
The C3D dataset being captured can be converted into a standard dataframe (Table 1) 90 

using the c3d python library(5). 91 
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Table 1: C3D Sample File in DataFrame  92 

time x y z cam err frame point_label 

1.0125 0 0 0 FALSE  FALSE  1 R_ASIS  

1.0125 0 0 0 FALSE  FALSE  1 L_ASIS  

1.0125 0 0 0 FALSE  FALSE  1 SACRUM  

1.0125 0 0 0 FALSE  FALSE  1 R_THIGH_1  

1.0125 0 0 0 FALSE  FALSE  1 R_THIGH_2  

Note: This table captures the structure of a raw C3D file when its converted into a dataframe. 93 

 94 
As shown in Table 1, a typical C3D dataset has 8 features, correspond to time, , x, y, z, 95 

cam, err, frame and point_label. Here, time refers to the capture time of the point starting 96 

from 0, x, y and z correspond to captured location at x, y and z axis respectively. cam 97 

suggests if there is any camera observing the sensor. To ensure accuracy of captured data, 98 

it is required to ensure that at least one camera is observing a sensor at the indicated time. 99 

Otherwise, the data point is advised to be removed from the dataset. err suggests whether 100 

there is error in capturing the 3d location at this frame, and frame refers to the time frame 101 

of the current position with continuous integer starting from 1. Point_labels are the 102 

labelled targets which indicate the location where the sensor is attached to.   103 

In our experiment, we downloaded a collection of C3D files of subject #26  provided by 104 

Qualisys illustrating human gait(6). Among all the collections, we selected all the files 105 

titled as hybrid walking motions, containing 5 C3D files in total.   106 

Data Processing and Feature Engineering  107 

Data processing is an important stage to prepare data for machine learning models. In 108 

addition, data processing gives us a chance to gain insight into the data and perform 109 

feature engineering. Using C3D python library (5), we were able to extract x, y and z co-110 

ordinates for each frame of the motion. We followed the following data processing steps :  111 

1) Identify all missing values and convert them to NaN  112 
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An initial investigation of the dataset showed that all the missing values captured by 113 

sensors have been recorded as 0. As column z has only positive data, while both x and y 114 

can have negative, positive and 0 values,  we used z as reference to identify missing 115 

values and convert all the corresponding values from all axis to NaN if z=0.   116 

2) Removal of missing values.  117 

Removal of missing values includes: 118 

a) removal of sensors which failed to capture locations with 50% or more 119 

of the total frames. After applying the filtering criteria, we were left with 19 labels 120 

among the initial 25 labels in total. 121 

b) removal of frames with consecutive missingness >3 as too many 122 

consecutive missingness will result in bad interpretation during data processing.   123 

3)  Interpolation 124 

Polynomial interpolation was later carried out with sensors that contain missing 125 

values.  We chose polynomial interpolation with 3-degree as it is simple and is 126 

still able to approximate complicated curves. As showed in the equation below, 127 

we refer to P(x) as the polynomial function with degree of 3.  128 
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3)  Feature Engineering 129 

Feature engineering was conducted on the sensor data based on kinetic understanding. 130 

The sensors are attached to human body, each part of human body will move according to 131 

a specific trajectory, thus the spatial change of each sensor can be a good indicator of 132 

where the sensor is mounted on the human body. Based on this assumption, we included 133 

the following features in our training set:  134 

1) Absolute location: x, y and z values directly generated from the device. 135 

Here, t refers to the time point of measurement and ��, �� and �� refer to 136 

the absolute position of respective axis at time t.  137 

2) Relative location: the relative rank of each sensor at time point t. It is 138 

calculated through ranking each point x, y and z values among all the x, y 139 

and z at each time t accordingly. Let’s take x for example.  140 

��� 

= R�� (��) 141 
  142 

3) Relative change (1-dimensional): the change to the current frame from 143 

previous i frame(s).  144 

��_�� = �� – ��−� 145 
  146 

4) Relative change (3-dimenisonal): the change from previous frame to the 147 

current frame.  148 

                                   �� � ����_� � �����
� � 	 �
�_� � 
���_� �� 	 ���_� � ����_� ���  

In the classification models, the raw data as absolute location (feature 1) plus time 149 

is used in our MLP base and LSTM models, while raw data and enhanced features 150 

1-4 are used in MLP and XGBoost classification.   151 
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After feature engineering, the first 4 files are connected together as training 152 

dataset and the file 5 is left as testing dataset.  153 

Modelling Algorithms  154 

Our goal of the experiment was to accurately classify the sensor data into one of 155 

the 19 sensor labels in our dataset. We assumed the point_label column as the 156 

target variable for this classification task. We selected multilayer perceptron 157 

(MLP) base model using scikit-learn, XGBoost and Long Short-Term Memory 158 

(LSTM) networks for this work.   159 

 160 
Baseline Model with Multi-Layer Perceptron 161 

We decided to use Multilayer Perceptron (MLP) as our base model (Figure 1) as they are162 

good for both classification and regression problem and can work very well with tabular163 

dataset.  164 

 165 

Figure 1: Model topology of MLP baseline. In the basic model, we used raw kinematic166 

data including time, frame, x, y and z as model input, with one hidden layer and output of167 

23 values corresponding to the 23 unique sensor labels.  168 

 169 

MLPs are universal function approximators as shown by Cybenko's theorem(7), 170 

and it is a classical neural network where we have input layer, with one or more 171 

hidden layer and an output layer.   172 

  173 
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Here, w denotes the vector of weights, x is the vector of inputs, b is the bias and ϕ 176 

refers to the non-linear activation function.   177 

Training MLP involves multiple passes on the dataset while at the same time 178 

adjusting weights and biases in relation to the error with the goal of reducing the 179 

error. MLP model adjusts the weights and biases using a technique called 180 

backpropagation. During forward pass, our input vector passes through the input 181 

layer and activation function. The result is then compared with the ground truth 182 

value to calculate the error using a loss function. In the backward pass, we 183 

compute the gradients using stochastic gradient descent algorithm and adjust the 184 

weights and biases. Weights and biases are adjusted in order to reduce the error 185 

when making classification.   186 

Enhanced MLP  187 

On top of all the absolute features that we included in MLP baseline model, we 188 

further included enhanced features as mentioned in 2.2 data processing section.  189 

As evident from the diagram (Figure 2), additional features are fed into the model as 190 

inputs. Features such as frame and time were removed for this model while new features 191 

such as changes of position in x, y and z from previous time point to current time point 192 

were added. Training the model using feature engineered data helped improve the model. 193 

 194 

Figure 2: Model topology of MLP enhanced. In this enhanced model, we included 195 

features as introduced in method section while retaining model structure as baseline 196 

model.  197 

 198 

  199 
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 200 

XGBoost  201 

XGBoost was initially proposed by Chen and Guestrin in 2016(8) and it 202 

implements machine learning algorithms under the Gradient Boosting 203 

framework(9). Specifically, XGBoost is a decision-tree-based ensemble machine 204 

learning algorithm based on optimized distributed gradient boosting library and is 205 

thus highly efficient, flexible and portable. We followed the default 206 

hyperparameters, except for objective being changed to multi:softmax and the 207 

number_class being changed to the corresponding 19 classes in the raw C3D 208 

dataset.   209 

LSTM  210 

Long short-term memory (LSTM) is an artificial recurrent neural network (RNN) 211 

architecture(10) with a  LSTM unit composed of a cell, an input gate, an output gate and a 212 

forget gate. For the model topology (Table-2), a sequential model which is a linear stack 213 

of layers is used. the first layer is an LSTM layer with memory units and it returns 214 

sequence. A dropout layer is applied to avoid overfitting of the model; after that, a dense 215 

layer with activation algorithm of relu is added, followed by a dense layer with softmax 216 

function for classification. 217 

For the hyperparameters, we set target to maximize categorical_crossentropy, 218 

with 80 epochs and batch size of 100.  219 

Table 2: Model topology of LSTM 220 
================================================================= 221 
Layer (type)                 Output Shape              Param #    222 
================================================================= 223 
lstm_2 (LSTM)                (None, 50)                10800      224 
_________________________________________________________________ 225 
dropout_2 (Dropout)          (None, 50)                0          226 
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_________________________________________________________________ 227 
dense_3 (Dense)              (None, 128)               6528       228 
_________________________________________________________________ 229 
dense_4 (Dense)              (None, 19)                2451       230 
================================================================= 231 
Total params: 19,779 232 
Trainable params: 19,779 233 
Non-trainable params: 0 234 
_________________________________________________________________ 235 

 236 
Model Evaluation Approach  237 

F1 score 238 

We are dealing with multi-class classification for a set of time-series data points and the 239 

purpose is to classify each set of data into one of the classes. The total dataset is randomly 240 

split into training and testing dataset with ratio of 0.8, 0.2. Evaluation is carried out on the 241 

testing dataset. As the data labels are not uniformly distributed, we chose the F1 score as 242 

the harmonic mean of the precision and recall. 243 

        �1 ����� 	 2 �
������� �  ������

������� � ������
 

�������� �  1

 � � ���, �, �� � ���

�:���,	,
�

||

���

 

Where precision (also called positive predictive value) is the fraction of true 244 

positive samples among the predicted true samples, while recall (also known 245 

as sensitivity) is the fraction of true positive samples among all the positive 246 

samples.   247 

Confusion  matrix 248 

A confusion matrix is also known as an error matrix. It is a table layout that allows 249 

visualization of the performance of a supervised learning model. Each row of 250 

the matrix represents the instances in an actual class while each column represents the 251 

instances in a predicted class, or vice versa.  252 
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Results  253 

Both training dataset and testing dataset were applied with the same data cleaning 254 

strategies with polynomial interpolation and all the feature engineering as described in the 255 

methodology. After that, we built four models with MLP baseline, MLP enhanced model, 256 

XGBoost enhanced model and LSTM using training dataset. The performance was 257 

measured on the testing dataset.  258 

Model Accuracy   259 

The Table 3 below showed performance (F1 score) of the four models with the same 260 

testing dataset.  As shown in the table, XGBoost showed highest performance with f1 261 

score at 0.94, followed by MLP enhanced (F1 score=0.86), LSTM(F1 score=0.65) and 262 

MLP baseline (F1 score=0.64). 263 

Table 3: Performance comparison among 4 models 264 

Model Algorithm Feature F1 score 
MLP baseline  MLP  absolute location, frame  0.64 

MLP enhanced  MLP  
absolute location, relative location, 
changes  

0.86 

XGboost enhanced  XGBoost  
absolute location, relative location, 
changes  

0.94 

LSTM  LSTM  absolute location  0.66 
Note: This table captures the results of the various algorithms and models used in the evaluation with 265 
their corresponding F1 scores.  266 

Confusion matrix to show agreement between truth and prediction from the model  267 

As XGboost showed highest performance among all the 4 models, we chose predictions 268 

from XGboost and use a confusion matrix to demonstrate the agreement between true 269 

labels and model output (Figure 3). As illustrated by the side bar, lighter colors refer to 270 

higher number while darker colors indicate lower number. In the confusion matrix, we 271 

can observe that the matrix diagonal are in lighter color, suggesting high agreement 272 

between true labels and predicted labels. Nevertheless, Mislabelling was observed, 273 

especially more frequent between R_HEEL and R_MT5. 274 
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Figure 3: Confusion matrix of true labels and predicted labels from model with XGBoost. 275 

 276 

Feature Importance  277 

As XGboost showed highest accuracy among all the model, we further examined 278 

the model by checking feature importance. As we can see in figure 4, it showed 279 

that relative location of y together with z has the highest importance in the 280 

modelling, followed by absolute position of z.   281 

Figure 4: Feature Importance from model with XGBoost. 282 

 283 

Discussion 284 

Capturing human kinematics data requires mounting sensors to pre-defined positions on 285 

different parts of the subject’s body, which may lead to missing labels. In current motion 286 

capture pipelines, manual validation and labelling is a time consuming and labour 287 

intensive postprocessing step and may become a bottleneck for downstream analysis.   288 

Prior to this, Holzreiter(11) used neural network to estimate the positions of sorted 289 

markers from a shuffled set through pairing up the marker locations with the shuffled set 290 

using the nearest neighbour search. Meyer et al.(12) estimated the skeletal configuration 291 

by least-squares optimization and exploited the skeletal model to automatically label the 292 

markers. Besides, Han et al.(13) proposed auto-labelling approaches specifically for 293 

labelling hands’ kinematics data through keypoint regression problem solved with 294 

convolutional neural networks. In addition, Saeed et al.(14) used a data-driven approach 295 

for automatic labelling through permutation estimation where shuffled markers are ranked 296 

based on a pre-defined order.   297 
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While the previous work has no labelled data and tried to classify the kinematic data to 298 

different locations according to the temporal profile, our work targets to label kinematic 299 

data with missing labels. Specifically, the problem we are focusing on is the data quality 300 

of the captured data with majority of the data being labelled and a few missing data points 301 

due to technical errors. After effective feature engineering and modeling with 3 selected 302 

model algorithms, we are able to achieve decent classification outome with F1-score over 303 

90%.   304 

The list of features, model performance and feature importance will vary based on the 305 

type of motion being captured by the sensors. In this experiment, we used the motion data 306 

of a walking subject, on which over 20 sensors were mounted. Since the motion was 307 

horizontal, all sensors moved by similar distance along the x axis as the subject moved. 308 

As a result, the relative position of x did not contribute as much to differentiation of 309 

sensors, as compared to y and z axes, because the sensors were mounted at different 310 

hights on the subject’s body. To apply the models to other movements, we need to retrain 311 

the model with least effort since the list of features, model performance and feature 312 

importance will vary based on the type of motions being captured by the sensors. We also 313 

noticed that appropriate feature engineering was essential to get higher accuracy. By 314 

using relative locations of the sensors along the x, y and z axes, we were able to improve 315 

the performance of the model by over 31% compared to the baseline model that used just 316 

the absolute locations of the sensors. This shows that relative location was the key factor 317 

in determining the appropriate sensors. 318 

Conclusion  319 
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We tested different data transformation and machine learning algorithms to develop a 320 

multi-class classification model that can label kinematics data with high accuracy. It was 321 

also important to apply techniques on kinematics timeseries data as it helped us to 322 

improve the model. Calculating the 1-dimensional and 3-dimensional relative change to 323 

the frames helped with creation of new features. These techniques improved the model 324 

performance considerably. XGBoost model gave the best performance compared to the 325 

neural architecture models. The models can be used to accurately label the three-326 

dimensional motion data which can provide insights into movements of a patient with 327 

injury or a patient with disability. Analyzing these movements can further help in either 328 

creating a recovery plan or an exoskeleton that can aid in recovery. 329 

 330 
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