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A B S T R A C T

The unmet clinical need for accurate point-of-care (POC) diagnostic tests able to discriminate bacterial
from viral infection demands a solution that can be used both within healthcare settings and in the
field and that can also stem the tide of antimicrobial resistance. Our approach to solve this problem
is to combine the use of Host-gene signatures with our Lab-on-a-chip (LoC) technology enabling
low-cost LoC expression analysis to detect Infectious Disease.Host-gene expression signatures have
been extensively study as a potential tool to be implemented in the diagnosis of infectious disease.
On the other hand LoC technologies using Ion-sensitive field-e�ect transistor (ISFET) arrays, in
conjunction with isothermal chemistries, are o�ering a promising alternative to conventional lab-based
nucleic acid amplification instruments, owing to their portable and a�ordable nature. Currently, the
data analysis of ISFET arrays are restricted to established methods by averaging the output of every
sensor to give a single time-series. This simple approach makes unrealistic assumptions, leading
to insu�cient performance for applications that require accurate quantification such as RNA host
transcriptomics. In order to reliably quantify host-gene expression on our LoC platform enabling the
classification of bacterial and viral infection on chip, we propose a novel data-driven algorithm for
extracting time-to-positive values from ISFET arrays. The algorithm proposed is based on modelling
sensor drift with adaptive signal processing and clustering sensors based on their behaviour with
unsupervised learning methods. Results show that the approach correctly outputs a time-to-positive
for all the reactions, with a high correlation to RT-qLAMP (0.85, R2 = 0.98, p < 0.01), resulting in a
classification accuracy of 100 % (CI, 95 - 100 ). By leveraging more advanced data processing methods
for ISFET arrays, this work aims to bridge the gap between translating assays from microarray analysis
(expensive lab-based discovery method) to ISFET arrays (cheap point-of-care diagnostics) providing
benefits on tackling infectious disease outbreak and diagnostic testing in hard-to-reach areas of the
world.

1. Introduction

Whole blood gene expression biomarkers have been pro-
posed as an accurate and reliable way of patient diagnosis
[1]. Scientists worldwide aim to integrate such host-genes as
prognostic and predictive marker of disease into clinical di-
agnostic pathways [2]. Although many signatures have been
already described to be linked to infectious disease, their im-
plementation in the clinic as Point-of-care technology is still
very limited [3, 4].

In our previous work, we highlighted the potential of
a 2-gene RNA signature to be translated into a rapid and
portable laboratory-on-a-chip (LoC) tests suitable for Point-
of-Care (PoC) applications [5]. In fact, the use of LoCs
as diagnostic platforms has been rapidly growing in recent
years, especially in resource-limited settings for its potential
as reliable, fast, cost-e�ective and portable solution leading
to opportunities in point-of-care application. [6]. In an e�ort
to translate the findings from microarray gene expression
discovery to LoC diagnostics,we focused on the detection of
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RNA from clinical samples and developed a new Machine
Learning based algorithm to extract valuable information
from an array of electrochemical sensors used as microchip
technology to detect the amplification of nucleic acid.

This development is performed with a conventional qPCR
instrument using isothermal amplification chemistries, which
is then translated on an ion-sensitive field-e�ect transistor
(ISFET) based LoC platform yielding a method referred to
as electronic reverse transcriptase quantitative loop medi-
ated isothermal amplification (RT-qLAMP), or RT-eLAMP
[5]. Our LoC platform based on metal-oxide-semiconductor
(CMOS) technology is indeed in a full development stage
and we have already reported the successful detection of dif-
ferent infectious diseases such as Plasmodium falciparum
cause of Malaria [7], Dengue [8], Zika [9] and most recently
SARS-CoV-2 [10].

The vision of this work is two-fold. Firstly, we aim to
motivate a workflow from microarray analysis (expensive
lab-based discovery) to lab-on-a-chip devices (cheap point-
of-care diagnostics), in order to create a more e�cient process
for RNA transcript detection. Secondly, we show that the vast
amount of rich data from ISFET sensor arrays enable a wide
variety of algorithms, that can extract as much information as
needed in order to provide clinically useful results rather than
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misleading conclusions. Overall, this work highlights the
powerful combination of the host transcriptomic approach
combined with our microchip technology to discriminate bac-
terial from viral infection using a new ML based approach to
extract information from ISFET array and provide a diagnos-
tic outcome.

Currently, the data analysis of ISFET arrays is restricted
to established methods developed for conventional instru-
ments by averaging the output of every sensor to give a single
time-series [11]. All the established methods for detecting
amplification and computing a time-to-positive, such as the
‘gold standard’ cycle-threshold method or Cy0 method can
be used [12, 13]. Moreover, sensor arrays inherently output
a spatio-temporal signal and simply averaging sensors as-
sumes that the sensors belong to the same data distribution
[14]. This is particularly important when fabricating ISFETs
in unmodified CMOS technology due to significant trapped
charge e�ects [15].

In our work, we aimed to classify bacterial and viral infec-
tion by exploring a novel data-driven algorithm for extracting
time-to-positive values from ISFET arrays (fabricated in un-
modified CMOS). We achieved this by modelling sensor drift
with adaptive signal processing and clustering sensors based
on their behaviour with unsupervised learning methods. First,
a 2-gene signature which has been reported to distinguish
viral versus bacterial infection using microarray analysis is
validated [5]. Subsequently, a novel RT-qLAMP assay is de-
veloped for the 2-gene signature based on the splice variants
analysis to guarantee a targeted mRNA amplification, high
specificity and sensitivity and a lower limit of detection of
10 copies per reaction within 23 minutes. To evaluate real
world samples, we have used 24 clinical isolates as a case
study (12 with confirmed bacterial infection and 12 with con-
firmed viral infection), so as to take a step towards tackling
antimicrobial resistance.

By leveraging more advanced data processing methods
for ISFET arrays, this work hopes to bridge the gap between
translating assays from microarray analysis (expensive lab-
based discovery method) to ISFET arrays (cheap point-of-
care diagnostics). In this work we describe our method for
di�erentiating bacterial from viral infection using RNA host
blood expression detected on our lab-on-a-chip technology
and applying a novel data-driven algorithm to combat the
issues of drift and trapped charge.

2. Materials and Methods

2.1. LAMP Assay Design

Minimal signatures that discriminate bacterial from viral
infection in patients have been used to design LAMP assays to
be detected on the LW platform through electronic amplifica-
tion [5]. Specific LAMP primers for IFI44L and EMR1 were
designed to discriminate respectively between viral and bac-
terial infection. EMR1 was found over-expressed in patients
with bacterial infection, IFI44L was found over-expressed
in patients with viral infection. To design the LAMP as-
says six primers were generated to target eight exon-specific

region within the gene IFI44L and EMR1, using Primer Ex-
plorer V5 (Eiken Chemical Co. Ltd., Tokio, Japan) Table1.
Primers were aligned to the reference genomic sequences
using Geneious 10.0.5 software and manually optimised con-
sidering their melting temperature (Tm), stability at the 3’
end of each primers, GC content, and possible secondary
structures such as primer dimer formation using NUPACK37
software (http://www.nupack.org/). The performance of the
assays was evaluated based on their analytical sensitivity
achieving a lower LoD of 10 copies/reaction. Primers were
purchased from Integrated DNA Technologies and resus-
pended in TE to 100 µM stock solutions. The stocks were
stored at *20 °C.

2.2. LAMP Reaction Conditions

The optimised pH-LAMP reaction mix comprises: 1 µL
of 10ù customized isothermal bu�er (pH 8.5 - 9), 0.6 µL of
MgSO4 (100mM stock), 0.56 µL of dNTPs (25mM stock),
0.6 µL of BSA (20mg/mL stock), 1.6 µL of Betaine (5 M
stock), 0.25 µL of NaOH (0.2 M stock), 0.25 of AMV reverse
transcriptase by Promega (25,000 U/mL stock), 0.10 µL of
RNAse inhibitor (20,000 U/mL stock), 0.25 µL of SYTO 9
Green (20 µM stock), 0.042 µL of Bst 2.0 DNA Polymerase
(120,000 U/mL stock), 1 µL of 10ù LAMP primer mixture,
1 µL of extracted RNA and enough nuclease free water (The-
rmo Fisher Scientific) when necessary, to bring the volume
to 10 µL reactions. All reagents except the AMV Reverse
Transcriptase were purchased from New England BioLabs.
Reactions were performed at a single temperature of 63 °C
for 30 min in the LW platform and validated using the same
reaction condition into LightCycler 96 (Roche Diagnostics)
by using a LightCycler 96 (LC96) Real-Time PCR System
(Roche Diagnostics). Furthermore, validation of the speci-
ficity of the products was performed running one melting
cycle in the LC96 at 0.1 °C_s from 65 °C up to 97 °C for
validation of the specificity of the products. Each experi-
mental condition was run in triplicates. For RT-eLAMP, the
reagents were modified to obtain a low bu�ered solution with
the aim to detect nucleotides by measuring the solution’s pH
change. The reaction mixture contains the same reagents
except the Tris bu�er, which was removed to obtain a low
bu�ered solution, where pH change can be measured. To
carry-out DNA amplification reactions on chip the microflu-
idic chamber was filled with 10 µL of the same reaction mix
prepared for the gold standard instrument and sealed with
PCR tape to avoid evaporation and contamination of the am-
plified products while running on the platform.

2.3. Conventional method

The conventional method of analysing amplification data
from ISFET arrays typically revolves around averaging the
signals from the sensors and subsequently processing the data
(e.g. drift compensation). Therefore, herein, the conventional
method is referred to as average then process, or ATP. The
ATP method, described in Malpartida et al [7], is shown
below and the key assumptions which the proposed method
aims to tackle are boxed in gray.

Pennisi et al.: Preprint submitted to Elsevier Page 2 of 9

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 22, 2022. ; https://doi.org/10.1101/2022.02.21.22271125doi: medRxiv preprint 

http://www.nupack.org/
Luca Miglietta

https://doi.org/10.1101/2022.02.21.22271125
http://creativecommons.org/licenses/by-nc-nd/4.0/


Lab-on-a-Chip

ISFET Array

Sample 

Peripheral 
Circuits

Proposed Algorithm

Extraction

(A) Raw Data

(B) Online Learning (C) Clustering

(D) Spatial Validation Result 

Positive

Negative

t

t t

Figure 1: Depiction of the sample-to-result workflow using a lab-on-a-chip device in conjunction with the proposed algorithm

Table 1
LAMP Primer sequences for IFI44L and EMR1 targets.

Target LAMP Primer Sequence (5’- 3’)

IFI44L F3 TGTGGTATAGCATATGTGGC
B3 GAGAGGATGAGAATATCCTTCA
LF AGTTGTCTTGAAGAACCTCACTG
LB CCAATATTTTGATGGTTGGAAACTATG
FIP CGGCTTTGAGAAGTCATAGATCTAC-CTTGCTTACTAAAGTGGATGATTG
BIP ATGAATGTCCATAAAATGCTAGGCA-GTCCAGTTCCAAATCTGAAG

EMR1 F3 CCACAGTCTTCCTGGAGAGT
B3 CCAGTGGTCTCTGTGGATTC
LF TGCTGAGGGTTTCCAAAAAGAT
LB AAGGGGGATAAGATGAAGAT
FIP CGTCCGAACAGCCGGAGTGATATGGAAAGCATGACACTGGC
BIP TGTGACGTTGGACTTGGTAGCCCCTCAATTGTGGAACACCCG

All primers have been developed in-house and published for the first time in this study.

1. The signals from all ISFETs in contact with the chemi-
cal solution are averaged. The resulting signal is nor-
malised by removing the DC component.

Assumption 1

The signal from all the sensors are drawn from
the same distribution.

2. During the first few minutes of the chemical reaction,
sensor drift is modelled using a stretched exponential
function described by:

y[n] = e*t[n]� (1)

Where y[n] and t[n] are the voltage and time values
at sample n, and � is a scalar parameter. The drift is

extrapolated across time, and subsequently subtracted
from the signal to yield an amplification curve.

Assumption 2

The drift parameter � is stationary, or equiva-
lently, � does not change with time.

3. The time-to-positive is extracted as described in Guescini
et al (2008) [16] via the Cy0 method.

2.4. Proposed Method

The proposed method, as depicted in Figure 2, follows
5 steps, namely: (i) pre-processing, (ii) adaptive signal pro-
cessing, (iii) unsupervised clustering, (iv) spatial validation
and (v) averaging & peak detection. Each step is described
below.

Pennisi et al.: Preprint submitted to Elsevier Page 3 of 9

Luca Miglietta



Adaptive 
Signal Processing

Preprocessing
Unsupervised 

Learning (clustering)

Spatial Validation
Averaging 

& Peak detection
Post-processing

(optional)

Raw data

Time-to-Positive

(A) (B) (C) (D)

(E)(F)(G)

Figure 2: Proposed method for extracting time-to-positive values from ISFET arrays

Pre-processing. The background is removed from each
signal by subtracting the average of the first 5 voltage measure-
ments. An example of raw data and pre-processed signals are
shown in Figure 2 (A) and (B). Adaptive Signal Processing.

The drift is typically modelled via the stretched exponential
given in equation 1. The parameter � is estimated via any
iterative gradient based optimisation algorithm, commonly
of the form:

�i+1 = �i * ↵ dy[n]
d�

(2)

Where i is the iteration number, ↵ is a small constant (note:
this can be adaptive), and dy[n]

d� can be computed as:

dy[n]
d�

= log(t[n])(*e(*t[n]� ))t[n]� (3)

The above analysis assumes that the drift parameter is con-
stant through time. In order to relax this assumption, the
proposed method takes an ‘adaptive signal processing’ ap-
proach whereby the drift parameter is updated at each time
step, so as to capture the behaviour over time. Therefore,
each sensor will yield a � vector with the same length as the
experiment, as depicted in Figure 2 (C). In this study, the
normalised least mean square is used [17]. Unsupervised

Clustering. The � vectors are grouped into K clusters via
K-Means clustering using the cosine distance, whereby the

value K is determined via the silhouette score [18]. There-
fore, sensors are grouped by similar behaviour, as depicted in
Figure 2 (D). Spatial Validation. In reality, we expect sen-
sors which are spatially close to have more similar behaviour.
Therefore, to ensure the clustering is not random, the clusters
can be visualised spatially, as in Figure 2 (E), to confirm this.
This step can be achieved automatically via graph theoretic
approaches for calculating the number of components [18].
Averaging & Peak Detection. The signals in each cluster
are averaged to remove the e�ect of inherent noise, and a
peak detection algorithm is used to extract a time-to-positive
value, as shown in Figure 2 (E). Note: Since the behaviour
of sensors are commonly drifting over time, an optional post-
processing is to remove slow components in the signals, as
in Figure 2 (F).

For reproducibility purposes, the RNA targets, primer de-
sign, reaction conditions and statistical analysis are described
below. Details of the microarray analysis can be found in
Herberg et al. (2016) [1] and the ISFET experimental setup
can be found in Malpartida et al. (2019) [7]. The reader may
wish to skip directly to the Results and Discussion (section
3).

2.5. Microarray analysis

Values for gene expression data analyzed on Illumina
microarrays were provided by Herberg and colleagues [1].
Using the data provided, we identified the clinical samples
that had di�erentially expressed transcripts between the defi-
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nite viral and bacterial groups with |log2 FC| > 1 and adjusted
P-value < 0·05, using a trained support vector machine classi-
fier. These thresholds were chosen to ensure that di�erential
expression for selected variables could be distinguished using
the resolution of other validation techniques (i.e. qPCR) TBC

2.6. Statistical Analysis

To define a decision boundary between the bacterial and
viral infections, a support vector classifier from the scikit-
learn package in Python was used [19]. The underlying re-
gression, i.e. linear combination of time-to-positive values
were used as a score. To prevent over-fitting, 10-fold cross-
validation was used to select hyper-parameters. The confi-
dence interval for the classification accuracy was determined
by 95% under the binomial distribution. The correlation be-
tween methods was determined using the Pearson correlation
and a p-value was determined using the F-statistic.

3. Results and Discussion

The following section is structured as follows. First, the 2-
gene signature for distinguishing bacterial and viral infections
is validated using microarray analysis. Subsequently, a new
RT-qLAMP assay for detecting the same 2-gene is demon-
strated. Following this, the ATP and proposed algorithm
for extracting time-to-positive values from ISFET arrays are
evaluated. Finally, the correlation between moving from
microarray analysis to RT-qLAMP, and from RT-qLAMP
to RT-eLAMP is studied to highlight the bottlenecks in the
translation process.

3.1. Microarray Analysis

Figure 3 (A) shows the 2-gene signature (IFI44L and
EMR1) for 11 bacterial and 11 viral isolates. It can be ob-
served that the two groups are linearly separable. In particular,
Figure 3 (A) shows the decision boundary for a trained sup-
port vector machine classifier with a black dashed line. The
classification accuracy, as determined by cross-validation, is
shown to be 100.0% (CI, 95.7*100.0%). Figure 3 (B) shows
boxplots with scores which corresponding to the euclidean
distance between each data point and the decision boundary.
The log RNA expression can be found in Figure 3 (C). This
analysis demonstrates that the 2-gene signature is in fact a
successful method of distinguishing viral versus bacterial in-
fection in microarray analysis. However, detection with gene
expression microarrays needs sophisticated lab equipment, is
expensive and cannot be used for routine diagnostics.

3.2. RT-qLAMP

To this end, two new LAMP assays were developed to de-
tect the 2-gene signature using a conventional qPCR platform.
Figure 4 shows the standard curves for IFI44L and EMR1 for
concentrations ranging from 10 to 106 copies per reaction,
respectively. This demonstrates that the assay is highly sensi-
tive with a lower limit of detection down to 10 copies per total
volume reaction. With regards to classification performance,
Figure 5 illustrates that RT-qLAMP assay also provides a
100.0% (CI, 95.7*100.0%) accuracy, showing the successful

translation across platforms. Since microarray measures the
RNA abundance, it is expected that the time-to-positive value
from LAMP is inversely proportional (i.e. high expression
results in faster reaction). As a sanity check, it can be ob-
served that the position of DB and DV isolates are swapped
in 2D space (i.e. for microarray, DB is in the lower right and
DV is in the upper left, and vice-versa for RT-qLAMP).

3.3. Electronic RT-LAMP

Subsequently, the same assays and clinical isolates were
tested on the ISFET-based LoC platform using the ATP algo-
rithm. The results are shown in Figure 6. It can be observed
from 6 (C) that 36.4% of the experiments were considered
negative/failed, resulting in 50% of the isolates failing to pro-
vide a 2D signature. This highlights the challenge presented
with ISFETs which have significant noise. Moreover, it can
be observed from Figure 6 (A) that due to the lack of data,
the decision boundary has a negative slope coe�cient, which
is not correct. It is important to stress that this method is
su�cient where most of the sensors have similar behaviour
(e.g. low trapped charge and noise e�ects), as in Malpartida
et al [7]. In contrast with the ATP method, the proposed
method successfully called positive for all experiments. As
shown in Figure 7, the classification accuracy is 100.0% (CI,
95.7 * 100.0%) with a positive decision boundary slope, al-
though the class separation is not as evident as microarray
analysis or RT-qLAMP.

3.4. Evaluating the Translation Process

Although it has been shown that RT-qLAMP and RT-
eLAMP can be used as a viable diagnostic solution for this
specific application, microarray analysis remains a useful
tool for discovering the signatures. Therefore, it is important
to study the translation process from microarray analysis to
RT-qLAMP to RT-eLAMP. This is particularly useful for
identifying the bottlenecks in the process, so as to improve
the class separation. Figure 8 shows a scatter plot between the
RNA expression from microarray analysis and RT-qLAMP
Cq values, and a scatter plot between RT-qLAMP and RT-
eLAMP Cq values. The correlation coe�cient between mi-
croarray analysis and RT-qLAMP is found to be *0.71 with
R2 = 0.51 and p-value << 0.01. However, the correlation
between RT-qLAMP and RT-eLAMP is 0.85 with R2 = 0.98
and p-value << 0.01. This demonstrates that the bottleneck
in the translation process is between microarray analysis and
qPCR, highlighting the need to focus research e�orts on
molecular assay development. On the other hand, the pro-
posed algorithm correctly outputs a time-to-positive for all
the reactions, with a high correlation to RT-qLAMP (0.85, R2

= 0:98, p < 0:01), and resulting in a classification accuracy
of 100 (CI, 95 * 100).

4. Conclusion

There is an urgent need for fast, cheap, robust and quanti-
tative methods for distinguishing between di�erent types of
infectious or inflammatory diseases [1]. When they cannot
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Figure 3: Viral versus bacterial classification - performance of microarray analysis

Figure 4: RT-qLAMP standard curves for IFI44L and EMR1

be diagnosed in a timely manner, subjects may receive unnec-
essary treatments or risk misdiagnosis [20]. Among the main
classes of diagnostic methods utilised for detection and iden-
tification of infectious diseases either relying on pathogen or
host-based diagnosis, only nucleic acid-based methods have
a quantitative rather that qualitative output. However, these
techniques rely on lab-based instruments such as microarrays,
RNA sequencing and qPCR and are also expensive and can-
not be miniaturized into a small form factor device requiring
a technically trained operator [21] . Furthermore, as sensing
systems become more advanced, the extracted data is be-
coming richer and more complex, presenting new challenges.
In the case of diagnostic systems based on ISFET arrays, a
major challenge is to combat the e�ects of various sources

of noise [22]. In this study we addressed these and other
disadvantages by providing an a�ordable solution for quan-
titative detection of RNA-host transcripts highly expressed
in the presence of specific diseases. The label-free detection
method based on scalable microchip semiconductor tech-
nology combined with isothermal amplification chemistries
makes this approach suitable to implementation at low-cost.
A new data-driven system to identify a nucleic acid amplifica-
tion can significantly improve the robustness compared with
existing methods and the whole system can be delivered at the
point-of-care level without the need for large and expensive
laboratory equipment, while still delivering a quantitative
result that can lead to a diagnostic outcome.

Although this study is a first step towards exploring new
methods of implementing gene expression signature into a
Point-of-care application and extracting time-to-positive val-
ues from ISFET arrays to provide more accurate outcome,
there are several factors which should be highlighted for fu-
ture studies and improvements. In fact, it is important to
understand the cost of using the proposed algorithm from
computational and memory complexity. In terms of compu-
tational complexity, the added operations include: (i) fitting
a drift model to each sensor, as opposed to the average of
all sensors; (ii) unsupervised clustering such as the Kmeans
algorithm; (iii) spatial validation; and (iv) peak detection.
For (i), the operations consist of simple additions and multi-
plications, however the complexity scales with an increase
in the number of sensors might result expensive for large
arrays. On the other hand, the computation for each sensor
is independent and therefore can be completely parallelised,
yielding the same complexity as conventional drift fitting.
The complexity of (ii)-(iv) largely depends on the chosen
algorithms. Although with modern computers, these are not
crucial. For example, entire proposed algorithm (without vi-
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Figure 5: Viral versus bacterial classification - performance of RT-qLAMP analysis

Figure 6: Viral versus bacterial classification - performance of RT-eLAMP analysis (ATP method)

sualisation) took only 0:96 , 0:11 seconds on a MacBook Pro
(16- inch, 2019, 2.3 GHz 8-Core Intel Core i9 processor and
32 GB 2667 MHz DDR4 memory) running Matlab R2019B.
In terms of space complexity, the additional memory usage
is in the order of 10 Mb. Aside from algorithmic factors,
it is also important to evaluate the experimental design of
the study. This includes the experimental conditions and
sample set. Regarding the conditions, the experiments were
performed similar to a real setting with the exception of using
a thermocycler for thermal management. This was in fact a
study design choice in order to remove noise from tempera-
ture e�ects since this can be fixed using good thermal control,
rather than increasing algorithmic complexity by accounting
for temperature. However, a full study including this source
of noise should be included in future studies. Moreover, this
study used 24 clinical isolates (12 bacterial and 12 viral), and
although confidence intervals were used to estimate the up-
per and lower bounds of the classification accuracy, a larger
clinical study is required to ensure there was no unintended
sampling bias.

In conclusion, a new method for extracting time-to posi-

tive values from nucleic acid amplification for ISFET arrays
under high noise environments is proposed. This approach is
primarily based on modelling the sensors adaptively to repre-
sent ‘changes in behaviour’, and clustering the time-series,
so as to average sensors with the same behaviour. Using
this new method was shown to successfully provide a high
correlation between conventional lab-based RT-qLAMP and
the ISFET-based LoC platform, yielding 100.0% accuracy
when classifying viral and bacterial isolates with a 2-gene
signature. Moreover, the entire workflow from microarray
analysis (expensive lab-based discovery) to lab-on-a-chip de-
vices (cheap point-of-care diagnostics) was studied, in order
to create a more e�cient process for nucleic acid detection.
With our work we want to encourage researchers to apply this
methodology to other applications, such that it benefits the
wider scientific community. We indeed strongly believe that
our approach will enable prompt, optimised care which min-
imises the use of unnecessary treatments such as antibiotics,
and instead guides rapid decisions on the use of antiviral
or adjunctive treatments including anti-inflammatory drugs
with the advantage for surveillance of infection. Furthermore,
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Figure 7: Viral versus bacterial classification - performance of RT-eLAMP analysis (proposed method)
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Figure 8: Translation of 2-Gene Signature from microarray analysis to RT-qLAMP to RT-eLAMP - moving from expensive
lab-based discovery to cheap point-of-care diagnostics

accurate diagnosis could inform real-time bed planning and
escalation of care pathways and ventilator access/allocation
improving safety for patients and for healthcare sta�. And
lastly establishing the utility of an a�ordable and accurate
device that is based on host-transcript signatures will ad-
dress many diagnostic and prognostic clinical challenges for
various infections and inflammatory conditions and others
pathology for which there is a blood diagnostic signature.

This will have impact on other infectious disease outbreaks,
and on diagnostic testing in hard-to-reach areas of the world.

Future directions of this study will focus on the embedded
integration of the proposed algorithm into the PoC device
itself (rather than running on a computer or server) and a
systematic pipeline for in silico development of LAMP assays
from microarray experiments.
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