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9 ABSTRACT10
11

COVID-19 pandemic is a major public health threat with unanswered questions regarding the12

role of the immune system in the severity level of the disease. In this paper, based on antibody13

kinetic data of patients with different disease severity, topological data analysis highlights clear14

differences in the shape of antibody dynamics between three groups of patients, which were15

non-severe, severe, and one intermediate case of severity. Subsequently, different mathematical16

models were developed to quantify the dynamics between the different severity groups. The best17

model was the one with the lowest media value of Akaike Information Criterion for all groups18

of patients. Although it has been reported high IgG level in severe patients, our findings suggest19

that IgG antibodies in severe patients may be less effective than non-severe patients due to early20

B cell production and early activation of the seroconversion process from IgM to IgG antibody.21

22

1. INTRODUCTION23

Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the causative agent of one of the largest pandemic24

in history. COVID-19 pandemic has resulted in about 5 million of deaths and more than 365 million of infected25

people. Previous coronavirus outbreaks SARS-CoV (2003) and MERS-CoV (2012) showed similar qualitative and26

quantitative clinical aspects to SARS-CoV-2. In particular, patients with MERS-CoV [29] had viral levels peak in27

the second week with a median value of 7.21 (log10 copies/mL) in the severe patient group, and approximately 5.5428

(log10 copies/mL) in the mild group. On the other hand, in patients with SARS were reported that the virus peaked at29

5.7 (log10 copies/mL) between 7 to 10 days after onset of symptoms (dpso) [33].30

Several multifactorial and complex mechanisms are implicated during the course of COVID-19, which conse-31

quently lead to the nature of pathogenesis. COVID-19 patients can be classified into mild, moderate, severe, and32

critical cases. In patients with SARS-CoV-2 the viral peak was approximately 8.85 (log10 copies/mL) around 5 dpso33

[49], and viral load persisted for 12 days after onset [20]. Severe disease cases reported a mean viral load on admission34

60 times higher than the mean of mild disease cases [20]. Remarkably, prolonged viral shedding was presented in35

severe patients than that of non-severe patients [45].36
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Figure 1: Immune responses associated for the poor clinical outcome in severe COVID-19 patients.

The immune system has been pointed out by the scientific community as a key factor between severe and non-37

severe patients Figure1. Among the immune cells recruited to tackle SARS-CoV-2 in the lungs are virus-specific T38

cells e.g CD4+ T and CD8+ T cells. The study by Oja et al. [30] highlighted that B and T cell responses of critical39

patients are imbalanced, exhibiting high titers and low virus-specific CD4+ T cell responses. Interestingly, the CD4+40

T cell response was impaired as well as the functionality [30], that is SARS-CoV-2-specific CD4+ T cells showed41

decreased production of Interferon-
 (IFN-
), Interleukin 4 (IL-4) and Interleukin 21 (IL-21). While other studies42

[47] has shown high levels IL-2, IL-10 and IL-6, COVID-19 patients are less inflamed than influenza patients [25].43

B cell responses could be indicative of a deregulated immune response in severe COVID-19 patients. Timing is44

central as the ratio between viral loads and antibody titers during the early phase of disease may be predictive for45

disease severity [30]. Prospective cohort studies with COVID-19 patients highlight that immunoglobulin M (IgM)46

started on day 7 and peaked on day 28, while that of immunoglobulin G (IgG) was on day 10 and day 49 after illness47

onset [45, 30]. Strikingly, these studies revealed that IgG antibody are significantly higher in severe patients than48

non-severe patients [45].49

Dissecting the contributions of the identified players in antibody dynamics to severe and non-severe patients with50

COVID-19 is crucial to develop prophylactic and therapeutic strategies. In this regard, it is important to understand the51

relationship between data taken from experimental samples of patients with COVID-19 and the severity of the disease.52

Topological Data Analysis (TDA) is a set of tools based on algebraic topology and whose objective is to retrieve53

information from high-dimensional databases which are complex to study with traditional statistical methods. The54

particular tool we used from TDA is the Mapper algorithm. The algorithm was proposed by Singh et al. [41] and has55
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since gained relevance in recent years as it offers graphs with clear interpretations that represent a general map of the56

phenomenon being studied, simplifying and preserving important features of the data. This algorithm has proven its57

usefulness in various situations such as the study of breast cancer data [28] or image processing [38].58

On the other hand, mathematical modeling has made valuable contributions to our quantitative understanding of59

different viral infection such as for Influenza [4, 24, 42, 32, 14, 8, 17], HIV [39, 34, 15, 35], Hepatitis[37, 13], Ebola60

[26, 27], among many others. For COVID-19, there are a few models at within-host level to quantify SARS-CoV-261

dynamics in the host [9, 10, 11, 12, 16, 1, 2, 5]. However, untangling the contributions of differentmechanisms bywhich62

changes in the immune response in non-severe and severe patients in a temporal manner has not been proposed until63

now. Therefore, by combining the results of different data sets, topological data analysis and mathematical modelling64

approaches, the present study aims at clarifying the relative contributions of antibodies between severe and non-severe65

COVID-19 patients.66

2. RESULTS67

Topological data analysis. We decided to explore the data using the mapper algorithm for topological analysis of the68

data in order to find a distinction between severe and non-severe cases that the usual statistical tools fail to recover.69

The mapper algorithm is a method of replacing a topological space by a simpler one, which captures topological and70

geometric features of the original space. In the graph resulting from the mapper, the nodes represent the group of data71

that the algorithm considered similar while the edges between two of themmean that they have non-empty intersection.72

The size of the nodes is proportional to the number of elements it contains.73

First we use the data from 262 patients with a single sample per patient, this means that we have a set of 262 points74

in ℝ4 where the entries correspond to the days after onset of symptoms, IgG antibody level, IgM antibody level and75

the severity with 0 indicating a non-severe case and 1 a severe case. In Figure 2 shows the resulting graph colored76

according to the severity of the patients described by the data set. The algorithm distinguishes three main groups,77

labeled A, B and C. In group A the nodes have at least 70% of severe patients, in group B the nodes have between 20%78

and 60% and in group C there are no severe patients.79

In order to study these distinctions, we show the violin plots in Figure 3. We first compared the IgG and IgM80

antibody levels of the data from node groups A, B, and C; and then comparing groups A ∪ B and C separated by week.81

In the violin plots presented on the left of Figure 3 we observe that group B has clearly higher and less dispersed IgG82

antibody levels than the other groups. As for IgM in group A, it is generally higher than in the other groups. This may83

indicate a difference between severe cases, however it is insufficient with this information. The following two graphs84

compares IgG and IgM antibody levels between groups A ∪ B and C per week. The A ∪ B group represents mostly85

severe patients. The first three weeks the group A ∪ B IgG antibody levels are higher than group C. As for IgM the86
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Figure 2: Graph generated with the mapper algorithm using 262 samples with the nodes colored by severity percentage.
The algorithm distinguishes three main groups, in group A the nodes have at least 70% of samples of severe patients, in
group B the nodes have between 20% and 60% and in group C there are no severe patients.
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Figure 3: Violin plots comparing IgG and IgM antibody levels for each group A, B and C distinguished from the previous
graph. The graph on the left compares IgG and IgM antibody levels between groups A, B and C. The following two graphs
compares IgG and IgM antibody levels between groups A ∪ B and C per week. Dashed lines are the median of the data
and dotted lines indicate the interquartile range.

diagrams are inconclusive. From the above we can conclude that high IgG antibody levels in the first weeks may be87

an indicator of a tendency towards a more severe disease state.88

Of the 262 patients considered in the previous analysis, longitudinal samples were obtained from 41 of them. For89

the most part, samples were taken at three-day intervals. In this dataset the ID of each patient was also considered so90

that the mapper algorithm recognizes the samples coming from the same person, so the points are in ℝ5. In Figure 491

shows the resulting graph colored according to the severity of the patients, the tail (group F) containing nodes with a92

large number of samples followed by a circular shape (group G) that ends with two distinct protrusions (group D and93

E). The group E contains the samples with high IgG antibody values, although there are some nodes with medium94

levels near the circle. In this same area, nodes with high levels of IgM antibodies are found. In group D, all nodes95
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Figure 4: Graph generated with the Mapper algorithm using 41 longitudinal samples with the nodes colored by severity
percentage. We can observe four main groups, in group D all nodes contain samples of severe patients, while in group E
the percentage of severity varies between 0% and 90%. in groups F and G there are no samples of severe patients, however
they differ with respect to the number of elements.

contain samples of severe patients, while in group E the percentage of severity varies between 0% and 90%. On the96

other hand, in groups F and G there are no samples of severe patients, however they differ with respect to the number97

of elements and the form in which they are presented. In group F all nodes have at least 12 elements (except for a98

single node) and those in group G have at most 11.99

2.1. Mathematical models100

The complexity and, at times, redundancy of immune responses to infections often result in arduous and expensive101

experimental settings when attempting to identify the key components and their temporal contributions. To dissect102

the dynamics observed in patients with COVID-19, mathematical modelling was employed not only as a quantitative103

recapitulation of experimental data but as a tool to support or reject less favourable hypotheses on the basis of various104

mathematical models as “thought experiments” using the Akaike Information Criterion (AIC) for the model selection105

process. We considered six different models. We will now describe three models that seem relevant to us; models 2,106

4 and 5 are presented in the Supplementary Material.107

Model 1: This model represents the viral dynamics of SARS-CoV-2 (V ) and the dynamics of the T cell (T ), B cell108

(B), IgM (M) and IgG (G) antibody response. The model is given by:109

dV
dt

= pV − cTV T − cMMV − cGGV − cV , (1)

dT
dt

= rTV − �T T , (2)

dB
dt

= rBV − �BB, (3)
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dM
dt

= rMB − �MM, (4)

dG
dt

= rGB − �GG, (5)

where p is the rate of viral replication, the terms cTV T , cMMV and cGGV are the clearance rate of the virus by the110

immune response T cells, IgM and IgG respectively. Clearance rate of the virus is c. Previous modelling work has111

suggested using half of the detection levels (less than 50 copies/ml) as initial viral concentration V (0); however, for112

patients with COVID-19, V (0) has been estimated approximately in 0.31 copies/ml using a regression model [16]. The113

proliferation rates of T cell and B cell are rT and rB respectively and are mediated by the viral load. The proliferation114

rate of IgM and IgG antibody are rM and rG respectively, and are mediated by the level of B cell. �T , �B , �M and �G115

are the half life of T cell, B cell, IgM antibody and IgM antibody, respectively. The initial levels of T cell, B cell, IgM116

antibody nd IgG antibody were set to 106, 10, 0.1 and 0.1, respectively.117

Model 3: In this model we considered the viral replication rate modelled by a logistic function with a replication118

rate p and a maximum carrying capacity KV ; this is the maximum viral load. The model is given by:119

dV
dt

= pV
(

1 − V
KV

)

− cTV T − cMMV − cGGV − cV , (6)

dT
dt

= rT T
(

V m

V m +Km
T

)

+ �T (T (0) − T ), (7)

dB
dt

=
rBV − B

�b
, (8)

dM
dt

= rMB − (q + �M )M, (9)

dG
dt

= qM + rGB − �GG. (10)

Equation (7) refers to the T cells response against SARS-CoV-2. T cells proliferate at a rate rT and it is assumed120

that the activation of T cell proliferation by V follows a log-sigmoidal form with a half saturation constant KT . The121

coefficient m relates to the width of the sigmoidal function, different values of m were tested, m = 2 rendered a better122

fit [16]. T (0) is the initial T cells concentration, this represents the T cell homeostasis and it was set to 106.123

Equation (8) represent the B cells production, which activates the immunoglobulins response against the virus.124

This dynamic is modelled by the proliferation of the cells at a rate rB minus the B cells already produce since these125

cells are directly involved in the immunoglobulins proliferation. The parameter �b correspond to the activation delay126

of the cells production.127

Equation (9) refers to the IgM dynamic. The model infers that the production of antibodies is not simultaneous but128

independent, because IgM is considered a temporary antibody, in contrast to IgG, which shows prolonged immunity,129

and that the seroconversion process suggests the early production of IgM for its later conversion to IgG. This serocon-130
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Figure 5: Schematic representation of the Model 6 proposed. Virus (V ) are replicated at a rate of p and inhibited by
T cells (T ), B cells (B) and antibodies IgM (M) and IgG (G). V induces B and T proliferation. On the other hand, B
induces M and G proliferation, while that seroconversion process regulates G proliferation due to M . Positive regulations
between processes are highlighted with solid arrows, while negative regulations are marked with dotted arrows.

version process is represented by q. The dynamic of IgG antibody proliferation is represent in Eq. (10), where q is the131

growth rate associated with seroconversion.132

Model 6: The dynamic of IgG antibody proliferation is modified. Here, the process in which seroconversion133

regulates the proliferation of IgG is modeled with a logistic function, where rq is the growth rate associated with134

seroconversion andKq is themaximum capacity of this process. Figure 5 shows the complexity of the process described135

by the following model:136

dV
dt

= pV
(

1 − V
KV

)

− cTV T − cMMV − cGGV − cV , (11)

dT
dt

= rT T
(

V m

V m +Km
T

)

+ �T (T (0) − T ), (12)

dB
dt

=
rBV − B

�b
, (13)

dM
dt

= rMB − (q + �M )M, (14)

dG
dt

= rqM
(

1 − M
Kq

)

+ rGB − �GG. (15)
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2.2. Stability analysis137

In this section we perform a sensitivity analysis of Model 6, since it was the one with the best AIC score. To begin138

with, Eqs. (11)-(15) can be transformed into the following dimensionless form:139

x′ = x(1 − x) − cT xy − cMwMx − cGwGx − cx, (16)

y′ = rT y(x,KT ) − �T (1 − y), (17)

z′ = (�B)−1(x − z), (18)

w′
M = rMz − (q + �M )wM , (19)

w′
G = rqwM (1 −wM ) + �G(z −wG), (20)

where the function is defined by(x, a) = xm∕(xm+am)with m ≥ 2, and the derivatives are with respect to dimen-

sionless time � = pt. And the overline symbols are the dimensionless parameter that can be obtained by substituting

in Eqs. (11)-(15) the variables defined by:

x = V
KV

, y = T
T (0)

, z = B
rBKV

,

wM = M
Kq
, wG = G ⋅

(

�G
rBrGKV

)

.

For convenience, we call an equilibrium point with viral load x virus-free when x = 0 and virus-positive when140

x > 0. We will only consider equilibrium points with non-negative coordinates. Basic computation yields exactly one141

virus-free equilibrium which is E0 ∶= (0, 1, 0, 0, 0).142

Let J (p) denote the following Jacobian matrix:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

J11(p) −cT x 0 −cM x −cG x

rT yx(x,KT ) rT (x,KT ) − �T 0 0 0

(�B)−1 0 −(�B)−1 0 0

0 0 rM −(q + �M ) 0

0 0 �G rq(1 − 2wM ) −�G

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

where x = )∕)x and

J11(p) = 1 − 2x − cT y − cGwG − cMwM − c. (21)
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Theorem 1. Let

� = J11(E0) = 1 − cT − c. (22)

Then E0 is asymptotically stable for � < 0 and non-hyperbolic for � = 0. If � > 0, then E0 is an unstable saddle with143

a four-dimensional stable manifold and a one-dimensional unstable manifold.144

Proof. Evaluating the Jacobian matrix at E0 yields

J (E0) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

� 0 0 0 0

0 −�T 0 0 0

(�B)−1 0 −(�B)−1 0 0

0 0 rM −(q + �M ) 0

0 0 �G rq −�G

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

which implies that E0 is asymptotically stable for � < 0 and is non-hyperbolic for � = 0. If � > 0, then J (E0) has145

exactly one positive eigenvalue � and four negative eigenvalues. Hence by the Stable Manifold Theorem, E0 is an146

unstable saddle with a four-dimensional stable manifold and a one-dimensional unstable manifold.147

Remark. In the case where E0 becomes a saddle for � > 0, the solutions �1(x) such that �1(x) → E0 at t → ∞ form148

a four-dimensional invariant manifold, called the stable manifold of E0.149

Our dimensionless model, Eqs. (16) to (20), admits virus-positive equilibrium points only if � > 0. This point with150

viruses is more complicated to obtain. In the Supplementary Material we present an analysis of the different scenarios151

in which this equilibrium point can occur.152

2.3. Numerical simulations153

In order to study the antibody response during the course of SARS-CoV-2 infection, we fixed the parameters related154

to the dynamics of the virus and T cell with values obtained from [16] and [23]. We estimated the parameters related155

to the dynamics of the B cells and antibodies IgM and IgG. To estimate these parameters we selected 39 patients who156

presented a significant temporal change of IgG antibody data and fit our models to that data; of these 39 patients, 3157

were severe cases found in group D, 4 were severe cases from group E, and 32 were non-severe cases belonging to158

groups F and G, identified by the topological analysis presented above (Figure 4). The fixed parameters are displayed159

in Table 1, and they are taken the same for all cases.160

Parameter optimization was carried out with data from each of the 39 patients considered. The six models were161

fitted to the data of the 39 patients, and we calculated the AIC score for each patient from Eq. (24). The results showed162
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Table 1
Model Parameters.

Parameter Value

p 6.11 [16]
KV 1 × 108 [16]
cT 7.8 × 10−7 [16]
cM Fitted
cG Fitted
c 2.4 [16]
�T 0.1 [16]
rT 0.281 [16]
KT 3.16 × 104 [16]
rB Fitted
�b Fitted
rM Fitted
q Fitted
�M 0.0693 [23]
rq Fitted
Kq Fitted
rG Fitted
�G 0.0277 [23]

that Model 6 had a better score for non-severe patients, but was not the best for severe patients. However, the difference163

between the score of Model 6 in non-severe with the rest of the models is greater than comparing Model 4 to 6 in the164

severe patient group, therefore we chose Model 6 as the one that best explains the viral dynamic and immune response.165

The AIC scores can be consulted in the Supplementary Material.166

Figure 6 display the dynamics of the viral load and the immune response for one severe patient from group D167

(severe D), one severe patient from group E (severe E), and one non-severe patient from group F and G, using Model168

6. In Figure 6e we can observe the fit of the IgG response of Model 6 with the experimental data points. In these169

particular cases, the peak of the viral load for the severe E patient in Figure 6a was lower than other two, while severe170

D patient took more days to clear the virus. The peak of T cell level for the severe D patient in Figure 6b was higher171

than other two cases, and severe E patient had the lowest T cell response in accordance with her/his lower viral load.172

The B cell level for severe D patient in Figure 6c maintained a higher level until the end of the disease, while the severe173

E had the lowest level again. The non-severe patient had the highest IgM antibody level in Figure 6d and severe D174

patient had the lowest IgG antibody level in Figure 6e.175

A total of 9 parameters were optimized inModel 6 and each patient had a set of parameters that best fit their antibody176

IgG response data. The distribution of each parameter for all patients can be consulted in the Supplementary Material.177

The parameters rB , rM and rG presented little variation between patients, even between severe and non-severe patients;178

these parameters represent the proliferation of B cells, antibodies IgM and antibodies IgG, respectively. This result179

suggests that the B cell response and the antibody IgM level do not play an important role in identifying a severe patient.180
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Figure 6: Numerical results of the Model 6 using antibody IgG level data from one severe patient from group D, one severe
patient from group E, and non-severe patient. (a) Viral load level, (b) T cell level, (c) B cell level, (d) antibody IgM level
and (e) antibody IgG level. The points in (e) are experimental data of antibody IgG level reported in [21], triangle for
severe D case (Patient ID: 5), circle for a severe E case (Patient ID: 3) and square for a non-severe case (Patient ID: 1).
Notice the log base 10 scale in (a) and (c), and log base 2 scale in (d) and (e).

Although rG does not vary sufficiently between two groups of patients, q show a difference where the non-severe group181

has lower values, while severe group has uniformly distributed values. The rest of the parameters do not show clear182

differences between groups, tending to a uniform distribution in both groups. It should be noticed that the group of183

severe patients is not large enough to give conclusive results.184

In Table 2 is displayed the median of the estimated parameters of the patients in the non-severe group and the two185

severe groups. The parameters that varied the most in their medians were cG, rM , and rG, with orders of magnitude186

among patient groups. It can be noticed that rq and rG values are lower in non-severe patients than severe D patients,187

however these patients have a viral load clearance similar to severe D patients; this suggests that severe D patients188

do not produce "quality" antibodies that help to viral shedding, which consequently leads to more severe symptoms.189

We can also note that although severe D patients have generally better parameters than severe E patients they have a190

early B-cell proliferation (low values of �B); this result support the idea of quality antibody production, having early191

antibody production lowers the efficiency in clearing viral load.192
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Table 2
Median of the optimized parameters of severe D patients,
severe E patients and non-severe patients.

Parameter Non-severe Severe D Severe E

cM 5.78 × 10−3 6.06 × 10−3 2.74 × 10−3
cG 0.148 0.281 0.026
rB 0.145 0.233 0.205
�B 18.5 2.95 36.1
rM 6.78 × 10−7 1.92 × 10−4 1.5 × 10−6
q 0.0285 0.0732 0.0012
rq 0.564 7.76 0.165
Kq 326 23.5 378
rG 9.05 × 10−8 4.77 × 10−4 1.0 × 10−9

3. Discussion193

In this work, we used the mapper algorithm for the exploration of antibody level data of patients with COVID-19.194

Using this tool, we identified three groups of patients: non-severe, severe and a group with intermediate severity. We195

found that the last two groups have a notable difference in the level of IgG antibodies, being higher in the intermediate196

group.197

On the other hand, we set out tomodel the immune system response against SARS-CoV-2 viral infection by focusing198

on the antibody response. It is not yet clear how the immune system of a patient presenting with severe symptoms199

fails to clear the viral load from the body, however, it has been reported that severe COVID-19 patients have high IgG200

antibody levels [45, 21]. Therefore, we proposed six mathematical models that represent the response of the immune201

system against viral infection; we estimated the parameters related to B cell response and IgM and IgG antibodies202

using IgG antibody data reported COVID-19 patients. Among all models, Model 6 provided the best fit to the IgG203

data. Our results show that the key parameters between the dynamics of severe and non-severe patients are those related204

to antibody proliferation and viral clearance by IgG antibody.205

In Table 2 we can observe that the severe D patients have a early B cell proliferation, this confers an early response206

by B cells, which in turn trigger the production of antibodies. This early B cell production in severe patients leads207

to a rapid proliferation of antibodies, as we can see from the higher values of rM and rG in the severe D group. Due208

to this short response time, the antibodies produced by these severe patients could not have enough time to carry out209

the selection process of the optimal receptor for binding with the S protein of the virus, and therefore they would be210

considered of low quality or even not having neutralizing capacity. This could be the reason why they do not have a211

great contribution in viral clearance, since the parameter cG corresponding to viral clearance by IgG antibody is lower212

in severe patients. This suggest that antibodies produced by severe patients do not present the expected neutralizing213

response, considered of low quality as reported by Vanshylla et al. [48]. Different works have identified antibodies214

Page 12 of 19

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
to display the preprint in perpetuity. 

 is the author/funder, who has granted medRxiv a license(which was not certified by peer review)holder for this preprint 
The copyrightthis version posted February 24, 2022. ; https://doi.org/10.1101/2022.02.23.22271403doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.23.22271403
http://creativecommons.org/licenses/by-nc-nd/4.0/


that potently can neutralize SARS-CoV-2 derived from individuals infected with COVID-19 [18, 19, 36]. In fact,215

there is evidence that robust neutralizing antibodies to SARS-CoV-2 infection could persist for several months [25].216

Furthermore, cross-reactivity in antibody binding to the spike protein is common, but cross-neutralization of the live217

viruses is rare[22]. Nevertheless, antibody affinity may have several implications. In fact, limited antibody protection218

against any virus have a theoretical potential to amplify the infection [3].219

Another key process in differentiating severe and non-severe patients is the ancillary process in IgG production220

by the seroconversion period. This process proved to be key to emulate the SARS-CoV-2 infection process and the221

adaptive immune response, since considering a sigmoidal activation function of the seroconversion process from IgM222

to IgG improved the score of the Model 6. The rate of antibody IgM converted to IgG due to the seroconversion223

process, represented by q, was higher in severe D patients, which implies that there is a delay in the seroconversion224

process in non-severe patients. The latter suggests that in non-severe patients there persists a level of IgM antibodies225

that help in viral clearance before activating the seroconversion process; in severe patients there is an early production226

of IgG antibodies that are not efficient in neutralizing viral particles.227

Since model 6 was the best fit to the data, we performed a stability analysis. This analysis can help us understand228

how the immune system, and especially the antibodies, clear the viral load. If we take m = 2 then we can expect up to229

5 equilibrium points in the 5-dimensional Model 6, and the existence criteria of each type of equilibrium is studied. A230

point of stability is when there are no viral particles, and it is asymptotically stable. There is at least a virus-positive231

equilibrium point, � > 0, this means that the viral proliferation rate p is not overwhelmed by the elimination rates c232

and cT .233

4. Methodologies234

4.1. Experimental data details235

In this work we used experimental data reported by Long et al. [21]. In that study the authors reported the antibody236

response of 285 COVID-19 patients of which 70 had sequential samples available. The patients were enrolled from237

three hospitals in Chongqing, a municipality adjacent to Hubei province. The median age of the patients was 47 years238

and 54.5% were males. Serological samples were collected from symptoms onset and the detection of IgM and IgG239

levels in response to SARS-Cov-2 was carried out using MCLIA (Magnetic Chemiluminescence Immunoassay) kits.240

The antibody levels were presented as the measured chemiluminescence values divided by the cutoff value which was241

defined by receiver operating characteristic curves.242

Of the 285 patients, 39 were classified as severe or in critical condition and 63 patients were followed up for243

serological sampling, where samples were taken at 3-day intervals between February 8, 2020 and the patient’s discharge244

from the hospital. Of the latter group, 100% tested positive for the presence of IgG antibody approximately 17-19 days245
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Table 3
Parameters used in mapper algorithm for each data set.

Parameter 262-patients dataset 41-patients dataset

Metric space cosine cosine
Lens Eccentricity (exp = 2) Eccentricity (exp = 2)
Clustering algorithm DBSCAN (eps = 0.01) DBSCAN (eps = 0.1)
Number of intervals 100 100
Percentage overlap 95% 88%

after the symptoms onset (daso), while 94% of the patients reached peak IgM levels approximately 20-22 daso. IgG246

and IgM levels in the group of patients classified as severe were higher than the non-severe group, however a significant247

difference was only observed in IgG levels. More details can be found in the original paper [21].248

4.2. Mapper algorithm249

For the topological analysis of the data, the giotto-tda package was used [46]. This package integrates various250

TDA tools with machine learning using an API compatible with scikit-learn and C++ implementations. This package251

has the great advantage of providing a balance between interoperability and computational efficiency, which is useful252

given the sensitivity of the mapper to parameter changes. The latter is still an important problem, as there is still no253

clear methodology for parameter selection. In [6, 44] the authors explore ways to attack this problem using category254

theory.255

As mentioned above, the choice of parameters of the mapper algorithm directly influences the results obtained.256

Among the parameters that can be modified are the metric space, lens, clustering algorithm, number of intervals257

and percentage overlap. In a previos work, Sasaki et al. [40] studied with TDA the shape of the immune response258

during co-infections, in this work the mapper algorithm and each of the listed parameters are described in detail; it is259

recommended to refer to that work to obtain a broader overview of this analysis tool.260

In Table 3 is displayed the parameters used for the analysis of the two data sets, considering a sample per patient261

for 262 patients, and longitudinal samples of 41 patients. It should be pointed out that we tested different choices of262

parameters, but we only present the ones with which we obtained the best results for this data set.263

4.3. Parameter estimation264

Mathematical models proposed in this work is based on Ordinary Differential Equations (ODEs). The ODEs were

solved using the PDEparams module [31], which integrates the differential equations using SciPy’s odeint. We used

different mechanistic modeling strategies, a total of 6 models were tested. The estimation of the free parameters

was performed using the same PDEparams module where the parameter estimation is carried out using Differential

Evolution (DE) algorithm [43], which minimize a cost function. In this work we used experimental data that are given
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in logarithmic scale, therefore we use the Root Mean Square Log Error (RMSLE) as cost function and is given by:

RMSLE =

√

√

√

√

1
n

n
∑

i=1

(

log(yi) − log(ȳi)
)2, (23)

where n is the number of data points (samples), yi is the experimental measure of the i-th sample and ȳi is the predictive265

output of the model.266

As several models can provide the same fit with observed experimental data, it becomes necessary to choose267

between different models. The standard approach to model selection is first estimate all model parameters from the268

data, then select the model with the best-fit error and some penalties on model complexity. In this work we used the269

next model selection criteria.270

Definition 1. Akaike Information Criterion (AIC). The corrected (AIC) writes as follows:

AIC = n log
(RSS

n

)

+ 2mn
n − m − 1

(24)

where n is the number of data points, m is the unknown parameters and RSS is the residual sum of squares obtained271

from the fitting routine. The lowest AIC value of a given model, the best description of the data better respect the other272

models. Small differences in AIC scores (e.g. <2) are not significant [7].273
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