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Abstract (242) 10 

Background 11 

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a complex disease with variable severity 12 

throughout the ongoing illness. Patients experience relapses where symptoms increase in severity, leaving them 13 

with a marked reduction in quality of life. Previous work has investigated molecular differences between 14 

ME/CFS patients and healthy controls, but the dynamic changes specific to each individual patient are 15 

unknown. Precision medicine can determine how each patient responds individually during variations in their 16 

long-term illness. We apply precision medicine here to map genomic changes in two selected ME/CFS patients 17 

through a relapse recovery cycle. 18 

Results 19 

DNA was isolated from Peripheral Blood Mononuclear Cells (PBMCs) from two patients and a healthy 20 

age/gender matched control in a longitudinal study to capture a patient relapse. Reduced representation DNA 21 

methylation sequencing profiles were obtained from each time point spanning the relapse recovery cycle. Both 22 

patients throughout the time course showed a significantly larger methylome variability (10-20 fold) compared 23 

with the control.  During the relapse changes in the methylome profiles of the two patients were detected in 24 

regulatory-active regions of the genome that were associated respectively with 157 and 127 downstream genes, 25 

indicating disturbed metabolic, immune and inflammatory functions occurring during the relapse.  26 

Conclusions 27 

Severe health relapses in ME/CFS patients result in functionally important changes in their DNA methylomes 28 

that, while differing among patients, lead to similar compromised physiology.  DNA methylation that is a 29 

signature of disease variability in ongoing ME/CFS may have practical applications for strategies to decrease 30 

relapse frequency.    31 

 32 
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Introduction 34 

 35 

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a lifelong severely debilitating disease 36 

from which only a small proportion of individuals eventually fully recover (<5%) (1). While currently not well 37 

understood, it is estimated to have a global prevalence of ~1% (2) and to have a higher overall disease burden 38 

than conditions like multiple sclerosis, autism or HIV/AIDS (3). Patients experience a wide variety of 39 

debilitating symptoms including severe fatigue, post exertional malaise, and cognitive, sleep and orthostatic 40 

dysfunctions (4). These symptoms vary in severity such that  ~25% of patients are house or bedbound 41 

throughout the illness. The remaining 75% of those affected transition to a life-long chronic phase where they 42 

may be able to participate in work and hobbies, albeit with a reduced capacity.   However, they are vulnerable to 43 

frequent debilitating “relapses”, particularly after even minor stress.  44 

 45 

The disease presentation and key research indicate that there is a complex pathophysiology affecting ME/CFS 46 

patients, with biological functions reduced in a number of systems including immune/inflammatory, and 47 

neurological as well as in metabolism. For example, a recent analysis found 80% of 612 metabolites analysed in 48 

plasma of ME/CFS patients were significantly decreased, indicating that there was an overall reduction in 49 

metabolic activity in patients. This has been compared to the ‘dauer effect’, a shut down like hibernation in 50 

animals (5). Additionally, patient mitochondria have a dysfunction in the mitochondrial complex V where the 51 

energy molecule ATP is synthesised, resulting in proteins in the upstream mitochondrial complexes, particularly 52 

complex 1, being up regulated as an apparent attempt to compensate (6),  as well the metabolic pathways and 53 

mechanisms to control regulation of reactive oxygen species (7). This could explain one component of why 54 

ME/CFS patients are unable to respond biologically to day-to-day stresses, let alone high-level stress events. 55 

Recently, we have proposed a theory based on fluctuating neuroinflammation to explain the sustained chronic 56 

state of the illness and ‘relapse recovery’ cycles (8). It hypothesises that  neuroinflammation of the 57 

hypothalamus’ stress centre within the paraventricular nucleus could be responsible for the unexplained 58 

prolonged and fluctuating symptom presentations (8).      59 

 60 

The absence of a specific molecular diagnostic test, and also the fluctuating variations across patients in disease 61 

presentation and symptom severity, has made understanding ME/CFS and conclusions from molecular data 62 

difficult. When studies focus on large cohorts of patients, they often include very varied presentations of 63 
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ME/CFS, and different studies have often used different clinical case definitions for diagnosis. A recent study of 64 

the involvement of cytokines addressed the diversity within the patient cohorts on a molecular scale, and found 65 

that a large number of pro-inflammatory cytokines were found to be linearly associated with ME/CFS severity 66 

(9). This investigation highlighted the dilemma of many investigations targeting ME/CFS, since the cytokines 67 

associated with severity were not sufficient to distinguish the patients from the controls because of the 68 

abundance of mild ME/CFS cases in the study group. Other studies have approached this issue by classifying 69 

ME/CFS patients into different subgroups. A study in 2008 examining expression levels of transcripts classified 70 

7 subtypes, through mean relative transcript quantities 88 transcripts that corresponded with clinical severity 71 

(10). In recent years DNA methylation has been applied to investigate the disease status of ME/CFS patients, 72 

and a number of studies have found important differences separating the patients from controls (11–16). A 73 

recent publication with this technology has identified four subtypes utilising DNA methylation and symptom 74 

severity (17), with key differentially methylated genes between subtypes having primarily immune and 75 

metabolic functions. This study indicated that molecular analyses could differentiate patients from the molecular 76 

changes reflecting physiology relevant to the observed symptoms.   77 

 78 

The gradual trend to a more personalised approach taken by these investigations is an important step towards 79 

understanding the intricacies of ME/CFS. Many patients, once they have entered the chronic state of their 80 

disease following an initial acute period often of several years’ duration, experience frequent extreme symptom 81 

fluctuations characteristic of a relapse event. No published molecular studies have yet followed patients through 82 

a ‘relapse recovery’ cycle.  In order to understand in depth a disease as complex as ME/CFS this more 83 

personalized approach is more informative and appropriate, both for researchers in their studies and for patients 84 

in the management of their disease. Indeed precision medicine is becoming more readily accessible not only as a 85 

research tool to understand the impact of disease on an individual, but also how they will respond to a specific 86 

medical intervention (18,19). This seems especially relevant for the study of ME/CFS where patients have a 87 

wide-ranging level of functionality, for example in their ability to exercise, their cognitive deficits, and often 88 

different comorbidities.   89 

 90 

How can precision medicine be applied to ME/CFS? DNA methylation is an important epigenetic modification 91 

that affects the expression of genes without altering the genomic code itself. This specific analysis is with 92 

increasing precision helping researchers to bridge the gap between understanding genetic risk and assessing 93 
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environmental contributions to disease. Changes are captured that are not permanently reflected in the genome 94 

but occur in individuals as a result of the disease. An excellent example of this is an in-depth investigation that 95 

followed 87 individuals that had transitioned from a pre-diabetic state to a diabetic state. It revealed methylation 96 

differences that occurred before the switch to the disease state (20). Since DNA methylation can capture 97 

transcriptional changes that reflect physiological variations, it is an ideal tool in ME/CFS to determine temporal 98 

changes in genomic regions that reflect the symptom fluctuations. These are not so easily detectable or may not 99 

yet be present in single time point proteome or transcriptome analyses. Understanding variation in an 100 

individual’s dynamic epigenetic code with sampling over a precise time period time can provide an insight into 101 

the molecular activity and course of their disease. 102 

 103 

Results 104 

 105 

Study Design and Participants:  106 

 107 

Blood was taken from two ME/CFS patients and a healthy age matched control at 5 spaced time points spanning 108 

an eleven-month period that captured a health relapse in the ME/CFS patients from their typical compromised 109 

health state (see Figure 1A). The participants gave a subjective numerical assessment on a scale of 1- 10 as an 110 

indicator of their relative health (21). As is shown in Figure 1A patient 1 (hereafter referred to as P1) showed a 111 

drop from a relatively good health state,  self-ranked as ‘7’ ;  ‘well’ - at the first sample time (A) to an off scale  112 

‘-3’ and ‘-2’,  ‘fragile’ indicating a severe relapse condition at time points (B) and (C). She then showed relative 113 

recovery to a health status ‘7’ again at sample times (D) and (E). Patient 2 (hereafter referred to as P2) in 114 

contrast had a more fragile steady state ‘4-6’, mainly ‘fragile’ - across the five separate sample collection points 115 

with a drop into a relapse ‘2’ at the time of sample (C). The control remained in excellent health ‘10’ throughout 116 

the timeline. The term ‘recovery’ is used in this investigation to define the time points following the relapse 117 

where the individual returns to the state of health they experienced prior to the relapse. It is also used as the 118 

term, for convenience, to define the time point(s) prior to the relapse event.  119 
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 120 
Figure 1. Study design. A. Summary of self-reported health status of study subjects through a relapse and 121 

relative recovery cycle.  The timeline of the health status of two patients over an 11month period that spanned 122 

a relapse in each patient is shown along with the matched control. Self-reported information from the patients 123 

that they supplied on the day of blood donation indicated their health status (between -3 and 10). B. The study 124 

analysis for longitudinal analysis. Following RRBS, adaptor trimming and alignment to human reference 125 

genome hg19 using Bismark, the samples were analysed. Initial estimates of variation utilised genome wide 126 

CpG methylation data before the samples were analysed utilising the DMAP platform where a Chi squared 127 

analysis was used to identify methylation variation. The fragment methylation was also used to estimate 128 

variation but at key genomic locations in addition to comparisons between the patients and control. Continued 129 

analysis utilised the 577 statistically significant variable fragments identified across all 15 samples (FDR 130 

corrected P <0.05) where correlation was calculated with health scores and ‘relapse’ and ‘recovery’ events to 131 

identify intra-individual variably methylated fragments (iVMFs). Genes associated with the individuals iVMFs 132 

were determined and functional categories investigated.  133 

 134 
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 135 

The data from Reduced Representation Bisulphite Sequencing (RRBS) of each of the 5 samples from the three 136 

subjects were analysed using the DMAP platform with intra-individual variably methylated fragments (iVMFs) 137 

identified for each patient and the control (Figure 1B) -named ME-iVMFs. Fragments suitable for analysis had 138 

10 or more reads of at least 2 CpG sites.  A total of 13954, 53442 and 38135 met these criteria for P1, P2 and 139 

the C respectively. The statistical parameters applied to the analysis are described in methods. For the control 140 

individual, there were a total of 6324 fragments that met the significance threshold FDR <0.05. The qualifying 141 

fragments had a median size of 80bp and an average size of ~84bp.  These fragments contained 52791 CpG 142 

sites, with an average of 8.4 CpGs in each fragment. For P1, there were a total of 2788 statistically significant 143 

variably methylated fragments with a total of 22550 CpG sites and an average of 8.1 per fragment (FDR 144 

corrected P <0.05). These fragments themselves had a mean length of ~78bp with a median length of ~75bp. 145 

For P2, 11577 fragments with a total of 87734 CpGs and an average of 7.6 CpGs per fragment met the same 146 

significance threshold, and had a median fragment size of 75bp, and an average fragment size ~80bp.  147 

 148 

Dynamic analysis of DNA methylation variation 149 

 150 

Initially the variation in the methylomes across the time points within each individual was investigated by 151 

performing a comparison of the variability at each CpG site. This was calculated from the number of statistically 152 

significantly differently methylated CpG sites (P<0.05, methylation difference >15% compared with the other 153 

time points) that were unique to each time point. The percentage of unique DNA methylation variations within 154 

each sample was derived from this number compared with the total number of CpG sites analysed for that 155 

individual. For example, in the healthy control at time point A 1276 statistically significantly differentially 156 

methylated CpGs were identified from a total of 119931 CpGs compared with the other four time points giving 157 

a unique variation of 0.12% (see Figure 2A). This was a consistent pattern, with each time point of the control 158 

having a similarly low level of unique differential methylation at CpG sites (ranging from 0.12-0.15%). By 159 

contrast the patients showed about a 20-fold greater variation -P1, at time point A compared to their other four 160 

time points had 2.06% of sites differentially methylated uniquely, and P2 at time point A had a similar level of 161 

variation of 2.67%).  The unique differential methylation at the five time points ranged from 2.06-3.78% in P1 162 

and 1.91-2.67% in P2.  163 

 164 
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Further predictions of variability based on the DMAP-produced fragment methylation data on further analysis 165 

showed that the patients were again more variable than the control, though not as distinctly obvious as from the 166 

individual CpG site methylation comparisons described above. The number of statistically significant variably 167 

fragments for each individual was divided by the total number of fragments assessed for that individual to 168 

produce a variability score.  For C, P1, and P2, respectively the overall variability scores were 0.17, 0.20, and 169 

0.22. In order to assess the relative variability of the two patients and the control across functionally important 170 

regions of the genome their individual data were extracted across regions of interest, such as within gene bodies, 171 

Transcriptional Start Sites (TSS) upstream regions of 10,000bp (see Figure 2B), and relative CpG island regions 172 

of <500bp with more than 55% GC content position) (Figure 2C). 173 

 174 

 175 

 176 

 177 

 178 

 179 

 180 

 181 
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 182 
Figure 2 Line plots showing the variability calculated for each individual. A summary of the statistically 183 

significant unique differentially methylated CpG sites at each time point (A)-(E) for the two patients and the 184 

healthy control. The level of methylation variation was calculated utilising individual CpG methylation scores, 185 

with the significant differentially methylated CpGs found at that time point compared with the other time points, 186 

divided by the overall number of CpGs analysed for that individual, to give the percentage that were uniquely 187 

differentially methylated in each sample from each time points (A) to (E). B. Line plots showing the variability 188 

scores calculated for each individual across the gene features indicated on the x axis. Variability score was 189 

calculated by dividing the number of statistically significant (q <0.05) variable fragments by the total number of 190 

fragments analysed at that feature C. Line plots showing the variability scores calculated for each individual 191 

across the features indicated on the x axis related to CpG Islands. CpG islands were defined as regions less than 192 

500bp with more than 55% GC content, CpG shores are defined as regions 2Kb from the island with shelves 193 

4Kb away, the boundaries between these features are included (CpGI core/shore, shore/shelf and shelf edge). 194 

Variability score was calculated by dividing the number of statistically significant (q <0.05) variable fragments 195 

by the total number of fragments analysed at that feature.  196 
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 197 

 198 

As seen in Figure 2B the healthy control showed a lower level of variability compared to both the patients at 199 

almost every gene related site analysed apart from the TSS where all three individuals in the analysis show 200 

similar levels of variability. P2 with the more fragile health showed a higher level of variability compared to 201 

both the control and P1. 202 

 203 

As seen in Figure 2C the variability of the three individuals across the CpG island related features reflected the 204 

same pattern as in Figure 2B at the gene related regions. The control showed the lower variability score 205 

compared to both patients. As before, P2, who had the more debilitating ongoing ME/CFS, showed consistently 206 

higher levels of variability across the features analysed when compared to P1.  207 

 208 

 209 

 210 
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Figure 3. Heatmap showing the individual methylation variation at ME-iVMFs of interest. A. Shows the 211 

212 
methylation percent variation across all 577 statistically significant ME-iVMFs detected across all 15 samples. 213 

B. shows the methylation variation in 68 ME-iVMFs where the mean methylation difference between the P1 214 

and C groups is greater than 15% and C. shows the methylation variation in 53 ME-iVMFs where the mean 215 

methylation difference between the P2 and C groups is greater than 15%. The dot plots associated with B and C 216 

on the right of the figure show the degree of differential methylation. The scale below Figure 3A shows the 217 

corresponding colour associated with the methylation scores. 218 

 219 

Common ME-iVMFs methylation patterns in patients  220 

Continued analysis of ME-iVMFs included only those fragments that were present in all 15 samples of the three 221 

individuals, which resulted in a total of 577 common fragments. Figure 3 is a heatmap that shows the 222 

methylation variation across these fragments. It identified the hierarchical clustering of the individual samples 223 

based on methylation percent values at each segment, with the associated dendrogram in Figure 3A clearly 224 

showing the relationships between the 15 individual samples. The variation within each patient and within the 225 

control sample (A to E samples) is lower than the variation among the samples (P1,P2, C) , since the heatmap 226 

and associated dendrogram clearly grouped the 15 samples into three separate groups that relate to each 227 
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individual (P1, P2,C) . However, it also shows visually the variation within each individual with the 5 different 228 

time points clearly showing differences in methylation at a number of fragments. 229 

 230 

Initial investigations of these 577 common fragments involved comparing the two patients individually with the 231 

matched control in a differential methylation analysis. If the mean methylation difference was greater than 15% 232 

between the patient and control methylation scores at these fragments, they were then investigated further. 233 

Figure 3 B shows the differentially methylated fragments across 68 such selected fragments for P1 vs. C and 234 

Figure 3 C shows the 53 selected for P2 vs. C.  235 

 236 

To further analyse the data for the differentially methylated fragments in the patients compared with the control 237 

that fell within gene bodies, STRING.org pathway enrichment analysis was performed. Of the 26 genes that 238 

contained differentially methylated fragments in P1 compared with C, two pathways were identified; Nicotine 239 

addiction and Morphine addiction due to the presence of genes GNAS, CACNA1A and GABRD. The 23 genes 240 

that contained differentially methylated fragments in P2 compared with C showed two pathways with the 241 

protein domains; Transforming growth factor-beta (TGF-beta) family and Immunoglobulin C-2 Type, that were 242 

identified from the genes; IGSF9B, OPCML, GDF7, CERS1 and LINGO3.  243 

 244 

Identifying methylation pattern associated with the relapse condition 245 

In order to find fragments with changes relevant to the relapse in the patients, the data from the overall 577 ME-246 

iVMFs were correlated with the patients self-reported health scores. A Pearson’s correlation coefficient was 247 

calculated using the association between the methylation percent at each fragment to the individuals self-248 

reported heath score (as seen in Figure 1A). A minimum Pearson’s correlation coefficient of 0.9 was set. In 249 

order to further filter the fragments and select those that reflect the greatest changes in methylation between the 250 

patients self-assessed ‘relapse’ and better health ‘recovery’ conditions, a methylation difference was calculated 251 

based on the average mean methylation percentages of the relapse and recovery samples, for example, for P1 252 

time points “B” and “C” were ‘relapse’ and “A”, “D” and “E” were classified as ‘recovery’. A minimum 253 

differential methylation of +/- 15% was set. This correlation analysis for P1 identified 17 fragments (Table 1). 254 

There were a total of 14 fragments identified using this method for P2  (Table 2).  255 

 256 

Table 1 Fragments associated with the relapse condition for P1.  Fragments with a Pearson’s correlation 257 

coefficient of at least 0.9 and a mean methylation difference between the “relapse” and “recovery” time points 258 
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of at least 15% are shown. The table describes the location of each fragment, and the gene id if appropriate. It 259 

lists any overlapping regulatory elements (promoters/enhancers) recorded in Genehancer and the gene id 260 

associated with clusters of regulatory interaction determined using UCSC genome browser. Additionally, the 261 

table shows the methylation percent recorded for each time point (P1-A to P1-E) at each fragment with the 262 

relapse time points italicised.  263 
Frag  Chr Start End Position GeneID Genehancer Regulatory Interactions P1-A P1-B P1-C P1-D P1-E 

1 19 33885306 33885381 On 
Intron 

PEPD GH09J033388 CEBPG:PEPD  78 45 44 71 64 

2 X 150565438 150565527 On 
Intron  

VMA21  GH0XJ151395  VMA21  50  33 31 45 49 

3  19 55464080 55464189  On 
Intron 

 NLRP7  GH19J054952  NLRP2 78  55 48 81 75 

4 7 5741705 5741780  On 
Intron 

 RNF216 GH07J005687   ACTB:CCZ1:RNF216:USP42  86 60 74 84 88 

5  X 135579269 135579310  On 
Intron 

 HTATSF1  - -  39  28 22 46 40 

6  X 152908188 152908279 On 
Intron  

 DUSP9  - DUSP9  46  18 30 37 45 

7  17 45925149 45925204  On Exon  SP6 GH17J047846   SP2:CDK5RAP3:OSBPL7:SCR
N2 

46  28 29 46 44 

 8 X 23761294 23761378  On Exon  ACOT9  GH0XJ023741  ACOT9 37  18 18 34 37 

9 8 145003618 145003684  On Exon  PLEC  GH08J143914  ZC3H3:EEF1D:PLEC 70  34 37 58 59 

10 X 149106531 149106576  On Exon  CXorf40B  GH0XJ149937  LINC00B94:CXorf40B 48  28 36 54 58 

11 22 42316243 42316306  Intergeni
c 

-   GH22J041918  WBP2NL:CYP2D8P:CENPM: 
CYPSD6:TNFRSF13C 

44  30 27 44 44 

12 1 17199256 17199369  Intergeni
c 

 -  -  NECAP2:CROCC 55  35 44 59 57 

13 2 232348597 232348713  Intergeni
c  

-   -  NMUR1:NCL  57 38 34 69 62 

14 13 114918456 114918525  Intergeni
c  

-   -  CDC16:UPF31:RASA3  87 65 62 96 84 

15 2 26521360 26521433  Intergeni
c  

-  GH02J026298  HADHB:HADHA:ADGRF3  53  38   35 60  53  

16 3 10334731 10334778  Intergeni
c 

-  GH03J010291   GHRLOS:GHRL  33  13  22  40  41 

17 15 22095431 22095475   Intergen
ic 

 -  - -   51  40  34  51  56 

 264 

P1-A to P1-E in Table 1 represents percent methylation data from the samples taken from P1 at each of the time 265 

points (A) to (E). As can be seen at time points (B) and (C) during which there was a self-reported severe 266 

relapse (Figure 1A) there was a much lower methylation rate than in the samples from the ‘recovery’ times (A), 267 

(D) and (E). 268 

 269 

Table 2. Fragments associated with the relapse condition for P2. Fragments with a Pearson’s correlation 270 

coefficient of at least 0.9 and a mean methylation difference between the “relapse” and “recovery” time points 271 

of at least 15% are shown. The table describes the location of each fragment and the gene id if appropriate. It 272 

lists any overlapping regulatory elements (promoters/enhancers) recorded in Genehancer and the gene id 273 

associated with clusters of regulatory interaction determined using UCSC genome browser. Additionally, the 274 
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table shows the methylation percent recorded for each time point (P2-A – P2-E) at each fragment with the 275 

relapse time point italicised. Fragments hypermethylated in the relapse condition are shown in bold.  276 

 277 

Frag Chr Start End Location GeneID Genehancer Regulatory Interactions P2-A P2-B P2-C P2-D P2-E 

1 19 4543716 4543762 On Intron SEMA6
B 

GH19J004539 YJU2:PLIN5:SEMA6B:LRG1 80 81 47 91 67 

2 X 15353393 15353501 On Intron  PIGA GH0XJ015333 ZRSR2:PIGA 40 41 18 39 33 

3  22 17640812 17640923  On Intron CECR5 GH22J017157 HDHD5 69 82 60 80 71 

4 14 105936238 105936292 On Exon MTA1 GH14J105464 IGHGP:CDCA4:CRIP2:MTA1:ENSG000
00257270 

84 80 63 87 76 

5  22 18027985 18028072 On Exon CECR2 - - 49 46 68 38 51 

6  X 102565776 102565848 Intron – 
Exon 
Boundary 

BEX2 GH0XJ103310 BEX2 42 45 26 43 41 

7  1 155098923 155098964 Intergenic - GH01J155123 DAP3:CLK2:DPM3:GBAP1:THBS3:EFN
A1 

54 67 35 72 60 

 8 3 10334731 10334778 Intergenic - GH03J010291   GHRLOS:GHRL 49 56 32 61 41 

9 9 38687682 38687760 Intergenic - - - 61 62 39 65 42 

10 7 100882140 100882220 Intergenic - GH07J101231 FIS1:CLDN15 80 80 65 90 75 

11 2 219233608 219233704  Intergenic - GH02J218366 AAMP:SCL11A1:TMBIM1:CATIP 49 55 38 62 52 

12 6 170403979 170404085  Intergenic - - WDR27 62 66 81 63 70 

13 X 129299533 129299622  Intergenic  - GH0XJ13016
4 

ELF4:AIMF1:ZNF280C 42 36 61 31 49 

14 X 135579192 135579268  Intergenic  - - - 28 27 61 30 44 

 278 

Whereas the  ME-iVMFs that associated with the relapse condition of P1 were all hypomethylated (see Table 1), 279 

for P2,  while the majority of the fragments 1-11 were also hypomethylated, three (12-14) by contrast were 280 

hypermethylated (shown in italics in Table 2) in the relapse condition (P2-C) compared to the recovery 281 

conditions.  282 

 283 

The fragments for both patients show a number of interactions with genomic elements including direct overlaps 284 

with gene bodies as well as regulatory elements as recorded in GeneHancer, and USCS genome browser 285 

recorded clusters of regulatory interactions between regulatory elements and gene bodies. As these fragments 286 

show clear changes in the methylation state of the individual across their relapse and recovery states it has 287 

important implications on the regulatory behaviour of a number of associated genes.  288 

 289 
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 290 

 291 

 292 

 293 

 294 

 295 

 296 

 297 

Relapse associated methylation signature exhibits striking variation compared to control  298 

Figure 4 gives examples of the top 6 fragments across the five time points for both patients that had the greatest 299 

level of differential methylation between their relapse and recovery states. Figure 4 clearly shows that there are 300 

clear changes in methylation within the two patients at the relapse condition. In Figure 4A the relapse condition 301 

is shown for P1 at time points (B) & (C) compared to recovery time points (A), (D) & (E)), and in Figure 4B for 302 

P2 with relapse at time point  (C) and (A),(B), (D) & (E) for recovery. Due to their genomic location, these 303 

fragments have important functional implications, for example from P1 shown in Figure 4A is a fragment that is 304 

located within the first intron of NLRP7 gene. It also overlaps with an enhancer (GH19J054952) and directly 305 

overlaps a region of regulatory interaction for NLPR2 in addition to being located within a region of Dnase 306 

hypersensitivity. As previously mentioned all these fragments were hypomethylated in the relapse state of P1, 307 

illustrated in the examples shown in Figure 4A, indicating that the corresponding regulatory features likely have 308 

a downstream up-regulation on associated genes.   309 
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310 
Figure 4. Dynamic DNA methylation variation correlated to self-reported patient health status. 311 

Methylation percentages are shown across all five time points (A)-(E) for each fragment of interest -fragment 312 

co-ordinates are shown above each block and a gene id is shown in brackets if the fragment directly overlaps a 313 

gene feature (intron/exon). A. P1-green highlight indicates a period of relapse, B. P2-orange highlight indicates 314 

period of relapse captured in one blood sampling.  315 

 316 

 317 

Both hypomethylation and hypermethylation is shown in Figure 4B with the examples from P2. P2 also has a 318 

number of fragments of regulatory importance such as a fragment located on chr1:155098923-155098964 that is 319 

located within an archived promoter region (GH01J155123) and has 37 target genes.  Additionally, this 320 

fragment overlaps with a number of clustered interactions between Genehancer regulatory elements and genes 321 

for; DAP3, CLK2, DMP3, GBAP1, THBS3, EFNA1. Another fragment of interest shown in Figure 4B is 322 

located within the 17th (last) exon of SEMA6B, as it encodes a protein that may be involved in both peripheral 323 
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and central nervous system development. Additionally, this fragment overlaps with a Genehancer archived 324 

promoter region (GH19J004539). It overlaps with a DNAse hypersensitivity cluster and four clustered 325 

interactions of Genehancer regulatory elements and genes (YJU2, PLIN5, SEMA6B and LRG1).  326 

 327 

In order to investigate the potential impact of the methylation variation on the patient’s molecular activity 328 

during relapse recovery cycles a total gene list was built that associated with the regulatory elements found to be 329 

overlapping with the fragments described in Tables 1 and 2. There were a total of 157 genes associated with the 330 

17 ME-iVMFs identified on relapse in P1, and 127 genes associated with the 14 ME-iVMFs identified in P2 331 

(see supplementary excel file ‘Supplementary.xlsx’ sheets ‘Genes associated with P1’ and ‘Genes associated 332 

with P2’). 333 

 334 

Simulated relapses for the control subject identified fewer variable methylated genes than the patients 335 

 336 

To determine whether the ME-iVMFs and associated genes were actually due to the ME/CFS relapse and 337 

recovery conditions and not simply a result of random chance and random methylation variation, the control 338 

sample was also analysed in two separate determinations as though the healthy control also had the relapse 339 

health scores of the two patients respectively at the appropriate time points. Thus each patient relapse health 340 

scores were assigned ‘artificially’ to the relevant control time points in separate analyses to calculate the 341 

correlation and determine differential methylation from the control data between these simulated ‘relapse’ and 342 

‘recovery’ states. From these analyses, 11 fragments with only 39 genes associated with them (see 343 

supplementary excel file ‘Supplementary.xlsx’ sheet ‘Control_Filt Correl with P1’ and, see supplementary excel 344 

file ‘Supplementary.xlsx’ sheet ‘Genes_assoc with C-P1 condition’) met the filtering requirements with P1’s 345 

health scores,  and 14 fragments with 53 genes with P2’s health scores (see supplementary excel file 346 

‘Supplementary.xlsx’ sheet ‘Control_Filt Correl with P2’ and, see supplementary excel file 347 

‘Supplementary.xlsx’ sheet ‘Genes_assoc with C-P2 condition’). This compares with 157 genes in the data 348 

comparison and health states comparison for P1 and 127 genes in the analysis for P2. To determine whether the 349 

relationship between the number of associated genes identified per fragment was significantly higher in the 350 

patients relapse times, the number of genes identified from each fragment from these ‘simulated’ control 351 

analyses and the ‘real’ patient analyses were subjected to an unpaired t-test. The number of genes per fragment 352 

were significantly higher for the patient group compared to the two control simulations, with a p-value = 0.0053 353 
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(see Figure 5A). This implies that while a proportion of the methylation changes seen in the patients may be due 354 

to random methylation variation, most of the identified changes during relapse in the patients are due to their 355 

physiological relapsed state and are associated with important regulatory regions of the genome linked to 356 

ME/CFS disease presentation.  357 

 358 

 359 

360 
Figure 5. Investigation of  the genes associated with relapse associated ME-iVMFs. A Box plots showing 361 

the number of genes linked with each statistically significant variably methylated fragment associated with a 362 

‘simulated’ relapse event for the control in grey (in two analyses using each of the patient health relapse time 363 

points) and the ‘real relapse events’ of the two patients in orange. Each point represents a fragment with the 364 

number of associated genes shown on the y-axis. The mean number of genes associated with the identified 365 

fragments for the patient and control groups is shown with the line. An unpaired t-test resulted in a significance 366 

value of  p = 0.0053.  B. Sankey plot showing relationship between the variably methylated fragments identified 367 

in each patient associated with a relapse event and the biological functions they associate with through various 368 

regulatory genomic elements of relevant genes. From the statistically significant variably methylated fragments 369 

identified for each individual the location was determined and relevant regulatory interactions were recorded 370 

from UCSC genome browser. A gene list was compiled of genes associated with these regulatory interactions 371 

and the functional annotations were utilised to place them into categories. Some genes fell into multiple 372 

categories with others having no known function. Tables showing the full gene list, function and functional 373 

category is included in supplementary excel file ‘Supplementary.xlsx’ sheet ‘Genes_associated with P1’ and  374 

‘Genes associated with P2’.    375 

 376 

 377 
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The potential functional associations of each gene that were linked to the variably methylated fragments 378 

associated with a ‘relapse’ event were determined. The gene functions identified by this analysis associated with 379 

patient symptom fluctuations indicate a change primarily in ‘immune response’ for both patients. Additional 380 

functions associated with the genes involved metabolism and transcription for both patients. P1 also had a 381 

number of genes involved in cell cycle progression while P2 had a larger number of neuronal related genes. 382 

Gene annotations for each gene are listed in the supplementary Excel file ‘Supplementary.xslx’ sheets ‘Genes 383 

associated with P1’ and ‘Genes associated with P2’. Of the immune related genes identified, a number were 384 

associated with activities implying increases in the inflammatory response in individuals, with specific functions 385 

linked to NF-kappa B activity, wound healing, cytokine release, and angiogenesis observed multiple times. This 386 

suggests that during a period of relapse the patient’s immune systems are in an enhanced inflammatory state 387 

compared to their relative ‘recovery’ periods.   388 

 389 

Discussion 390 

 391 

Previous studies (11-15), including our own study that described the first RRBS methylome of ME patients (16) 392 

have established ME/CFS patients display an altered DNA methylome in comparison to matched controls. This 393 

current study is the first of its kind to analyse the DNA methylome of ME/CFS in individual patients across a 394 

longitudinal timeline to investigate a change in health status.  Utilising the principles of precision medicine it 395 

has identified two key features: (i) the number of variably methylated sites and fragments of the genome are 396 

much greater in the two ME/CFS patients than in the control at each time point of the longitudinal study and, (ii) 397 

the severity of ME/CFS symptoms during a relapse is associated with methylation variation at key genomic 398 

features.  The variable methylated DNA fragments enabled us to identify statistically important features 399 

specifically associated with a significant ‘relapse’ in the health of the two patients, compared with their prior 400 

health and their recovery after the relapse. The genomic features implicated regulatory changes affecting 401 

primarily immune functions with associated inflammation, but also metabolic, neurological and mitochondrial 402 

functions in patients as they experience symptom fluctuations along the course of their disease. 403 

 404 

Benefits of DNA methylation for a precision investigation of ME/CFS 405 

The individuals selected to participate in this study were within a similar weight, age range with the same 406 

gender, ethnicity and lifestyles. This was done to prevent any potential confounding factors, since DNA 407 
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methylation is a dynamic epigenetic mark known to vary due to environmental factors. The specific criteria for 408 

patient selection utilised aimed to ensure that the variation in methylation would be primarily due to fluctuations 409 

in ME/CFS symptom severities.  410 

 411 

While previous epigenetic studies have utilised primarily array based methods, prior studies involving the same 412 

method of RRBS and analysis platforms described here have been performed successfully previously (21,22). 413 

Indeed, our recent study (16) with this method with ME/CFS patients gave methylation changes that 414 

significantly overlapped with the other similar studies of this disease that used the array technology (11-15) 415 

Utilising RRBS technology a large number of changes were identified that differentiated ME/CFS patients from 416 

controls. The use of RRBS here has followed extensive in house development and experience with the platform 417 

used (21-23). The advantage of using RRBS is that it identifies changes not captured by the array-based studies 418 

as it is not limited to the set number of sites in the array, allowing wider coverage of the whole genome.   419 

 420 

DNA methylation is an excellent method to investigate physiological changes as it is reflective of transcriptional 421 

changes linked to the disease state, and so is very appropriate to study the relapse recovery cycle of ME/CFS). 422 

DNA methylation is a versatile method to investigate an individual’s physiology (20,27). Small observed 423 

changes often reflect much larger changes occurring in a subpopulation of cells that are obscured by the broader 424 

range and number of cells from which the DNA is taken. Notably, previous research has indicated that even 425 

small measured methylation changes can have large impacts on the associated expression levels of a gene (25). 426 

For example, a recent investigation found that even a small change in methylation percent of (1%) was 427 

associated with a two-fold change in expression of insulin like growth factor -2 (IGF2) (26). A key study 428 

relevant to our ‘relapse and recovery’ in ME/CFS patients showed DNA methylation to be changed in at risk 429 

individuals before their transition to diabetes (20). This application of personalised medicine allows DNA 430 

methylation variation to be utilised not only to distinguish patients from healthy controls, but also to provide a 431 

more specific pathophysiological understanding of an individual patient’s disease trajectory.  432 

 433 

Inter-individual differences indicate increased epigenetic variation linked to disease severity 434 

  435 

As we develop a deeper understanding of the onset of ME/CFS, it is becoming clear that there is an underlying 436 

genetic predisposition in combination with an environmental trigger to precipitate an altered homeostatic state  437 
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or compromised health ‘baseline’ in patients (27). Once the disease progresses past the initial acute stage ~75% 438 

of patients can transition to a chronic state but the partial recovery is interspersed with frequent periods of 439 

relapse followed by relative recovery to the initial compromised health state again. This ‘new normal’ chronic 440 

state of ME/CFS for patients may leave them more vulnerable to even minor changes in their environment that 441 

would not affect a healthy person. For ME/CFS patients in their altered homeostatic state a dramatic change in 442 

physiological state can easily be precipitated. 443 

 444 

Initial analysis of the DNA methylation of the genome-wide CpGs of the patients and the healthy control in this 445 

study supported the idea that ME/CFS patients are more vulnerable to environmental changes. Month to month, 446 

the unique variability in methylation in the healthy control, who had stable excellent health throughout the 447 

longitudinal study, was low <1 in 500 sites, but both of the patients had a much higher level of unique 448 

variability at each sampling time point at between 1 in 20-50 sites. A similar estimate of variability was 449 

performed utilising the DMAP fragment methylation each containing multiple sites, and produced similar but 450 

less dramatic trends with the patients having 0.20 and 0.22 variability scores compared with 0.17 for the healthy 451 

control (based on the number of statistically significant variable fragments divided by the overall number of 452 

fragments in each individual). A key determinant however, is not the extent of variation but the variation at 453 

regions of functional importance across the genome, such as in proximity to CpG islands (often associated with 454 

regulatory regions), and upstream of and within gene bodies. This investigation found that the patients were 455 

consistently more variable than the control at all regions investigated (Figure 2) with the exception of the 456 

Transcriptional Start Site (TSS) where both patients and control had similar levels of variability. Of importance 457 

to note is that, while both patients were much more variable than the control, P2, in a more compromised state 458 

of health throughout the longitudinal timeline, was consistently the more variable of the two patients. The 459 

results from this study indicate that not only are patients more epigenetically variable than a healthy control, but 460 

also illness severity may be positively associated with methylation variation.   461 

 462 

 463 

Intra-individual variation identifies regulatory regions 464 

 465 

An individual is often their own best control for personalised medical applications, especially in studies like this 466 

where there is fluctuating health during a longitudinal disease course. Individuals have fluctuating baseline 467 
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DNA methylation, so important changes occurring within an individual could be obscured when compared to a 468 

control (28). In this analysis however, when the fifteen samples were clustered based on the methylation scores 469 

of the 577 significant fragments identified in all samples (Figure 3), while intra-individual sample variation was 470 

indeed revealed, the heatmap and associated dendrogram produced by hierarchical clustering showed that the 471 

inter-individual variation clearly differentiated the three individuals and was greater than this intra-individual 472 

variation.   473 

 474 

For this reason, while a healthy control was included in the analysis, the ‘relapse recovery’ study focused 475 

primarily on variation within each individual patient and within the control as three separate individuals, 476 

utilising each as their own ‘control’ along a longitudinal time scale (for example Figure 4). Variably methylated 477 

fragments were identified in both the patients that strongly associated with the individuals self-reported health 478 

scores (r >0.9) with a distinct methylation percentage difference between the ‘relapse’ and ‘recovery’ conditions 479 

(+/- 15%). These thresholds enabled us to capture the more relevant changes occurring in the DNA methylation 480 

as a result of the relapse condition as discussed above since even small changes in methylation are often are 481 

indicative of larger transcriptomic changes. The control was also analysed in the same manner ‘simulating’ a 482 

relapse by analysing samples B & C (as though they were a relapse as experienced by P1), and sample C (as in 483 

P2). This determined how many variably methylated fragments are likely to associate, by chance alone 484 

independent of disease, when the patient health scores are arbitrarily assigned to the control. A number of 485 

variably methylated fragments were identified and were further investigated to identify any functional 486 

associations. However, it was clear that the downstream gene associations were much lower when compared to 487 

the two patients during relapse (as shown in Figure 5).  488 

 489 

From the variably methylated fragments identified in the patients a large number of downstream genes were 490 

associated through either direct physical overlap with the variable fragment, association with a promoter or 491 

enhancer, or within a region of regulatory interaction as recorded on UCSC genome browser. They were 492 

functionally relevant to physiological changes occurring in the patients as they experience fluctuations in health 493 

in a ‘relapse’ and ‘recovery’ cycle. The large majority of the intra-individual variable methylated fragments 494 

(ME-iVMFs) were hypomethylated in the relapse condition compared to the recovery condition (only three 495 

hypermethylated from P1) (Tables 1 & 2) indicating that there would be a corresponding increase in 496 

transcription in the downstream genes associated with the regulatory features. As there are such a large number 497 
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of genes associated with the ME-iVMFs identified in this investigation it suggests there are consequentially 498 

wide-ranging regulatory changes occurring in patients. 499 

 500 

Immune and inflammatory changes implicated in relapse-recovery cycle  501 

While there was a broad range of functional roles identified that were performed by the genes associated with 502 

the significant ME-iVMFs (see supplementary excel file ‘Supplementary.xlsx’ sheets ‘Genes associated with 503 

P1’ and ‘Genes associated with P2’) the largest category identified encompassed genes involved 504 

immune/inflammatory functions, then in metabolic pathways. As these biological systems have been implicated 505 

from previous ME/CFS research studies (6,29,30) it was not surprising that such functional categories would be 506 

highlighted as ME/CFS patients  experienced fluctuations in their health.  507 

 508 

The immune functions identified have important functional relevance to the presentation of ME/CFS. In their 509 

relapse compared to their recovery states, P2 had with 34 immune related genes affected. Of these genes, 510 

CXCR2 and CXCR1 indicated the potential activation of the interleukin-8-mediated signalling pathway. IL8 has 511 

already been observed as the gene most differentially expressed between ME/CFS and controls (7,30). Other 512 

previous studies also having observed a significantly higher level of IL-8 in severely affected ME/CFS patient 513 

group compared to both healthy controls and moderately affected ME/CFS patients (31).  514 

 515 

P1 also showed a number of affected genes that like IL8 are known to be associated with inflammatory 516 

responses, for example, NLRP7, and genes associated with NF-kappa-B function (COMMD5, LRRC14, 517 

TONSL). P2 additionally also showed a similar relationship with a number of the immune related genes having 518 

inflammatory roles including (TICAM1 and IL17RA) which are involved in the positive regulation of cytokine 519 

production in inflammatory responses.  Significantly a number of the immune related genes from P2 are 520 

associated specifically with inflammatory disorders including genes involved in the neutrophil degranulation 521 

pathway including; TMBIM1, SLC11A1, MOSPD2, CRCR2, CRCR1 and LRG1.  522 

 523 

Among the additional genes of interest identified during relapse in the ME/CFS patients were seven 524 

mitochondrial genes in P1 that included ACOT9, which is a member of the acyl-CoA family involved in the 525 

hydrolysis of Coenzyme A. HADHA, HADHB are both involved in mitochondrial beta-oxidation of long chain 526 

fatty acids into either 3-etoacyl-CoA if NAD is present, or acetyl CoA if both NAD and coenzyme A are present 527 
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(32). In ME/CFS patients it has been hypothesised that a number of factors may be interfering with the 528 

production of coenzyme A as a result of inflammation, and with reactive oxygen species through the pyruvate 529 

dehydrogenase kinase pathway in the mitochondria (33). As the activity of mitochondrial beta-oxidation is key 530 

to cellular energy production, P1 may be showing the effects of reduced mitochondrial function in the relapse 531 

condition that reflects the severity of her relapse state.  532 

  533 

While the majority of previous work investigating DNA methylation in ME/CFS patients has focused on the 534 

differences between the patients and healthy controls, a 2018 study classified patients into 4 subgroups based on 535 

DNA methylation patterns associated with symptom severity (17). DNA methylation from 1939 genomic sites 536 

was utilised as a signature to differentiate the four subgroups. Of these, the top differentially methylated sites 537 

had associations related to immune signalling. The subtypes of ME/CFS with the more severe symptom 538 

presentation in terms of post exertional malaise were the sites with the highest differential methylation 539 

indicating changes in metabolic and immune responses. When considered together with the outcomes of this 540 

current study, where the relapse events also highlighted regions potentially affecting the function of immune, 541 

inflammatory and metabolic activity, it reinforces the importance of fully understanding the dysfunction of these 542 

pathways, not only in patients compared to healthy controls but in individual patients along their disease course.  543 

 544 
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545 
Figure 6. Summary of the longitudinal timeline of a ME/CFS patient. The initial external trigger for 546 

ME/CFS is a ‘stress event’ (for example, a viral infection- upper left in Figure 6) in a genetically susceptible 547 

person. Following progression into the chronic state patients experience frequent relapse events, which as this 548 

investigation suggests are primarily associated with the up regulation of a number of key biological systems.  549 

 550 

This investigation has shown regulatory disruptions occurring in the patients associated with their self-reported 551 

relapse events. It is worth noting that, while both patients followed here did display a similar overall pattern of 552 

disrupted functional pathways associated with their relapse events, there were notable differences. These 553 

differences would likely have been obscured if they had been part of a larger scale patient vs. control analysis. 554 

As personalised medicine is becoming more accessible, ME/CFS patients remain a patient group that will 555 

greatly benefit further from this style of investigation. Affected ME/CFS patients would be able to contribute to 556 

the overall understanding of the activity of their disease, and with individual molecular assessments be able to 557 

adopt therapeutic and behavioural management strategies that might better manage their illness and decrease the 558 

frequency of relapses.  559 

 560 

Conclusion 561 
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 562 

This study shows the benefits of precision medicine for individual patients with a disease as physiologically 563 

complex as ME/CFS. Currently, ME/CFS patients can respond quite differently to specific medications, for 564 

example supplements like vitamin B12, and to anti-inflammatory drugs like naltrexone, and to physiological 565 

states like pregnancy, with some showing marked improvement, some marked deterioration, and some 566 

seemingly no change in their condition. By considering individual patients over the course of their ME/CFS 567 

disease we can better understand not only the similarities within the overall patient group, but also develop an in 568 

depth understanding of the fluctuations for each patient that relates to their specific pathophysiology. Variable 569 

methylation of regulatory regions associated with the relapse condition has in this study identified a number of 570 

genes with key functional roles in immune, inflammatory, metabolic and mitochondrial pathways. For a disease 571 

that has proven challenging to diagnose and characterise, with the delay in diagnosis detrimental for the affected 572 

person, this kind of analysis provides not only further evidence of serious biological dysfunction, but 573 

importantly also ongoing systematic molecular changes that inform future targets for individual treatment or 574 

symptom management as we continue to unravel and understand the complex nature of ME/CFS.  575 

 576 

Methods 577 

Cohort recruitment 578 

ME/CFS patients were recruited from Dunedin, New Zealand. Diagnosis was initially made by expert clinician, 579 

Dr Rosamund Vallings, of the Howick Health and Medical Centre, Auckland, NZ using the International 580 

Consensus Criteria (34). The two patients and the healthy control. The two patients and the healthy control were 581 

NZ European females (23-28 years of age) of similar weight. Each was asked to self-report on their health status 582 

at each blood sampling indicating whether they were in a stable health period or in a more fragile or relapsed 583 

health state. Details of these assessments from each patient and control can be found in Table 1. The study 584 

conforms to the ethics approval 17/STH/188 for ME/CFS patient studies from the Southern Health and 585 

Disability Ethics Committee of New Zealand. General consultation with Ngai Tahu Research Committee of the 586 

University of Otago was carried out before the beginning of this research.  587 

 588 

 589 

PBMC isolation 590 
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The study involved sampling of blood on 5 occasions from two patients and a healthy control over an 11-month 591 

period with the aim of catching a ‘relapse/relative recovery’ cycle of their illness.  The patients filled out a brief 592 

survey detailing their current condition at the time of each blood collection. These health indicators are seen in 593 

Figure 1. Blood was collected early to midmorning and the fractions were then processed within the same day. 594 

PBMCs were isolated from the whole blood by layering on Ficoll-Paque before separating plasma from PBMCs 595 

and other cells by centrifuging at 400 x g. The PBMC layer was pelleted (100 x g) through PBS and the 596 

resulting pellet resuspended in PBS and RNA later and stored at -80o (deg C). 597 

 598 

DNA extraction 599 

DNA was extracted from 200μl of the PBMC fraction using the Illustra blood Genomic Prep Mini Spin Kit 600 

according to the manufacturer’s instructions. DNA was eluted into the provided EB buffer. Concentration was 601 

determined utilising the Qubit 2.0 flurometer, following the Qubit dsDNA HS Assay Kit protocol.  602 

 603 

Generating methylation map using RRBS 604 

RRBS libraries were prepared as previously described (16). Briefly, genomic DNA (500ng) was digested with 605 

160U of MSP1 restriction enzyme. Following end repair and adenylation of 3’ ends, adaptors were ligated to the 606 

DNA fragments. Bisulfite conversion was performed using the specifications of the EZ DNA methylation kit. 607 

Semi-Quantitative PCR was performed on the bisulfite converted DNA in order to determine the optimal 608 

amplification cycle needed for the final large scale PCR of the final library. Following PCR amplification of the 609 

DNA it was size selected using a 6% (w/v) NuSieve Gel in order to extract the 40-220bp desired fragments for 610 

RRBS libraries and to minimize adaptor contamination. Following purification and analysis of quality using a 611 

BioAnalyzer and Qubit measures, samples were further purified using AMPure XP Bead purification.  612 

 613 

High-throughput Sequencing 614 

The samples were sequenced through the Otago Genomics and Bioinformatics Facility. Following sequencing 615 

the raw fastq files were checked for adaptor presence and trimmed. The data were aligned to the human genome 616 

version GRCh37/hg19 using Bismark bowtie alignment generating BAM files utilised in the differential 617 

methylation analysis. 618 

 619 
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DNA methylation and Statistical analysis 620 

Analysis was performed with the DMAP analysis program (35,36) run on a MAC OS X computer in order to 621 

investigate regions of methylation variability within each individual across fragments 40-220bp in length. 622 

DMAP applied a Chi-squared test comparison for each individual. The fragment-based analysis approach has 623 

been well described previously (37–39). All samples collected from each individual were included in these 624 

analyses. A minimum of two CpGs in each fragment had a minimum of at least 10 sequencing hits in order for 625 

the fragment to qualify. A Chi-square distribution test was performed on the five samples taken from each 626 

individual in this longitudinal study. False discovery rate corrected P values were calculated for each fragment 627 

and only fragments that met the significance threshold of FDR <0.05 were used in the remaining analysis. The 628 

genomic features overlapping with the fragments were identified using the DMAP Geneloc function. 629 

 630 

Differential methylation was performed on each patient compared with the control producing gene lists, i.e. 631 

differentially methylated fragments directly overlapping with exon/intron regions. These gene lists were then 632 

analysed with pathway enrichment analyses using String.org (40). A FDR P value cut-off of 0.05 was applied to 633 

select the enriched pathways.  634 

 635 

Fragments associated with patient relapse events were identified using 577 common ME-iVMFs detected across 636 

the three individuals. A fragment was associated with the relapse condition if it was found to have at least 15% 637 

average methylation difference between the relapse and recovery states, and if the methylation scores had a 638 

Pearson’s correlation coefficient of at least 0.9. In order to identify the functional associations of each variably 639 

methylated fragment associated with patient relapse events the regions covered by the ME-iVMFs of interest 640 

were investigated using the UCSC genome browser to compile a list of archived overlapping enhancers, 641 

promoters and regions of regulatory interactions. The associated genes were determined using the Genehancer 642 

database (41). The functional roles of these genes were determined using Genecards (42) which was then used 643 

for determining appropriate functional categories for downstream analyses.     644 

 645 

 646 

List of abbreviations 647 

 648 

CpG: 5’: Cytosine-3’phosphate-5’Guanosine-3’ 649 
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 650 

iVMF: Intra-individual variably methylated fragment 651 

 652 

ME/CFS: Myalgic Encephalomyelitis/Chronic Fatigue Syndrome 653 

 654 

DMAP: Differential methylation analysis program 655 

 656 

PBMC: Peripheral blood mononuclear cells 657 

 658 

RRBS: Reduced representation bisulfite sequencing 659 

 660 

 661 
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