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Abstract 

Background Serological assays used to estimate SARS-CoV-2 seroprevalence rely on manufacturer cut-

offs established based on more severe early cases who tended to be older.  

Methods We conducted a household-based serosurvey of 4,677 individuals from 2,619 households in 

Chennai, India from January to May, 2021. Samples were tested for SARS-CoV-2 IgG antibodies to the 

spike (S) and nucelocapsid (N) proteins. We calculated seroprevalence using manufacturer cut-offs and 

using a mixture model in which individuals were assigned a probability of being seropositive based on 

their measured IgG, accounting for heterogeneous antibody response across individuals.  

Results The SARS-CoV-2 seroprevalence to anti-S and anti-N IgG was 62.0% (95% confidence interval 

[CI], 60.6 to 63.4) and 13.5% (95% CI, 12.6 to 14.5), respectively applying the manufacturer’s cut-offs, 

with low inter-assay agreement (Cohen’s kappa 0.15). With the mixture model, estimated anti-S IgG and 

anti-N IgG seroprevalence was 64.9% (95% Credible Interval [CrI], 63.8 to 66.0) and 51.5% (95% CrI, 50.2 

to 52.9) respectively, with high inter-assay agreement (Cohen’s kappa 0.66). Age and socioeconomic 

factors showed inconsistent relationships with anti-S IgG and anti-N IgG seropositivity using 

manufacturer’s cut-offs, but the mixture model reconciled these differences. In the mixture model, age 

was not associated with seropositivity, and improved household ventilation was associated with lower 

seropositivity odds.  

Conclusions With global vaccine scale-up, the utility of the more stable anti-S IgG assay may be limited 

due to the inclusion of the S protein in several vaccines. SARS-CoV-2 seroprevalence estimates using 

alternative targets must consider heterogeneity in seroresponse to ensure seroprevalence is not 

underestimated and correlates not misinterpreted.  
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Introduction 

Population-based SARS-CoV-2 seroprevalence studies are critical tools for informing public health policy 

around COVID-19 management
1,2

, and to aid our understanding of key epidemiological parameters of 

SARS-CoV-2 variants
3
, global burden of the pathogen

4
, and dynamics of immunity

5
. The primary tool for 

measuring population-level humoral immunity to SARS-CoV-2 has been serological assays that quantify 

antibody response to components of the virus, indicating prior infection or vaccination. However, most 

available assays used sera from hospitalized patients proximal to RT-PCR-confirmed SARS-CoV-2 

infection to establish thresholds for seropositivity
6,7

. Antibody responses have been found to vary by 

age, severity of illness, and sex
8,9

. Consistent with other human coronaviruses
10

, waning of antibody 

levels has been observed for SARS-CoV-2
11,12

 that varies by assay
13,14

, leading to a failure to detect prior 

infection even in individuals who initially mounted a robust antibody response. As a result, serosurveys 

using available assays may underestimate cumulative incidence in the general population. 

 

The widespread deployment of vaccines for COVID-19 has further complicated the use of serosurveys to 

quantify prior SARS-CoV-2 infection. Many authorized COVID-19 vaccines target the spike (S) protein of 

SARS-CoV-2 promoting the production of anti-Spike immunoglobulin-G (anti-S IgG); consequently, the 

role of anti-S IgG assays to determine prior infection is now limited. Quantifying antibody response 

targeting other regions such as the nucleocapsid (N) protein is therefore critical to understanding the 

burden of infection, and factors associated with infection and re-infection. However, some of these 

assays appear to be more prone to waning over time compared to those measuring anti-S IgG, thereby 

underrepresenting true cumulative population-level exposure
15

. 

 

We conducted a large, population-representative serosurvey for SARS-CoV-2 antibody in the south 

Indian city of Chennai, India (Fig. 1A), using two serological assays to detect antibodies targeting the 
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spike and nucelocapsid proteins of SARS-CoV-2. Samples were collected between January and May 

2021, coinciding with the beginning of the Delta variant surge in India (March – July 2021) (Fig. 1B). To 

investigate the effect of multiple sources of variation in antibody responses on estimates of 

seroprevalence and its association with individual level factors, we estimated seroprevalence using 

manufacturer’s cut-offs and compared results to those from a Bayesian mixture model accounting for 

heterogeneous antibody response between individuals.  

 

Results 

Study population 

A total of 2,723 households were recruited across 103 spatial locations randomly selected using a 

probability proportional to population size approach to cover 12 pre-defined zones within the greater 

Chennai corporation (Fig. 1A). The median household size was 3 (IQR, 2-4). A median of 1 person 

(interquartile range [1-2]) was recruited per household for a total sample size of 4,828 eligible persons. 

Of 4,813 participants recruited who provided a blood specimen, 4,809 were tested for anti-N IgG and/or 

anti-S IgG among whom 4,677 from 2,619 households had complete data on covariates of interest and 

comprise the analytical sample (Fig. S1).  

 

In the analytical sample, the median age was 38 years (IQR, 26-51 years). 298 (6.4%) were less than 18 

years of age and 28% were 50 years of age or older; about half (48.6%) the study population were 

female (Table 1). Nearly 20% lived in a household where no household member had completed high 

school and 67% experienced income loss due to the COVID-19 pandemic. Sixty nine percent lived in 

households with fans only. At the time of the survey, 11.4% reported receiving at least one dose of a 

COVID-19 vaccine.   
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SARS-CoV-2 anti-N and anti-S IgG seroprevalence  

The seroprevalence of anti-S IgG using the manufacturer’s cut-off of 50 AU/ml was 62.0% (95% 

confidence interval [CI], 60.6 to 63.4). For the anti-N IgG, the seroprevalence using the manufacturer’s 

normalized index cut-off of 1.4 was substantially lower at 13.5% (95% CI, 12.6 to 14.5). Among 

participants who reported never having received a COVID-19 vaccine in the past, the prevalence of anti-

S and anti-N IgG was 60.5% (95% CI, 59.0 to 62.0) and 12.9% (95% CI, 11.9 to 13.9), respectively. 

 

In the mixture model, the population was assumed to be divided into individuals who were seronegative 

or seropositive. The distribution of measured IgG across the sample was used to infer the proportion of 

the population that came from the seropositive compartment. The mixture model is illustrated in Fig 3A 

and 3B, demonstrating the two compartments and the overall fit to the data. A log-normal distribution 

was chosen to model the seroresponse among seropositive individuals for both assays after a visual 

inspection of the model fit to the data by age and time quintile (Figs. S2 and S3). A log-logistic 

distribution was chosen to model the assay variability among 580 samples collected in 2016-2017 (pre-

pandemic), to represent the distribution of IgG among seronegative individuals (Fig. S4). The model-

estimated seropositivity probability is plotted against anti-N and anti-S IgG in Fig. S5. Using the mixture 

model-based determination of seropositivity, the estimated seroprevalence of anti-S and anti-N IgG was 

64.9% (95% Credible Interval [CrI], 63.8 to 66.0) and 51.5% (95% CrI, 50.2 to 52.9), respectively. When 

the analysis was restricted to individuals who self-reported that they had not received a COVID-19 

vaccine, seroprevalence using the mixture model approach was 63.7% for anti-S IgG (95% CrI, 62.6 to 

64.8) and 53.4% for anti-N IgG (95% CrI, 51.9 to 54.8).  

 

Agreement between the two assays using the manufacturer’s cut-offs was low (Cohen’s Kappa 0.15; 

95% CI 0.14, 0.17). Defining an individual as seropositive if the mixture model-estimated seropositivity 
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probability was ≥0.5, the agreement was substantially better (Cohen’s Kappa 0.66; 95% CI 0.63, 0.68). To 

understand factors underlying the difference in seroprevalence between the assays, we estimated the 

anti-S to anti-N relative seroprevalence over time and age among individuals reporting no COVID-19 

vaccine receipt (Table S1). Anti-S seroprevalence increased relative to anti-N seroprevalence from late 

March 2021 onward, but there was no clear trend with respect to antibody response and age. 

 

Factors associated with SARS-CoV-2 seroprevalence by assay and statistical method 

Using the manufacturer’s cut-offs, multivariable logistic regression suggested contrasting associations 

between age and seropositivity for each assay, with increased odds of anti-N IgG seropositivity among 

older individuals (adjusted odds ratio (aOR) for ≥50 years vs. 18-29 years, 2.35; 95% CI, 1.76 to 3.13) but 

no relationship between age and anti-S IgG seropositivity (aOR for ≥50 years vs. 18-29 years, 0.95; 95% 

CI, 0.77 to 1.18; Table 2). Moreover, the relationship between some indicators of socioeconomic status 

and seropositivity differed between the two assays. For example, better ventilation was associated with 

higher anti-N seropositivity (aOR for air conditioning and fans in the home vs. fans only 1.43; 95% CI, 

1.08 to 1.89) but lower anti-S seropositivity (aOR for air conditioning, cooling systems, and fans vs. fans 

only 0.48; 95% CI, 0.30 to 0.76). There was no association between the number of regular outside 

visitors to the home and anti-N seropositivity (aOR per household visitor 0.95; 95% CI, 0.87 to 1.04) 

while having more outside visitors to the home was significantly associated with anti-S seropositivity 

(aOR 1.11; 95% CI, 1.03 to 1.19). 

 

In the mixture model there was no clear trend in seropositivity by age, although a suggestion of lower 

anti-N and anti-S seropositivity among older adults (aOR for ≥50 years vs. 18-29 years, 0.83; 95% CrI 0.61 

to 1.13 and 0.83; 95% CrI, 0.64 to 1.08, respectively), and lower anti-S seropositivity among children 

(aOR for 5-17 years vs. 18-29 years, 0.69; 95% CrI, 0.46 to 1.02). Markers of lower socioeconomic status 
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were consistently associated with higher seropositivity in univariable analyses, and household 

ventilation was associated with lower anti-N and anti-S seropositivity in multivariable analyses (aOR for 

air conditioning, cooling systems, and fans in the home vs. fans only 0.64; 95% CrI, 0.32 to 1.27 and 0.40; 

95% CrI, 0.22 to 0.71 respectively). An increase in the number of regular visitors to the home was 

associated with higher anti-N and anti-S seropositivity (aOR per additional visitor per week 1.10; 95% 

CrI, 0.99 to 1.22 and 1.13; 95% CrI, 1.03 to 1.23 respectively). In both assays, men had lower 

seropositivity compared to women (aOR for men vs. women 0.65; 95% CrI, 0.52 to 0.81 for anti-N and 

0.65; 95% CrI, 0.53 to 0.78). Self-report of having received a COVID-19 vaccine was associated with 4.38-

fold (95% CrI, 3.07 to 6.30) change in odds of anti-S seropositivity, but was not associated with anti-N 

seropositivity (aOR 1.03; 95% CrI 0.70 to 1.52).  

 

In the mixture model, the age pattern of mean seroresponse among seropositive individuals was similar 

for the two assays with all groups having higher seroresponse than individuals 18-29 years of age (Fig. 2 

and Table S2); however, credible intervals for children aged 5-17 and adults 30-39 years excluded 1 for 

the anti-S assay only. The mean seroresponse among seropositive individuals increased over time for 

both assays, from late March onwards compared to February (Fig. 2 and Table S2), reflecting robust IgG 

response following infections acquired at the start of the Delta wave.  

 

Discussion 

In this population-based sample of residents from Chennai, India we observed a strikingly disparate 

prevalence of SARS-CoV-2 antibodies using two IgG assays (62.0% anti-S IgG seroprevalence vs. 13.5% 

anti-N IgG seroprevalence) when using manufacturer’s cut-offs. However, using a mixture model to infer 

seropositivity from the raw antibody response, prevalence of SARS-CoV-2 antibodies from each assay 

was more similar (64.9% anti-S IgG seroprevalence and 51.5% anti-N IgG seroprevalence). Further, we 
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observed qualitative differences in the associations between key exposures of interest and SARS-CoV-2 

anti-N IgG seropositivity when using manufacturer’s cut-offs and the mixture model to determine 

seropositivity. When applying the manufacturer’s cut-off, we observed higher anti-N IgG seropositivity 

among older individuals (likely due to their stronger seroresponse) and among individuals with better 

household ventilation, but not for anti-S IgG. Associations were consistent between assays when 

applying the mixture model. 

 

The estimated anti-S IgG seroprevalence of 60-65% is higher than the 42.9% seroprevalence measured 

in Chennai around the same time
16

, but consistent with the 53.8% seroprevalence measured in urban 

areas of neighboring Karnataka State in August 2020
17

. However, the utility of anti-S based serosurveys 

to quantify population exposure to SARS-CoV-2 is rapidly dwindling given increasing vaccine coverage in 

many countries. Currently, most vaccines in use globally target the spike region of SARS-CoV-2 and elicit 

the production of antibodies to the Spike region. The anti-S IgG surveys cannot distinguish anti-S 

antibodies produced as a result of vaccination, prior vaccination, or both. Nevertheless, population-

based serosurveys remain critical to understanding the burden of infection in a population over time 

and the role of humoral antibodies from prior infection against re-infection and emerging variants.  

 

The anti-nucleocapsid (anti-N) IgG assay provides one such tool to quantify population-level exposure in 

the presence of widespread deployment of vaccines targeting the Spike region. However, population 

serosurveys conducted in other contexts have found discrepancy between anti-N and anti-S IgG 

seroprevalence (e.g. 38% vs. 64% seroprevalence to anti-N and anti-S IgG in India after the Delta 

wave)
18

, that persisted among unvaccinated individuals who had lab-confirmed SARS-CoV-2 infection 

(63% vs. 82%)
18

. In this study we estimated anti-N IgG seroprevalence of 13.5% using the Abbott 
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ARCHITECT assay and associated cut-off, a five-fold difference compared to the anti-S IgG 

seroprevalence.  

 

Given these limitations, mixture models have been proposed
19

 and used previously to perform inference 

on serological data
20–22

. A major strength of these approaches is that they infer seropositivity using the 

distribution of raw antibody values in the population, obviating the need for a strict, binary cut-off. In 

doing so, these models reduce measurement error from equivocal assay results, and explicitly account 

for the uncertainty arising from heterogeneity in antibody response between individuals. In this case, 

use of the mixture model markedly improved the agreement between the assays. 

 

In addition to identifying the burden of infection, serosurveys are also used to identify factors associated 

with infection to plan appropriate interventions to curb transmission. Due to the association between 

age, severity, and antibody response, as well as the association between demographic factors, the 

timing of infection and subsequent waning, a risk factor analysis based on manufacturer’s cut-offs 

produced erroneous results based on anti-N IgG seropositivity, including a positive association between 

improved ventilation and seropositivity and higher seropositivity among individuals aged ≥50 years. On 

the other hand, the mixture model identified the same risk factors for the two assays by explicitly 

accounting for varying antibody response by age and time of sample collection. Due to the waning of 

measured antibody levels, factors associated with seroprevalence could be associated with earlier 

infection times. Identification of such risk factors in different contexts across the globe is crucial for 

better targeting of public health interventions, and statistical methods to perform these analyses 

account for characteristics of the assay. 
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Some discrepancy between anti-N and anti-S IgG seroprevalence persisted even when we applied the 

mixture model, with 51.5% anti-N IgG seropositivity compared to 64.9% anti-S IgG seropositivity. 

Possible explanations for this discrepancy include differential waning of anti-N vs. anti-S in the initial 

months following infection, with anti-N waning faster, and the possibility that some persons may never 

mount an anti-N response following initial infection. Previous studies have demonstrated faster waning 

of Abbott anti-N IgG over time since infection compared to other assays
15,23

. In our sample, the 

difference was observed throughout the time of sample collection and increased slightly towards the 

end of the sampling period. As incidence increased during sample collection, and antibody response 

takes weeks to develop, these findings are consistent with increased durability of the anti-S IgG 

response and/or with a more robust anti-S IgG following an acute infection
24

. Finally, some participants 

may have also misreported their COVID-19 vaccination status which might contribute to the 

discrepancies between these assays. Together, these findings suggest that serosurveys using anti-N IgG 

assays with standard statistical approaches and utilizing manufacturer cut-offs could significantly 

underestimate true seroprevalence in a community. Further theoretical work should focus on the utility 

of serosurveys using anti-S and anti-N IgG assays to identify recent and non-recent infections, leveraging 

the waning of the latter assay. 

 

This study has several limitations. Given the difficulty of implementing a survey amidst an ongoing 

pandemic, COVID-19 safety protocols prevented higher enrollment per household. This might have 

impacted the representativeness of the sample. Although our seroprevalence estimates were higher 

than estimates from others studies conducted in Chennai during this time
16

, they were comparable to 

similar studies in urban settings across India
17

. In addition, these assays and corresponding antibody 

waning only relate to the humoral response; more studies are required to examine the association 

between the humoral response of anti-N and cell-mediated responses. These studies will be critical to 
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the interpretation of anti-N IgG seroprevalence data and to identify thresholds related to protection 

from future infection. Finally, although we observed decline in seropositivity, we did not correct our 

seroprevalence estimates to account for such waning; therefore, the seroprevalence in this sample likely 

underestimates the cumulative incidence.  

 

In summary, a mixture model produced improved estimates of SARS-CoV-2 anti-N IgG seropositivity and 

identification of factors associated with seropositivity. While estimates of seropositivity based on the 

anti-S assay were less affected by antibody waning, future seroprevalence studies will be challenged by 

increasing vaccination and the inability to distinguish prior infection from vaccination-induced immunity. 

Thus, future work should focus on making methods such as mixture models accessible and 

computationally feasible for a wide array of researchers undertaking serosurveys for SARS-CoV-2 and 

other novel pathogens. 

 

Methods 

Study design 

We conducted a cross-sectional, household-based serosurvey to measure the seroprevalence of SARS-

CoV-2 antibodies in Chennai, India. The study was approved by the IRB of YR Gaitonde Centre for AIDS 

Research and Education (YRGCARE) and by the IRB of Johns Hopkins University for secondary data 

analysis. All participants provided written informed consent. 

 

Study setting 

The south Indian city of Chennai, the capital of the state of Tamil Nadu, is home to an estimated 7.1 

million residents with a population density of 26,553 per square kilometer. The city was broadly divided 

into 12 administrative zones prior to its expansion to 15 zones that increased the city area from 174 sq 
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km to 426 sq km; we included the original 12 zones in our sample. The first case of COVID-19 was 

reported in Chennai on March 7, 2020 and as of October 20, 2021 had reported a cumulative of 532,529 

confirmed cases and 8,187 confirmed deaths
25

.  

 

During the first wave (April through July 2020), test positivity peaked at about 23% with an average of 

8,000 tests per day. A complete lockdown was instituted between March 23, 2020 and June 8, 2020 

during which period, inter-district movement was restricted and international travel was suspended. 

The highest single-day case count of 2,509 was observed on June 30, 2020, with a steady decline 

thereafter. A second surge in COVID-19 infections was observed in Chennai between April through June 

2021 with a peak daily case count of 7,772 reported on May 12, 2021 followed by a steady decline
25

. A 

second lockdown was instituted on May 6, 2021 and was in effect through late June 2021. Prior 

community-based serosurveys in Chennai estimated the anti-N IgG seroprevalence of SARS-CoV-2 to be 

18.4% in July, 2020
26,27

 and 30.1% in October, 2020
27

, and the anti-S seroprevalence to be 40.9% in 

October, 2020
28

. COVID-19 vaccination commenced in Chennai on January 16, 2021 for health care 

workers with expansion to persons 60 years of age or older two months later. The only vaccines 

available at the time in India were Covishield (Serum Institute of India; 

https://www.seruminstitute.com/product_covishield.php) and Covaxin (Bharat Biotech; 

https://www.bharatbiotech.com/covaxin.html) both of which target the Spike region.  

 

Study sample 

We selected 150 locations from within the boundaries of Chennai proportional to the population size 

using WorldPop data from 2020 with a goal of sampling from 100 locations. Of the 150 locations, 123 

were determined to be viable (e.g., residential). The target sample size at each location was 50 

households. Within each location, the starting point was the household nearest to the designated GPS 
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location. If the starting point identified multiple houses, study staff counted the number of houses and 

selected randomly from the total number of houses. If the starting point was a high rise or apartment 

building, the floors were enumerated and a floor was randomly selected for sampling. If there was no 

household in a specified location, study staff would move systematically from the right of the starting 

location until finding a home. The goal was to enroll as many individuals 5 years of age and older as 

possible from each household while ensuring that within each location there were at least 10 individuals 

in each of three groups (5-25 years, 26-45 years and greater than 45 years). The study team returned to 

households a maximum of 3 times if an eligible adult was not available. The locations of Chennai and of 

the sampling sites are displayed in Fig. 1. 

 

Data collection 

In each household, an adult (18 years of age and older) who could speak on behalf of the household was 

identified as the index. He/she was asked to enumerate all members of the household and provide 

information on basic sociodemographics, history of COVID-19 symptoms, SARS-CoV-2 testing history and 

COVID-19 illness history. Index participants were additionally asked questions about sociodemographics, 

their own lifetime COVID-19 symptoms and testing history, comorbidities and general health care 

access, adoption of non-pharmaceutical interventions (social distancing and masking) and activities in 

the prior 2 weeks. 

 

Index members were also asked to recruit other household members who were 5 years of age and 

older. Household members were asked to respond to a similar series of questions with the exception of 

the household inventor.  
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All individuals who participated were offered SARS-CoV-2 antibody testing; samples were collected (6-10 

ml of whole blood) prior to conducting the survey.  All participants provided written informed consent 

and were compensated for their time. The protocol was approved by the YR Gaitonde Center for AIDS 

Research and Education Institutional Review Board.  

 

580 samples that were collected in 2016-17 from clients seeking testing for HIV and related conditions 

that were available at the YRGCARE laboratory’s specimen repository were tested for antibodies to 

establish pre-pandemic anti-N and anti-S IgG response.   

 

Laboratory procedures 

All samples (including pre-pandemic specimens) were run on an Abbott ARCHITECT™ i1000 instrument 

and tested with CE marked SARS-CoV-2 IgG and AdviseDx SARS-CoV-2 IgG II assays according to the 

ARCHITECT operations manual and assay package insert instructions. Briefly, the SARS-CoV-2 IgG assay is 

an automated Chemiluminescent Microparticle Immunoassay (CMIA) used for the qualitative detection 

of IgG antibodies directed against the SARS-CoV-2 N-protein. Assay results are measured in Relative 

Light Units (RLU) and reported as an index value of the ratio of specimen to calibrator RLU signal (S/C). 

Index values ≥1.4 S/C indicate a SARS-CoV-2 IgG seropositive result. The AdviseDx SARS-CoV-2 IgG II 

assay is a quantitative automated CMIA used for the quantitative detection of IgG antibodies directed 

against the receptor binding domain (RBD) of the SARS-CoV-2 S-protein with assay results reported in 

AU/mL. Assay calibration is performed using 6-point calibration referencing an internal reference 

standard at each concentration level. Assay linearity was shown between 21.0 and 40,000 AU/mL, with 

results <50.0 AU/mL reported as negative and ≥50.0 reported as positive.  

 

Outcomes 
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The response variables were anti-nucelocapsid (anti-N) and anti-spike (anti-S) IgG, measured in index 

and AU/ml respectively. For the analysis of seropositivity defined by manufacturer’s cut-offs, the 

outcome was a binary variable. For the mixture model, we log-transformed the raw values and 

translated each log-transformed value so that all outcome values were positive. 

 

Statistical Analysis 

For the analysis of seropositivity using manufacturer’s cut-offs, we performed univariable and 

multivariable logistic regression on seropositivity defined as above. We accounted for clustering by 

household using generalized estimating equations with an exchangeable correlation structure. 

  

For the mixture model, for each outcome we assumed that the population comprised two unobserved 

groups defined by their IgG level: those who truly had no exposure to SARS-CoV-2 or response to 

vaccination (“seronegative”), and those who had some exposure and/or response (“seropositive”). 

Among the seropositive, the translated, log-transformed IgG followed a defined distribution (normal or 

log-normal), representing the strength of response to a previous exposure. Among the seronegative, the 

translated, log-transformed IgG followed a defined distribution (normal or log-logistic), representing 

assay variability among seronegatives. For the anti-S IgG, the seropositive and seronegative distributions 

were censored below at the LLOQ. 

 

We derive the likelihood of this model as an extension of Hitchings et al
21

. Let Y=log(IgG)+min(log(IgG)), 

and let the mean response for an individual i be 

 

����|����	��
�
��
 � �� � ������
�

���

, 
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����|���������
��
 � �� . 
 

µi represents the mean of the seropositive distribution with variance/shape parameter σ > 0 and 

probability density function ������, and the γ parameters represent associations between covariates Xij 

and Y. µ0 represents the mean of the seronegative distribution with variance/scale parameter σ0 > 0 and 

probability density function ��	���. Being seropositive is determined by a Bernoulli distribution with 

probability pi, which links to a different set of covariates X’ij with a logistic model  

logit�	�� � �!����

��

���

. 

 

For the anti-N, the log-likelihood of the model given N individuals in the serosurvey is  

"�!, �, #, �� , #�� � � ln%	�������� & �1 ( 	�
��	����)
	

���

. 

 

For the anti-S, assuming that the population consists of n individuals with IgG ≥ LLOQ and m individuals 

with IgG < LLOQ, the log likelihood of the model given the data is 

 

"�!, �, #, ��, #�� � �ln%	�������� & �1 ( 	�
��	����)
�

���

& � ln%	�*���LLOQ� & �1 ( 	�
*�	�LLOQ�)
��


�����

. 

 

In addition, a household-level random effect was included on the probability of being seropositive. 

Specifically, a number hk drawn from a normal distribution with standard deviation α was added to the 

log-odds of seropositivity for each household, so that the probability of being seropositive pik for 

individual i in household k is given by  
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"��
��	��� � .� & �!����

��

���

. 

 

Parameter estimation was done by maximizing the log-likelihood using Bayesian MCMC in the R package 

rstan
29

, using R, version 3.6.1. Estimates are presented alongside the 95% credible interval estimated 

from the posterior likelihood. 

 

Finally, data on pre-pandemic negatives were used to inform the distribution of IgG among seronegative 

individuals. The mean and variance/scale of the negative distribution was estimated using a 

simplification of the above model in which all individuals were truly seronegative. The median estimated 

mean and variance/scale parameters were used as the mean of the prior distribution for these two 

parameters in the full mixture model (using a uniform prior with specified range either side). For other 

parameters, uniform priors with limits encapsulating range of reasonable values were used for all 

regression coefficients and the variance/scale of the seroresponse distribution, and a uniform prior on 

(0,2) was used for α. 

  

Separate models were constructed for anti-S and anti-N positivity. For both the standard logistic 

regression models and the mixture models, we included age (in quintiles) and time of sample (in 

quintiles) as explanatory variables. Similarly, both were included to model the mean seroresponse 

among seropositive individuals. Then, for a chosen set of explanatory variables, we fit univariable 

models to each outcome separately, including each variable in the log-odds component only. We 

compared each model to the “null” model (with age and time only) with leave-one-out information 

criteria (LOOIC) using the loo R package
30

. Each variable that improved the LOOIC of the model was 

included in a multivariable analysis, with no further model selection performed. For comparability of the 
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two assays, we included any variables that improved the LOOIC of either anti-N or anti-S model, such 

that the multivariable models contained the same variables. In the mixture model, we used a log-logistic 

model for the non-response distribution and explored both a normal and log-normal distribution for the 

seroresponse distribution. 

 

For the mixture model, we estimated overall seroprevalence in the following way: for each of N=10,000 

parameter draws from the posterior distribution, we calculated the probability density of seroresponse 

������ and non-response ��	��� for each individual with IgG x. The probability of being seropositive for 

each individual was ������/������� & ��	����. The estimated seroprevalence and 95% CrI were taken as 

the 2.5
th

, 50
th

, and 97.5
th

 percentiles of the mean seropositive probability across simulations, thus 

accounting for uncerainty in parameters. 
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Figures 

Fig. 1. Location of study site (panel A, inset map of India, gray dot) and location of sampling sites in the 

Chennai Corporation (panel A, blue dots), and daily reported COVID-19 case counts in Chennai, India 

(panel B) with serosurvey sampling window (shaded gray area). 
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Fig. 2. Illustration of mixture model distribution and fit to the anti-S IgG (panel A) and anti-N IgG (panel 

B) data, and association between age, sampling time, and log IgG among seropositive individuals for 

anti-S IgG (panel C) and anti-N IgG (panel D). In panels A and B, the bars represent the distribution of IgG 

in the data. The red, green, and blue lines represent the distribution of IgG values in the seronegative 

and seropositive compartments and overall, respectively, with shaded bands reflecting 95% CrI for each 

distribution. In Panel A, the gray bar represents the proportion of samples that were below the LLOQ, 

while the points represent the probability for each compartment to be below the LLOQ. 
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Tables 

Table 1. Characteristics of the study population.  

 

Study characteristic 
n (%) 

(N=4,677) 

Study period  

   9 Jan - 14 Feb 1,259 (26.9) 

   15 Feb - 9 Mar 792 (16.9) 

   10 Mar - 24 Mar 820 (17.5) 

   25 Mar - 19 Apr 894 (19.1) 

   20 Apr - 13 May 912 (19.5) 

Age group (in years)  

   5-17 298 (6.4) 

   18-29 1,208 (25.8) 

   30-39 937 (20.0) 

   40-49 917 (19.6) 

   ≥50 1,317 (28.2) 

Gender  

   Female 2,272 (48.6) 

   Male 2,394 (51.2) 

   Transgender 11 (0.2) 

Maximum household education  

   No formal education 84 (1.8) 

   Standard 1-8 859 (18.4) 

   9th standard or more 3,734 (79.8) 

Household income  

   No change/increase due to COVID-19 1,551 (33.2) 

   Negative COVID-19 impact 3,126 (66.8) 

Household ventilation system  

   Neither coolers nor air conditioning 3,232 (69.1) 

   Coolers only 268 (5.7) 

   Air conditioning only 986 (21.1) 

   Air conditioning and cooling systems 191 (4.1) 

Median household crowding index (person/rooms), (IQR) 2.0 (1.5-3.0) 

Median no. of regular visitors to home, (IQR) 0 (0-2) 

Received COVID-19 vaccine  

   No 4,142 (88.6) 

   Yes 535 (11.4) 

*Data are sample sizes and corresponding column percentages (%), unless noted otherwise
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Table 2. Correlates of anti-N and anti-S seropositivity among 4,677 individuals sampled across Chennai, India: results from multivariable logistic 

regression using manufacturer’s cut-offs and from a Bayesian mixture model 

*anti-S model included 4,629/4,677 participants; **defined as persons not living in the household who visited the home at least 4 times/week 

 Anti-N IgG  

Manufacturer cut-off (≥1.4) 

Anti-N IgG 

Bayesian Mixture model  

Anti-S IgG* 

Manufacturer cut-off (≥50) 

Anti-S IgG* 

Bayesian Mixture model 

 OR (95% CI) aOR (95% CI) OR (95% CrI) aOR (95% CrI) OR (95% CI) aOR (95% CI) OR (95% CrI) aOR (95% CrI) 

Age (in years) 

   5-17 

   18-29 

   30-39 

   40-49 

   ≥50 

 

1.02 (0.62, 1.67) 

REF 

1.49 (1.09, 2.03) 

2.06 (1.52, 2.78) 

2.45 (1.86, 3.23) 

 

1.09 (0.66, 1.79) 

REF 

1.45 (1.07, 1.98) 

2.00 (1.48, 2.70) 

2.35 (1.76, 3.13) 

 

1.13 (0.70, 1.83) 

REF 

1.22 (0.88, 1.70) 

1.16 (0.84, 1.61) 

0.85 (0.63, 1.13) 

 

1.09 (0.67, 1.76) 

REF 

1.18 (0.85, 1.64) 

1.13 (0.81, 1.57) 

0.83 (0.61, 1.13) 

 

0.82 (0.59, 1.14) 

REF 

1.07 (0.86, 1.33) 

1.19 (0.95, 1.48) 

1.15 (0.94, 1.40) 

 

0.88 (0.64, 1.23) 

REF 

1.01 (0.82, 1.26) 

1.06 (0.85, 1.33) 

0.95 (0.77, 1.18) 

 

0.69 (0.47, 1.03) 

REF 

1.13 (0.87, 1.48) 

1.18 (0.91, 1.53) 

1.11 (0.87, 1.41) 

 

0.69 (0.46, 1.02) 

REF 

1.04 (0.79, 1.37) 

1.00 (0.76, 1.31) 

0.83 (0.64, 1.08) 

Time of sampling 

   9 Jan – 14 Feb 

  15 Feb – 9 Mar 

  10 Mar – 24 Mar 

  25 Mar – 19 Apr 

  20 Apr – 13 May 

 

1.31 (0.94, 1.82) 

REF 

1.05 (0.72, 1.53) 

1.54 (1.08, 2.20) 

2.56 (1.81, 3.62) 

 

1.39 (0.99, 1.96) 

REF 

1.04 (0.71, 1.52) 

1.45 (0.99, 2.12) 

2.28 (1.55, 3.37) 

 

1.19 (0.83, 1.72) 

REF 

1.08 (0.71, 1.64) 

0.33 (0.21, 0.50) 

0.34 (0.22, 0.52) 

 

1.37 (0.94, 2.02) 

REF 

1.18 (0.78, 1.82) 

0.38 (0.24, 0.59) 

0.45 (0.28, 0.71) 

 

1.10 (0.86, 1.41) 

REF 

1.13 (0.85, 1.51) 

0.58 (0.44, 0.77) 

0.97 (0.73, 1.28) 

 

1.24 (0.96, 1.60) 

REF 

1.18 (0.88, 1.57) 

0.55 (0.41, 0.73) 

0.85 (0.62, 1.16) 

 

1.22 (0.90, 1.66) 

REF 

1.16 (0.81, 1.65) 

0.50 (0.35, 0.71) 

0.75 (0.53, 1.06) 

 

1.43 (1.05, 1.98) 

REF 

1.26 (0.87, 1.81) 

0.48 (0.33, 0.68) 

0.66 (0.45, 0.97) 

Gender 

   Female 

   Male 

   Transgender 

 

REF 

0.80 (0.66, 0.97) 

1.31 (0.22, 7.89) 

 

REF 

0.86 (0.71, 1.05) 

1.62 (0.28, 9.32) 

 

REF 

0.66 (0.53, 0.81) 

0.57 (0.05, 5.85) 

 

REF 

0.65 (0.52, 0.81) 

0.46 (0.04, 4.98) 

 

REF 

0.69 (0.59, 0.80) 

0.48 (0.11, 2.10) 

 

REF 

0.68 (0.58, 0.79) 

0.41 (0.09, 1.82) 

 

REF 

0.67 (0.55, 0.80) 

0.59 (0.09, 5.52) 

 

REF 

0.65 (0.53, 0.78) 

0.53 (0.07, 4.52) 

Maximum household education 

   No formal education 

   Standard 1-8 

   9th standard or more 

 

REF 

0.72 (0.34, 1.54) 

0.94 (0.46, 1.95) 

 

- 

 

REF 

0.81 (0.35, 1.86) 

0.81 (0.36, 1.81) 

 

- 

 

REF 

1.17 (0.65, 2.11) 

1.18 (0.67, 2.09) 

 

- 

 

REF 

1.48 (0.71, 2.99) 

1.64 (0.81, 3.25) 

 

- 

Household income 

   No change/increase due to COVID-19 

   Negative COVID-19 impact 

 

REF 

0.65 (0.52, 0.80) 

 

- 

 

 

REF 

1.08 (0.84, 1.39) 

 

- 

 

REF 

0.93 (0.78, 1.10) 

 

- 

 

 

REF 

0.97 (0.75, 1.25) 

 

- 

 

Household ventilation system 

   Neither coolers nor air conditioning 

   Coolers only 

   Air conditioning only 

   Air conditioning & cooling systems 

 

REF 

0.98 (0.62, 1.56) 

1.78 (1.39, 2.27) 

2.02 (1.23, 3.32) 

 

REF 

1.01 (0.64, 1.62) 

1.43 (1.08, 1.89) 

1.51 (0.89, 2.54) 

 

REF 

1.19 (0.72, 1.96) 

0.66 (0.48, 0.90) 

0.70 (0.36, 1.31) 

 

REF 

1.10 (0.65, 1.85) 

0.63 (0.44, 0.89) 

0.64 (0.32, 1.27) 

 

REF 

0.98 (0.69, 1.40) 

0.91 (0.74, 1.12) 

0.60 (0.39, 0.93) 

 

REF 

1.01 (0.71, 1.45) 

0.81 (0.64, 1.02) 

0.48 (0.30, 0.76) 

 

REF 

1.00 (0.64, 1.57) 

0.90 (0.69, 1.20) 

0.61 (0.35, 1.07) 

 

REF 

0.90 (0.57, 1.42) 

0.75 (0.56, 1.00) 

0.40 (0.22, 0.71) 

Household crowding (person/rooms) 0.84 (0.76, 0.92) 1.00 (0.90, 1.10) 1.08 (0.97, 1.20) 1.03 (0.92, 1.15) 1.03 (0.96, 1.11) 1.00 (0.93, 1.08) 1.06 (0.97, 1.17) 1.04 (0.94, 1.15) 

No. of regular visitors to home** 0.95 (0.88, 1.03) 0.95 (0.87, 1.04) 1.11 (0.97, 1.28) 1.10 (0.99, 1.22) 1.06 (0.99, 1.13) 1.11 (1.03, 1.19) 1.10 (1.00, 1.21) 1.13 (1.03, 1.23) 

Received COVID-19 vaccine 1.63 (1.22, 2.17) 0.79 (0.57, 1.10) 0.93 (0.63, 1.35) 1.03 (0.70, 1.52) 2.11 (1.63, 2.73) 3.12 (2.32, 4.19) 3.74 (2.64, 5.37) 4.38 (3.07, 6.30) 
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Supplementary Materials 

Fig. S1. Flowchart of study sample selection  

Fig. S2. Null mixture model fit to anti-N IgG density by time and age quintile 

Fig. S3. Null mixture model fit to anti-S IgG density by time and age quintile 

Fig. S4. Mixture model fit to pre-pandemic seronegative samples 

Fig. S5. Model-estimated seropositivity probability for anti-N (top) and anti-S (bottom) IgG against 

measured IgG 

Table S1. Anti-S IgG seroprevalence relative to anti-N IgG seroprevalence among individuals who have 

not self-reported receipt of a COVID-19 vaccine over time and by age group 

Table S2. Difference in mean seroresponse to anti-N and anti-S SARS-CoV-2 IgG among SARS-CoV-2 

seropositive individuals by age and sampling time 
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Fig. S1. Flowchart of study sample selection 
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Fig. S2. Null mixture model fit to anti-N IgG density by time and age quintile. Red lines represent the 

density of the seronegative component, green lines the density of the seropositive component, and the 

blue line represents the overall anti-N IgG density from the mixture model. The black lines represent the 

observed density. Vertical black lines represent the manufacturer’s cut-off. 
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Fig. S3. Null mixture model fit to anti-S IgG density by time and age quintile. Red lines represent the 

density of the seronegative component, green lines the density of the seropositive component, and the 

blue line represents the overall anti-N IgG density from the mixture model. Points represent the 

probability of being below the LLOQ, for the data (black) and the model (blue). The black lines represent 

the observed density. Vertical solid black lines represent the manufacturer’s cut-off, and vertical dashed 

black lines represent the LLOQ. 
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Fig. S4. Mixture model fit to pre-pandemic seronegative samples, with the density of IgG in black, the 

model fit in red, and IgG density from the serosurvey in blue. For anti-S IgG, the points represent the 

probability of being below the LLOQ in the sample (black) and estimated from the model (red) 
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Fig. S5. Model-estimated seropositivity probability for anti-N (top) and anti-S (bottom) IgG against 

measured IgG. Vertical solid lines represent the manufacturer’s cut-offs for each assay, and the vertical 

dotted line represents the LLOQ for the anti-S IgG assay 
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Supplementary Table 1. Anti-S IgG seroprevalence relative to anti-N IgG seroprevalence among 

individuals who did not self-report receipt of a COVID-19 vaccine, over time and by age group 

 anti-S IgG seroprevalence / anti-N IgG 

seroprevalence (95% CrI) 

Age (years)  

  5-17 1.10 (1.04,1.18) 

  18-29 1.22 (1.16,1.29) 

  30-39 1.18 (1.13,1.24) 

  40-49 1.18 (1.13,1.24) 

  ≥50 1.22 (1.17,1.27) 

 

Time 

  9 Jan – 14 Feb 1.15 (1.10,1.20) 

  15 Feb – 9 Mar 1.15 (1.10,1.20) 

  10 Mar – 24 Mar 1.18 (1.13,1.24) 

  25 Mar – 19 Apr 1.28 (1.20,1.38) 

  20 Apr – 13 May 1.34 (1.26,1.44) 

 

*Crl, Credible interval; N, Nucleocapsid; S, Spike 
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Supplementary Table 2. Difference in mean seroresponse to anti-N and anti-S SARS-CoV-2 IgG among 

SARS-CoV-2 seropositive individuals by age and sampling time 

 

 

 Difference in log anti-N IgG index 

among seropositive (95% CrI) 

Difference in log anti-S IgG AU/ml 

among seropositive (95% CrI) 

Age (years)   

  5-17 0.13 (-0.08,0.36) 0.45 (0.21,0.69) 

  18-29 REF REF 

  30-39 0.13 (-0.03,0.28) 0.22 (0.07,0.37) 

  40-49 0.39 (0.23,0.54) 0.55 (0.39,0.71) 

  ≥50 0.68 (0.52,0.84) 0.78 (0.63,0.92) 

Time of sampling   

   9 Jan – 14 Feb 0.09 (-0.06,0.24) -0.09 (-0.25,0.06) 

  15 Feb – 9 Mar REF REF 

  10 Mar – 24 Mar 0.00 (-0.17,0.16) -0.05 (-0.22,0.12) 

  25 Mar – 19 Apr 0.40 (0.20,0.59) 0.30 (0.11,0.48) 

  20 Apr – 13 May 0.93 (0.72,1.14) 1.14 (0.95,1.32) 

 

*Crl, Credible interval; N, Nucleocapsid; S, Spike 
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