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ABSTRACT 
Selinexor is the first selective inhibitor of nuclear export (SINE) to be approved for treatment of relapsed or refractory 
multiple myeloma (MM). There are currently no known genomic biomarkers or assays to help select MM patients at higher 
likelihood of response to selinexor. Here, we aim to characterize transcriptomic correlates of response to selinexor-based 
therapy, and present a novel, three-gene expression signature that predicts selinexor response in MM. We analyzed RNA 
sequencing of CD138+ tumor cells from bone marrow of 100 MM patients who participated in the BOSTON study and 
correlation with clinical outcomes. We validated this gene signature in 64 patients from the STORM cohort of triple-class 
refractory MM, and additionally in an external cohort of 35 patients treated in a real world setting outside of clinical trials. 
We also found that the signature tracked with response in a cohort of 57 patients with recurrent glioblastoma treated with 
selinexor. Furthermore, the genes involved in the signature, WNT10A, DUSP1, and ETV7, reveal a potential mechanism 
through upregulated interferon-mediated apoptotic signaling that may prime tumors to respond to selinexor-based 
therapy. This signature has important clinical relevance as it could identify cancer patients that are most likely to benefit 
from treatment with selinexor-based therapy. 
  
INTRODUCTION 
Selinexor is the first selective inhibitor of nuclear export 
(SINE) approved for treatment of relapsed or refractory 
multiple myeloma (MM) and diffuse large b-cell lymphoma 
(DLBCL).1, 2 This approval is well supported by recent 
clinical trial data, most notably the STORM and BOSTON 
studies. In the STORM phase II clinical trial, oral selinexor 
and dexamethasone were administered twice weekly in 
patients with triple-class refractory MM, with 26% of 
patients exhibiting a partial response (PR) or better, and a 
median progression-free survival (PFS) at 3.7 months.1, 3 
The phase III BOSTON trial compared the efficacy of once 
weekly selinexor in combination with once weekly 
bortezomib and dexamethasone with standard twice 
weekly bortezomib and dexamethasone in patients with 
previously treated MM and found an overall response rate 
(ORR) of 76.4%, and a median PFS of 13.9 months for 
patients receiving the novel treatment regimen, in 
comparison to 9.5 months for those receiving the standard 
treatment.1  
 
Mechanistically, selinexor binds to the karyopherin 
exportin 1 (XPO1), which is responsible for shuttling more 
than 200 oncogenic and tumor suppressor proteins and 
mRNA transcripts to the cytoplasm.4 This inhibition of 
nuclear export, the sequestration of tumor suppressor 
proteins in the nucleus, and the prevention of select 

oncogene mRNA translation into oncoproteins ultimately 
induces cancer cell death while permitting the survival of 
non-malignant cells.5–7 Selinexor has a unique adverse 
event profile due to its novel mechanism of action, and 
adverse events (AE) are common, with severe AE 
reported in 52% of patients in the BOSTON trial, and 80% 
of patients in the STORM trial.1, 3 Identifying biomarkers 
that help predict treatment responses and toxicity is 
essential to targeted selinexor-based therapeutic 
intervention. 
 
Systematic approaches to biomarker discovery for 
selinexor response that leverage next-generation 
sequencing are generally lacking in the literature. While 
MM cells tend to over-express XPO1 compared to normal 
plasma cells, XPO1 alterations have not correlated 
significantly with response to treatment with SINE 
compounds with the exception of a few in-vitro studies.4–6, 8 
The STORM study presented a brief transcriptomic 
analysis that identified a potential four-gene signature 
based on imputed protein activity.3 A few candidate 
biomarkers identified through bioinformatics analyses have 
also been reported in conference proceedings.9, 10 
However, limitations of these studies include small sample 
sizes and lack rigorous validation with external cohorts of 
selinexor-treated patients. 
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Here, we rigorously analyzed RNA sequencing data from 
213 patients from multiple studies of selinexor-based 
therapy to characterize transcriptomic correlates of 
response to selinexor. We discovered a novel three-gene 
signature predicting response to selinexor using RNA-seq 
data from the BOSTON study and validated it on data from 
the STORM clinical trial and on an additional independent 
cohort of patients treated with selinexor at the Mount Sinai 
Hospital in “real-world” conditions outside of a clinical trial. 
The three-gene signature is biologically interpretable and 
opens a path for evaluating a mechanism of response in 
future studies. More importantly, this signature has the 
potential to identify patients most likely to benefit from 
treatment with selinexor-based therapy, ultimately 
reducing toxicities and improving outcomes. 
 
RESULTS 
 
Patient characteristics and transcriptomic profiling of 
selinexor-treated MM tumors 
 
BOSTON 
We performed RNA-seq on CD138+ bone marrow plasma 
cells from 100 patients who participated in the BOSTON 
study (Table 1). We included 53 samples from the 
selinexor, bortezomib, and dexamethasone (XVd) arm of 
the study, and 47 samples from the bortezomib and 
dexamethasone (Vd) arm. In the XVd arm, most patients 
were male (60.3%), compared with 46.8% in the Vd arm. 
In both study arms, and across the entire cohort, the 
median age was 67 years. The ORR in the XVd arm, 
defined as partial response (PR) or better, was 75.47%, 

compared to an ORR of 65.95% in the Vd Arm (Table 1). 
These observations suggest that the addition of selinexor 
to a regimen of bortezomib and dexamethasone in MM 
offers a clinical benefit over bortezomib and 
dexamethasone alone, and are consistent with the findings 
of previous studies, including the main BOSTON trial.1  
 
For validation purposes, RNA-sequencing on CD138+ 
selected cells from two external cohorts were leveraged: 
MM patients treated with selinexor-dexamethasone who 
participated in the STORM trial (N = 64), and MM patients 
treated post-FDA approval at Mount SInai Hospital outside 
of a clinical trial setting (MSSM cohort, N = 35).3 Patients 
in the STORM cohort had failed at least five prior lines of 
therapy.3 The median PFS was 62 days, and 18 patients 
(28.1%) achieved a response of PR or better (Table 1).  
Patients in the MSSM cohort received a median of 7 lines 
of therapy (range = 1-18) prior to starting selinexor based 
therapy, which was often administered in combination with 
a variety of other agents. The median PFS was 66 days, 
and 10 patients (28.5%) achieved a response of PR or 
better (Table 1). The most common combination drug 
strategy in addition to the selinexor backbone was 
carfilzomib and dexamethasone, used in 7 of 35 (20%) 
patients. 
 
We performed principal component analysis (PCA) on the 
normalized, batch-corrected expression matrix to 
understand sources of variation in the BOSTON, STORM, 
and MSSM datasets, which did not identify any specific 
bias (Fig S1). Overall, we did not find any significant or 
precise predictors of response to selinexor from clinical, 
demographic, or cytogenetic markers. 
 
Differential expression analysis identifies genes associated 
with selinexor response 
The strategy used for differential expression (DE) analysis 
is summarized in Fig 1A. To identify genes whose 
expression is associated with longer PFS or better depth 
of response to selinexor, we performed a series of DE 
comparisons across 9 unique different PFS or depth of 
response (defined according to International Myeloma 
Working Group [IMWG] criteria) thresholds in both the XVd 
and Vd arms (Fig 1A-B).11 Definitions of each BOSTON 
comparison are detailed in Table S1. Across all response 
thresholds, there were a total of 107 unique significant DE 
genes between better and worse responders in the XVd 
Arm (27 upregulated, 70 downregulated, FDR < 0.05) and 
560 unique DE genes in the Vd Arm (398 upregulated, 162 
downregulated, FDR < 0.05). To identify genes whose 
association with PFS- or IMWG response category in the 
XVd arm was not also associated with 
bortezomib/dexamethasone therapy, we retained for 
further analysis genes that were significant in the XVd arm 
but not in the Vd arm for each corresponding cutoff as 
shown in Fig 2B. In total, there was a moderate overlap 
(up to 31%) across genes identified through the different 
comparisons, with 6 out of 24 (25.0%) uniquely 
downregulated genes and 12 of 33 (36.26%) uniquely 
upregulated genes overlapping across at least two 
different cutoffs. 

Figure 1. Differentially expressed genes in selinexor responders. A) 

Experimental design for identifying DE genes specific to selinexor. B) Bar 

plot indicating number of selinexor specific DE genes across various cutoffs 

of PFS, depth of response, or both. C) Volcano plot of the BOSTON XVd 

DE comparison with a PFS ≥ 120 days response cutoff showing the three 

significantly upregulated genes used to generate the three-gene response 

signature. 
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A three-gene signature predicts selinexor response 
Next, we identified a gene expression signature for 
selinexor response. Each DE gene set identified through 
the 9 unique comparisons was split into upregulated and 
downregulated subsets based on logFC in the XVd Arm, 
resulting in 17 candidate gene signatures for further 
analysis (9 upregulated, 8 downregulated). We performed 
Gene Set Variation Analysis (GSVA) on the normalized 
and batch-corrected expression matrix to calculate a 
unique score for each of the 17 candidate gene signatures. 
For each signature, a univariate proportional hazard model 
was generated in the XVd arm. The gene signature with 
the best performance in model training was identified 
based on a ranking procedure using repeated four-fold 
cross validation and the spearman correlation of the 
signature with PFS (Fig 2A; see Methods).  
 
The best performing signature was composed of three 
genes, WNT10A, DUSP1, and ETV7. It was correlated 
with PFS (Spearman rho = 0.46, P = 0.0007) and was 
upregulated in XVd patients with PFS ≥ 120 days. The 
signature was predictive when using a proportional hazard 
model (FDR=0.047, HR=0.36 [95% CI = 0.14-0.84]; log-
rank P = 0.017, Fig 2A). To further ensure that the 
predictive effect of the signature was not due to random 
variations, we also performed a permutation test and found 
that the signature was more predictive than a GSVA score 
composed of three randomly selected genes (10,000 
permutations, P = 0.03; see methods). In patients who 
achieved a partial response (PR) or better, higher 
signature expression was significantly associated with 
longer duration of response (DOR), defined as the number 
of days from IMWG partial response to progression (Fig 
S2A). Furthermore, we also found that the signature was 
significantly higher in patients who achieved IMWG 
response category of very good partial response (VGPR) 
or better, suggesting that the signature is associated with 
both duration and depth of response (Wilcoxon P = 0.014, 
Fig 3A-C). 
 
The same analysis was applied to the Vd arm as a 
negative control under the rationale that a signature 
specific to selinexor response would not accurately 
distinguish long or short PFS in cohorts treated with non-
selinexor based therapy. The three-gene signature did not 
track with PFS or DOR in the Vd arm, as shown in Fig 2B 
and Fig S2B. 
  
The three-gene signature is validated in external cohorts 
 
STORM 
A log-rank test comparing signature expression higher or 
lower than the cutoff of zero in the STORM dataset also 
validated the finding from BOSTON that higher signature 
expression is associated with PFS (log rank P = 0.039; 
N=64). We found that the linear association with PFS and 
the signature performed nominally well, despite not 
reaching statistical significance (N=64; P = 0.056, 
HR=0.621 [95% CI = 0.483-0.389], Fig 2C). The poorer 
signature performance in a cox regression may be 

explained by lower PFS, as patients in the STORM cohort 
were triple-class refractory with more advanced disease to 
begin with. We also tested whether the association 
between signature expression and depth of response also 
validated in the STORM cohort and found that patients 
with a VGPR or better had significantly higher expression 
of the signature than those with a worse depth of response 
(Wilcoxon P = 0.035, Fig 3D-F). 
 
MSSM 
Using cox regression, we found that higher expression of 
the three-gene signature was significantly associated with 
survival (P = 0.0145, HR = 0.41 [95% CI = -0.467-0.551]). 
This result was also replicated via log rank testing (P = 
0.0023, Fig 2D). Furthermore, we found a statistically 
significant correlation of the gene expression signature 
with PFS via Spearman correlation (rho = 0.4, P = 0.01). 
When compared with depth of response, we found that 

Figure 2. Upregulation of the signature is associated with longer PFS in 
pre-selinexor-treated MM. A) Kaplan-Meier curve of low versus high 
expression of the three gene GSVA signature in the XVd arm of the 
BOSTON cohort shows a significant association with longer PFS in 
patients with upregulation of the signature. B) Using the Vd arm as a 
negative control, the three gene signature is not associated with PFS. C) 
Three gene signature validates in the STORM cohort of triple-class 
refractory MM patients who received selinexor as a single-agent 
treatment. D) The signature also validates in 35 patients that received 
selinexor in a retrospective cohort at MSSM that is not part of a clinical 
trial and is a more heterogeneous patient population reflective of "real 
world" treatment settings. E) Signature does not validate in non-selinexor, 
standard of care treated MMRF-COMMPASS samples. 
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higher expression of the signature trends towards a better 
IMWG response category (Fig 3G-I).  
 
MMRF-CoMMpass 
We additionally used the MMRF-CoMMpass dataset 
(N=767) as a negative control and found that the signature 
was not predictive of PFS in patients who were treated 
with non-selinexor based, standard of care therapies. The 
signature did not show a significant association with 
progression free survival via cox regression (P = 0.14, HR 
= 0.89 [95% CI = 0.73-1.04]) or via log rank test (Wilcoxon 
P = 0.32, Fig 2E). Taken together, these results suggest 
that the signature is specific to selinexor treatment 
response and is not reflective of overall prognosis. 
 
KING Study in Recurrent Glioblastoma 

Lastly, we sought to test whether the signature would be 
predictive in cohorts of patients with other cancer types 
treated with selinexor from other cancer types. To test this 
hypothesis, we obtained RNA-seq of tumor samples from 
57 patients with recurrent glioblastoma who were treated 
with selinexor monotherapy as part of the phase II KING 
trial (NCT01986348).12 Overall, we found that patients with 
higher expression of the signature experienced improved 
PFS, although statistical significance was not achieved 
(log rank P = 0.078, Cox PH P = 0.0734, HR = 0.549, Fig 
S3A). However, patients who achieved a clinical benefit 
with a partial response (PR) or better had significantly 
higher signature expression (Wilcoxon P = 0.0034, Fig 
S3B).  
 
Gene-set enrichment analysis reveals response-
associated activation in wnt, apoptosis, and mapk 
signaling pathways. 
We next identified pathways associated with response to 
selinexor in the BOSTON XVd cohort using gene set 
enrichment analysis (GSEA) on the MSigDB Hallmark 
gene sets.13 Notably, we found downregulation of MYC 
targets, as well as upregulation in KRAS, apoptotic, and 
interferon signaling among significantly enriched pathways 
in XVd responders (Fig S4).  
 
Knockdown of signature genes in-vitro induces resistance 
in previously sensitive cells. 
To further validate the signature genes, we generated 
siRNA knockdowns of ETV7, WNT10A, and DUSP1 in 
vitro in JJN3 cell lines with two replicates (Fig 4). In JJN3 
cells, the ETV7 knockdown showed a mean 22.7% (N=2) 
increase in percent cell viability compared to non-target 
control after 72h of treatment with 100nM of selinexor (Fig 
4B). These results demonstrate that knockdown of ETV7 
can cause previously sensitive MM cells to achieve 
resistance against selinexor.  
 
METHODS 
Patient Selection & RNA Sequencing 
 
BOSTON and STORM 
CD138+ cells were purified from bone marrow aspirates 
obtained from 100 patients who participated in the 
BOSTON study and 64 patients who participated in the 
STORM study. RNA extraction was performed using 
Qiagen Allprep RNA mini kit and library preparation was 
performed with the TruSeq Stranded mRNA (non-FFPE 
compatible) kit. For samples where the RNA quality was 
low, the Smart-Seq V4 Ultra Low Input Nextera XT kit was 
used. Total RNA sequencing was performed with 100 bp 
reads using an Illumina HiSeq 2500 instrument.  
 
MSSM 
The 35 patients were physician-referred as part of the 
multiple myeloma banking protocol approved by the Mount 
Sinai institutional review board (IRB). Informed written 
consent was obtained from each patient. CD138+ cells 
were isolated from bone marrow aspirates obtained prior 
to the start of selinexor-based therapy, and RNA isolation 
and sequencing was performed as previously described.14  

Figure 3. Higher signature expression is associated with better depth of 
response. A) IMWG response category of the BOSTON XVd arm versus 
three-gene signature score on the y-axis, B) Wilcoxon test of signature 
expression in BOSTON XVd responders defined as a PR or better, and C) 
as VGPR or better. D) STORM Xd signature expression across IMWG best 
overall response categories, as well as comparison with E) expression in 
responders versus non-responders defined as PR or better, and F) as 
VGPR or better. G) MSSM non-trial signature expression across IMWG 
best overall response categories, as well as comparison with H) expression 
in responders versus non-responders defined as PR or better, and I) as 
VGPR or better. 
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MMRF-CoMMpass 
Gene-level counts for 767 RNA-seq samples from the 
MMRF-CoMMpass dataset were downloaded from dbGaP 
(accession #phs00748). 
 
KING 
Gene-level read counts were obtained from pretreatment 
tumors from 57 patients with recurrent glioblastoma that 
were enrolled in the phase 2 KING study.12  
 
Bioinformatics Processing 
Raw reads were aligned to the GRCh38 human reference 
genome using STAR.15 Gene-level counts, obtained 
through featureCounts, were filtered to remove 
immunoglobulin and ribosomal transcripts, and to remove 
genes whose counts across all samples had zero 
variance.16, 17 Counts were converted to Log2CPM, 
normalized with voom, and corrected for batch effects or 
covariates identified through variancePartition analysis 
using the sva ComBat package.17–19  
 
Differential Expression 
DE genes were identified in the BOSTON XVd and the Vd 
arm separately using DESeq2.20 Within each arm, DE 
genes relative to responders versus non-responders were 
generated across a total of 9 response cutoffs based on 
PFS, ORR, or a combination of both. For each response 
comparison, genes were designated as DE in selinexor 
responders if they were significantly DE in the XVd Arm 
(PAdj < 0.05) and were not significantly DE in the 
corresponding comparison within the Vd arm (P > 0.05). 
DESeq2 analysis was performed on unfiltered raw counts 
per the tool’s requirements.20 Gene set enrichment 
analysis was applied to the selinexor-specific DESeq2 
results in the XVd arm using the curated Hallmark and 
Reactome signatures publicly available from MSigDB 
using the fGSEA package.13, 21  
 
Survival Analysis 
Each DE gene set identified through the 9 comparisons 
was split into upregulated and downregulated subsets 
based on logFC in the XVd Arm, resulting in 17 candidate 
gene signatures for further analysis (9 upregulated, 8 
downregulated). Gene set variation analysis (GSVA) 

scores were calculated for all samples for the 17 candidate 
gene signatures from the covariate-normalized expression 
matrix.22 For each candidate gene signature, a univariate 
Cox proportional hazard model was generated in the 
BOSTON XVd arm. The gene signature with the best 
model performance in the discovery cohort was selected 
by ranking the highest Somer’s Dxy after repeated four-fold 
cross validation (nrepeats = 1000). The gene signature was 
also evaluated with a Cox proportional hazard model in the 
Vd arm as a negative control to ensure that performance 
was specific to selinexor. A permutation test was 
performed to evaluate whether the selected gene 
signature is more significant via log-rank Kaplan-Meier 
testing than a GSVA score composed of three randomly 
selected genes. 
 
All validation tests were executed by first performing 
quantile-normalization of the expression matrix with the 
distribution of expression in the BOSTON dataset using 
feature-specific quantile normalization, followed by 
calculation of a GSVA score for the gene signature.22, 23 
Survival was tested between groups that had low 
expression versus high expression, using a cut-off of zero, 
with a log-rank test and univariate cox regression carried 
out with the same procedures used for the discovery 
cohort. 
 
siRNA Knockdown Validation 
 
Cell lines, drug, and culture conditions 
JJN3 and MM1.S cell lines were cultured in RPMI1640 
medium (Mod.) 1X with l-Glutamine (Corning), 
supplemented with 10% FBS (Gemini Bio-Products) and 
1% penicillin-streptomycin 100× solution (Corning). 
Selinexor (KPT-330, cat #S7252) was purchased from 
Selleck Chemicals (storage at −20°C). All cells were 
propagated in standard cell culture conditions (5% CO2, 
37°C) in cell culture–treated T75/T150 flasks (Falcon). All 
cell lines were authenticated by short tandem repeat DNA 
profiling and routinely tested for Mycoplasma infection 
(MycoAlert, Lonza Bioscience).  
 
siRNA knockdown and Selinexor Treatment 
For transfections, ON-TARGETplus SMARTpool siRNA 
construct targeting ETV7 (#L-017938-00-0005), WNT10A 
(#L-008232-00-0005) and DUSP1 (#L-003484-02-0005) 
and a control non-targeting (NT) siRNA no. 1 (#D-001810-
01-20; all siRNA from Dharmacon, Horizon discovery) 
were used. JJN3 cells were transiently transfected with 
siRNA for ETV7, WNT10A, DUSP1, and NT control siRNA 
using the cell line 4D Nucleofector Solution SG program 
EO100 (Lonza, Basel, Switzerland). Cells were then 
treated with 5nM, 10nM, 50nM and 100nM Selinexor 24 
hours after transfection, followed by harvesting and 
analysis using quantitative RT-PCR and cell viability 
assays. 
 
Cell Viability  
Cell viability was assessed using fluorometric resazurin 
reduction method (CellTiter-Blue; Promega) according to 
the manufacturer's protocol. After 24h of siRNA 

Figure 4. Knockdown of signature genes in sensitive MM cell lines. A) 
qPCR efficacy of siRNA knockdown of ETV7, WNT10A, and DUSP1 
shown as the mean of two replicates in JJN3 cells. B) Percent cell viability 
of JJN3 cells for each knockout condition after 72H of treatment with 
100nM of selinexor. 
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knockdown, JJN3 cells (100ul; 1 X 10 5 cells/well) were 
cultured (quadruplet per condition) in a round‐bottomed 

96‐well microtiter plates without and with increasing 

concentration of Selinexor for 72 hours in standard cell 
culture conditions (5% CO2, 37°C). Then, the number of 
viable cells in each treated well was calculated by adding 
20 uL of CellTiter-Blue Reagent to each well and further 
incubation with the dye for 1 hour. The fluorescence 
(560Ex/590Em) was measured with the FLUOstar Microplate 
Reader (BMG LABTECH). The linear least-squares 
regression of the standard curve was used to calculate the 
number of viable cells in each treated well. DMSO treated 
cells were used to normalize the cell viability in drug 
treated cells. Cell counts were confirmed on the Countess 
Automated Cell Counter (Life Technologies). Viability was 
calculated as % out of DMSO control (Number of live cells 
in Selinexor treatment/number of live cells in DMSO 
control x 100 %) in each transfection group. 
 
Quantitative RT-PCR 
To assess the knockdown efficacy after 24 and 48-hour 
siRNA transfection, total RNA was purified from 1 million 
cells using the RNeasy Plus Mini Kit (Qiagen) per 
manufacturer protocol. cDNA was prepared from mRNA 
using SuperScript VILO Master Mix (Thermo Fisher 
Scientific) and quantified using SsoFast EvaGreen 
Supermix (Bio-Rad Laboratories) on a CFX96 Touch Real-
Time PCR Detection System (Bio-Rad Laboratories). 
Samples and controls were run in triplicate. Gene 
expression was normalized to hypoxanthine 
phosphoribosyltransferase (HPRT) and expressed relative 
to cells transfected with control non-target siRNA using the 
2–ΔΔCT formula. Thermal cycler conditions were: initial step 
of 30 seconds at 95°C followed by 40 cycles of 5 seconds 
at 95°C (denature) and 5 seconds at 60°C (anneal/extend) 
followed by 5 minutes at 55°C to 95°C in increments of 
0.5°C. Primers used for quantitative RT-PCR are listed 
below: 

▪ HPRT Forward Primer: 5′-AAAGGACCCCACGAAGTGTT-3′ 
▪ HPRT Reverse Primer: 5′-TCAAGGGCATATCCTACAACAA-3′ 
▪ ETV7 Forward Primer: 5′- CTGCTGTGGGATTACGTGTATC -3′ 
▪ ETV7 Reverse Primer: 5′- GTTCTTGTGATTTCCCCAGAGTC-3′ 
▪ DUSP1 Forward Primer: 5′- AGTACCCCACTCTACGATCAGG -3′ 
▪ DUSP1 Reverse Primer: 5′- GAAGCGTGATACGCACTGC -3′ 
▪ WNT10A Forward Primer: 5′- GGAGACTCGCAACAAGATCCC -3′ 
▪ WNT10A Reverse Primer: 5′- CGATGGCGTAGGCAAAAGC -3′ 

 
DISCUSSION 
Selinexor is approved as a second-line therapy for MM 
and its efficacy is well supported by clinical trials. 
However, there are currently no known biomarkers to 
better guide selection of patients whose tumors are more 
sensitive to selinexor-based therapy. Furthermore, while 
the mechanism of action is well characterized for 
selinexor, little is known about the correlates of response 
or resistance to selinexor-based therapy. Here, we 
describe the transcriptomic characteristics of patients who 
respond to selinexor therapy. Further, we report the 
discovery of a robustly validated three-gene signature that 
is predictive of response to selinexor-based therapy in 
MM.  
 

There is little literature to date on patient populations 
describing correlates to response in the context of 
selinexor therapy. Some studies have shown candidate 
biomarker activity in miRNAs as regulators of XPO1 and 
its targets, and certain mutations in XPO1 and XPO5 as 
prognostic markers for survival, but they have not been 
correlated to SINE drug sensitivity.8, 24–27 There are few 
studies that have explored biomarkers in selinexor 
therapy, and fewer with validation in external cohorts. One 
notable study found a signature based on imputed activity 
comprising four master regulator proteins, IRF3, ARL2BP, 
ZBTB17, and ATRX, but did not provide any external 
cohort validation data.3  
 
We report here a gene expression signature composed of 
the combined upregulation of three genes, ETV7, 
WNT10A, and DUSP1, that precisely and accurately 
predicts both depth and duration of response to selinexor-
based therapy in patients with MM. Furthermore, we 
present robust external validation and negative controls. 
Finally, the signature genes are validated in-vitro. This is 
the first robustly validated signature for selinexor response 
to date. Given that more than 50% of patients treated with 
selinexor in the BOSTON and STORM studies had 
adverse events, the discovery of a predictive gene 
signature holds tremendous potential for biomarker-guided 
selection of candidates for selinexor-based therapy. Since 
the signature was validated in multiple heterogeneous 
patient cohorts, including selinexor-dexamethasone 
monotherapy (STORM), and in various combination drug 
scenarios outside of clinical trials (MSSM), it is both 
flexible and applicable to a wide variety of real-world 
scenarios where selinexor may be given in combination 
with other drugs. One limitation of the signature is that, 
since it relies on a GSVA score, its accuracy is dependent 
on a cohort with multiple samples and prediction improves 
with greater sample sizes. However, since it is composed 
of just three genes, it also holds potential for fast and 
simple implementation in clinical settings, potentially via 
qPCR-based assay development strategies or in 
combination with ex-vivo drug sensitivity assays. 
Furthermore, since the signature uses gene expression 
directly, it is more interpretable and easier to implement 
than previously cited signatures, which used imputed 
protein activity and are not as thoroughly validated.3 
 
Interferon signaling is responsible for the anti-viral immune 
response and has anti-proliferative properties. It has been 
shown to play an important role in apoptotic signaling in 
MM, mostly through IRF4, MYC, and BCL6.28–30 Here, we 
found a strong enrichment for upregulated interferon 
signaling and genes involved in interferon signaling in 
patients who responded to XVd therapy. We also found a 
corresponding enrichment of dysregulated MYC and 
apoptotic signaling. Interferon signaling has been found to 
modulate response to XPO1 inhibition by eltanexor to treat 
viral infection.31 Additionally, ETV7 whose depletion with 
RNA interference induced resistance in in vitro 
experiments, has been identified as an interferon-
stimulated gene.32 Based on these results and existing 
literature, we hypothesize that there may be a potential 
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biological rationale for further evaluating the role of 
interferon signaling in MM selinexor response. 
 
In conclusion, we report a novel gene expression signature 
for response to selinexor-based therapy in patients with 
MM. We have validated our findings in several external 
transcriptomic datasets of MM patients treated with 
selinexor-based regimens. Ongoing in vitro and 
mechanistic studies will help determine whether they are 
causative of response or simply a correlative readout of 
some other selinexor response mechanism. This signature 
has important clinical significance as it could identify 
patients most likely to benefit from treatment with 
selinexor-based therapy, especially in earlier lines of 
therapy. 
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SUPPLEMENTARY FIGURES 
 
Fig S1. Normalized gene expression profiles of selinexor pre-treatment samples. A) PCA of BOSTON cohort normalized 
expression matrix colored by patient PFS in days. B) Spearman correlation of principal components with clinical variables, 
annotated with P values for correlations with P < 0.05, in BOSTON XVd and C) BOSTON Vd. D) PCA of STORM cohort 
normalized expression matrix, and E) MSSM cohort samples colored by patient PFS in days.  
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Fig S2. Differentially expressed genes in all unique BOSTON comparisons.  
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Fig S3. Signature expression tracks with longer duration of response in BOSTON XVd. A) Kaplan Meier curve of higher 
versus lower signature expression as a function of duration of response (DOR) in patients who achieved a partial 
response (PR) or better in A) the BOSTON XVd cohort shows a significant association, whereas there is no significant 
difference in B) patients in the BOSTON Vd cohort of non-selinexor based therapy. 
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Fig S4. Signature expression predicts selinexor response in recurrent glioblastoma. A) Survival analysis of the KING 
recurrent glioblastoma cohort stratified by three-gene signature GSVA scores. B) Three gene signature GSVA scores in 
the KING cohort in responders (purple) versus non-responders (gray). 
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Fig S5. Functional enrichments in selinexor responders. GSEA enrichments in XVd responders across the various 
response cutoffs. 
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Table 1. Cohort Clinical Characteristics. 

 

BOSTON: Discovery/Training Cohort 
STORM: 

Validation Cohort 
Total N = 64 

MSSM: "Real-World" 
Validation Cohort 

Total N = 35 
Selinexor + Vd 
Total N = 53 

Vd [Negative Control] 
Total N = 47 

Median Age 67 67 63 55 

Sex 

F 21 25 32 15 

M 32 22 32 20 

Stage At Baseline 

I 25 21 11 

Baseline stage not 
available for this cohort 

II 17 20 41 

III 11 6 12 

ECOG Performance Status 

0 16 13 18 

Baseline stage not 
available for this cohort 

1 29 28 38 

2 8 6 7 

Best Response 

PD 1 4 5 10 

SD 6 9 30 13 

MR 6 3 11 2 

PR 16 17 12 4 

VGPR 19 10 4 6 

CR 2 3 0 0 

sCR 3 1 2 0 

Median PFS (Days) 177 210 62 66 

Mean PFS (Days) 258 243 91 107 

 
Table S1. Differential expression based signature definitions. 

Comparison 
Name Responder Definition 

XVd Arm: 
N Responders 

XVd Arm: 
N Nonresponders 

Vd Arm: 
N Responders 

Vd Arm: 
N Nonresponders 

PFS90 PFS ≥ 90 Days 43 10 34 13 

PFS120 PFS ≥ 120 Days 33 20 33 14 

PFS200 PFS ≥ 200 Days 23 30 25 22 

PFS300 PFS ≥ 300 Days 18 35 16 31 

PR Best Response ≥ PR 40 13 31 16 

VGPR Best Response ≥ VGPR 24 29 14 33 

PR_PFS120 
Best Response ≥ PR & PFS ≥ 
120 Days 31 22 29 18 

VGPR_PFS12
0 

Best Response ≥ VGPR & 
PFS ≥ 120 Days 23 30 14 33 

VGPR_PFS30
0 

Best Response ≥ VGPR & 
PFS ≥ 300 Days 17 36 10 37 
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