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ABSTRACT

Purpose : This study evaluates the performance of an artificial intelligence based triage

and notification system that analyzes fundus photographs for nine signs: cotton wool

spots, dot & blot hemorrhages, drusens, flame shaped hemorrhages, glaucomatous

disc, hard exudates, retinal neovascularization, preretinal hemorrhage and vascular

tortuosity. These signs may be present in multiple retinal diseases.

Methods : In a blinded and adjudicated study, a set of 3484 photographs of unique

eyes from 3305 patients, from 15 fundus cameras, were graded by retina specialists,

and the results compared with an AI-based system.

Results : The AI performed at a mean sensitivity of 90.19% and a mean specificity of

88.38% across all signs. The best performance was in detecting glaucomatous disc with

a sensitivity of 94.65% and a specificity of 95.36%. The worst performance for

sensitivity was for detecting vascular tortuosity at 85.06% and that for specificity was for

detecting drusens 85.21%.

Conclusion : The AI-based system performs at acceptable sensitivity and specificity

levels in comparison to retina specialists in a large sample pooled across 15 fundus

cameras for 9 different clinical signs.
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INTRODUCTION

Artificial intelligence (AI) has the potential to positively impact health outcomes and

patient care. Ophthalmology, in particular, has garnered significant attention from AI

developers and this can help positively address the increasing need for ophthalmic

care in the world.[1] With the rising number of cases of diabetes and hypertension, as

well as an increasingly aging population, the need for ophthalmic intervention in these

diseases is also on the rise. In Sub-Saharan Africa there are 2.5 ophthalmologists per

million population to 11.9 - 13 ophthalmologists per million in India,[2,3] 46.4 and 54.7

ophthalmologists per million in the UK and the USA respectively.[2] Globally there are

31.7 ophthalmologists per million population,[2] which is insufficient to meet the growing

demand for ophthalmic services.

Retinal complications due to diabetes and hypertension mainly produce vascular

changes whereas glaucoma produces visible changes of the retinal nerve fibre layer

(RNFL) and the optic nerve head (ONH). Age-related macular degeneration results in

anatomical changes at the posterior pole. These diseases may not produce

perceivable symptoms until the disease has reached an advanced stage. There are

well-defined protocols for ophthalmic reviews and follow-ups[4,5] however, adherence

to these protocols are not optimal.[6] Thompson et al,[7] in their review on barriers in

adhering to appointments, address important issues such as lack of awareness and

inability to get off work. However, delays in follow-up can have adverse effects as a

study from India has shown that a median time delay in meeting follow-up schedule
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by 5 months can convert non-vision threatening DR to vision threatening DR (vtDR).[8]

Artificial intelligence based devices have the capacity to scale rapidly in a very short

period of time, saving the time and effort of clinicians in screening every patient.

Timely diagnosis and consequentreatment measures may improve health outcomes.

The current United States Food and Drug Administration (FDA) approved AI devices

such as EyeArt[9] and IDx-DR[10] are specifically designed to diagnose more than mild

DR (mtmDR) and vtDR in a pre-diagnosed diabetic population. Disease-specific

algorithms will ignore signs of diseases that they have not been trained for. However,

Ogunyemi et al[11] have shown that 27.25% of known diabetics required a referral for

diseases other than diabetic retinopathy in a specifically diabetic population. Our

study evaluates the performance of RadicalEye Triage and Notification (RETN), a

proprietary AI solution, in detecting clinical signs of the retina from macula-centric

central fundus photographs, irrespective of the retinal disease.

Unlike IDx-DR or EyeArt, the AI device under study, RETN, is able to diagnose

multiple retinal signs from a single image. The retinal signs detected by RETN are

cotton wool spots, dot & blot hemorrhages, drusens, flame shaped hemorrhages,

glaucomatous disc, hard exudates, retinal neovascularization (neovascularization of

the disc (NVD) or elsewhere (NVE), preretinal hemorrhage and vascular tortuosity

(defined in Supplementary Information table 1). A combination of these signs can help

diagnose diseases such as DR (non-proliferative and proliferative), glaucoma,

hypertensive retinopathy, dry AMD and many more (non-exhaustive but extensive list
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is provided as Supplementary Information table 2). The presence of cotton wool spots

with dot and blot hemorrhages and hard exudates can indicate diabetic retinopathy

whereas cotton wool spots with flame hemorrhages and vascular tortuosity are more

likely to be correlated with hypertensive retinopathy. Unlike its predecessors, the use

of a multi-output algorithm enables screening for multiple potential conditions instead

of a single disease diagnosis. All results can be clinically correlated for further action

as determined by a healthcare provider.

There is a need for solutions that can triage through the population at-risk of

developing visual morbidities and provide them early treatment to prevent permanent

vision loss. By automating the screening process using AI, the existing health care

professionals can concentrate on providing more complex eye care services.

Populations who are unable to access healthcare services due to various

socioeconomic barriers can avail the deeper reach of technology and seek hospital

visits only when deemed necessary. Our solution can also be used to shift the focus of

screening programs from opportunistic screening to a more systematic approach.

RETN may also find use in the patient selection process in large clinical trials, enabling

recruitment of patients who meet the inclusion criteria.

.

The study was conducted in accordance with the tenets of the Declaration of Helsinki.

Requisite institutional review board approval was obtained from Dr Shroff’s Charity Eye
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Hospital, New Delhi, India, a tertiary eye care institute.

METHODS

Model Development

Deep learning (DL) is a subspace of machine learning (ML) which uses deep neural

networks to perform various tasks. This process of training neural networks requires a

large amount of labelled data since photographs for a specific disease may look

different across patients, across two eyes of the same patient, or even photographs of

the same eye on different fundus cameras (due to factors such as field of view,

contrast and sensor of the cameras). The system employs a convolutional neural

network architecture similar to EfficientNet (B6 variant),[12] which represents a

state-of-the-art in image classification and related tasks.

A brief specification of the EfficientNet architecture (B0 variant) is given in Table 1. We

elaborate on some of the differentiating features of the EfficientNet architecture.

● MBConv: This is the Mobile Inverted Residual Bottleneck block of convolution

layers, and its primary role here is to be a more efficient alternative to the typical

Residual blocks popularized by ResNet. MBConv internally uses 1x1

convolutions and depthwise convolutions which also leads to lesser parameter

usage.

● Swish: Contrary to most CNNs which employ the ReLU non-linearity, EfficientNet

uses the Swish nonlinear function, where swish(x) = x / (1 + exp(-x * beta). Swish

has been empirically found to perform better than the standard ReLU

non-linearity, possibly by ameliorating vanishing gradients.
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● Scaling: From the architecture of the B0 variant given in Table 1, several “scaled”

variants (B1 through B7) may be generated, by systematically increasing the

following architectural parameters:

○ Depth: The number of layers in each stage

○ Width: The number of channels

○ Resolution: The internal resolution (output sizes) of each layer

● EfficientNet uses a form of architecture search where each variant B0 - B7 is

assigned values for the above parameters, such that each variant is more

“powerful” (in the sense of predictive power) than the last, at the cost of

increased parameter usage and computational requirements.

● The model was initialized from pre-trained weights that had been obtained via

training on ImageNet. The weights of the output layer were randomly initialized

with Xavier initialization.

1. Training Data Preparation

A set of about 100,000 colour fundus photographs were curated for training a deep

neural network based classifier. The training dataset is an amalgamated proprietary

dataset of images that was assembled from various care centres across India by

Radical. This dataset consists of fundus photographs taken from various cameras and

settings and are balanced using augmentation for various contextual metadata (such

as field of view, age, sex or camera) as well as clinical sign prevalence, but all
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algorithm training processes are blinded to such details. When such balancing is not

possible using simply sampling from a dataset, augmentation techniques are used. The

principle of training on a blinded basis is done to ensure that inadvertent errors of bias

do not creep into the dataset, and because no output of the device is designed to take

into consideration any of the image metadata. The network is supposed to work solely

on pixel data with a set of labels, and it is trained correspondingly.

Further details of the training dataset are provided in the supplementary information for

clinical data..

2. Labelling Criteria, Quality Control

Fundus images were annotated by graders on a web-based tool. Graders were asked

to identify the clinical signs exhibited in the fundus image. In addition, they were also

provided an option to signal the presence of imaging artefacts, such as camera flash,

dust spots, lens flare and others. Further, the graders also had the ability to indicate if

the image had no diagnostic value, based on the visibility of the retinal anatomical

landmarks of the disc, macula and major arcade vessels. Thus, for each labelled

image, grading produced a corresponding bit-string indicating the presence or absence

of various signs, another one corresponding to imaging artefacts, and a flag indicating

undiagnosable images. Images that were marked as undiagnosable were excluded

from the dataset and were not utilized in subsequent processing and training.
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For clinically validating the performance of the trained model, we additionally collected

a validation set of images, and followed a rigorous process in labelling these images.

The details and the subsequent statistical analysis of the model performance are

described later.

3. Training Data Selection : Image Pre-processing and Augmentations

Images were close-cropped, removing any borders and padding. They were then

resized, preserving aspect-ratio such that the longer side was 384 pixels long. To aid

regularization during neural network training, and to produce a more robust

model,extensive augmentations were applied. Augmentations were applied

probabilistically to each batch of images fed into the neural network after choosing

control parameters from predefined ranges. Both geometric transformations (rotations,

translations, random cropping and shearing) as well as color transformations (altering

the hues of the image slightly, converting a fraction of images to grayscale, varying

intensity/lightness, color channel shuffling and dropping) were used. Augmentations

that artificially simulate camera sensor noise were also used. Additionally, the MixUp[13]

technique was used at training time. MixUp has been found to promote model

generalization and lessen the impact of incorrect labels.

4. Training Details
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Prior to training, training/test splits were first generated by stratifying across patients, in

order to ensure that multiple images from the same patient do not end up across splits

and poison the resulting metrics. This stratification process ensured that the training

and validation data subsets were completely disjoint i.e. no images were present in

more than one set, nor did images from a given patient appear in multiple sets. To

predict the clinical signs in questions, an EfficientNet based model architecture was

used. The underlying deep-learning based algorithm is designed to be used alongside

a standard (non-wide field) fundus camera, but it can accept fundus images that have

been directly uploaded as well. Macula-centered fundus images in formats DCM,

JPEG, PNG, BMP, TIFF or DICOM act as inputs to the algorithm which detects a

suspected retinal clinical sign. The device does not produce the location of such a sign.

Since any of the 9 clinical signs in question may occur independently of each other, the

problem was modelled as a multi-label classification task, wherein a single model

simultaneously predicts each sign.

There are certain advantages to using a single large multi-label model over 9 smaller

distinct binary output models. The former may be taken as an instance of Multi-Task

Learning, which forces the model to learn feature representations that are generic and

help contribute to all the different outputs. In practice, this leads to better

generalization, and better predictive performance. Training 9 distinct models also

transforms the training objective from a multi-label loss into 9 one-vs-rest binary losses

trained separately. The former is more useful, since it allows the model to take into

consideration factors like sign co-occurrence and comorbidity.

The usual classification head of the EfficientNet architecture was replaced with a
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so-called Linear layer with 9 outputs. The entire model was trained with the Adam

optimizer, with weight decay and cosine learning rate scheduling and early stopping for

a total of 25 epochs, until the test loss did not decrease any further. Initial values for

hyperparameters such as learning rate were chosen using random search.

Algorithm Output

As described above, the model’s output is from a so-called Linear (or Dense) layer that

produces output logits as a tensor of shape (N, 9) where N is the batch-size (number of

images in a batch) and 9 corresponds to the 9 clinical signs in question.

The logits are then scaled via the sigmoid operation to lie in the range [0, 1].

This activation score is then transformed into a binary decision output (0 or 1) by using

thresholds for each clinical sign, where the threshold for each sign was determined

from a small held-out “development set” by maximizing Youden’s J index; an approach

that equally penalizes Type - I and Type - II errors.

Thus, for each input image, corresponding to each of the signs we obtain 0 or a 1

indicating the absence or presence of that sign as judged by the model.

Image Grading for Validation
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Image grading for validation used the same workflow software as image grading for

training, but the protocol followed was different. All photographs were first anonymised

of any associated metadata, such as camera or patient information, prior to being

labelled by the retina specialists. Each photograph was then labelled independently by

two retina specialists. Each specialist labelled the clinical signs that were present in the

photograph as per internationally accepted standards and definitions of those clinical

signs.[14-16] In case both specialists deemed a photograph to be of insufficient diagnostic

quality, the photograph was removed from consideration. One photograph often

contained more than one clinical sign depending on the underlying disease or diseases

and their progression.

In case there was any difference in the labels of two retina specialists, the photograph

was further labelled by a third, senior specialist, as an adjudicator. “Any” difference

implies that the two sets of labels did not match each other exactly. For example, one

reader could indicate the presence of 3 clinical signs in the photograph. Unless the

other reader also indicated those exact 3 labels, the photograph was forwarded for

adjudication. The two readers and the adjudicators were blind to any labels assigned to

the photograph previously by another reader, or the AI system. The labels associated

with the photograph were determined to be either the consensus of the two initial

readers in the case of an exact match, or the final adjudicated label. There were 5

readers and 1 adjudicator in this study.
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Parallel to this, the algorithm also produced the set of labels for each photograph. The

algorithm outputs a binary vector with 9 elements for each input image. These

correspond to the nine clinical signs detected by the model. A value of 0 indicates a lack

of the corresponding sign in the image, a value of 1 indicates that the sign has been

detected in the input. These outputs were then compared to the gold standard validation

described above, for each individual clinical sign, and metrics were hence derived.

Sample size

A large retrospective set of 28308 fundus photographs was initially considered to be the

pool of population samples available for study. These samples were initially shuffled

randomly before being graded sequentially by human expert readers, i.e, vitreoretinal

specialists. The following standard assumptions were made in calculating the sample

size required for statistical analysis of sensitivity and specificity for each clinical sign -

expected sensitivity: 90%, expected specificity: 80%, prevalence: 20%, confidence

level: 95%, dropout rate: 10%. This produced a minimum sample size for sensitivity as

173 samples, and that for specificity at 77 samples. So, a minimum of 77 negative

samples were required for each sign, and a minimum of 173 positive samples were

required for each sign. Considering dropout, the minimum sample size was fixed at 191

samples. The requisite theoretical framework and formulae used to derive these are

available in the work of Buderer.[17] This sample size was verified against other methods

of estimating sample sizes such as binomial estimation, and were found to be similar or
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exact, thereby providing additional confidence regarding the size of the sample. As a

measure of literature review, the sample sizes for triage and notification devices

approved by the US FDA were studied and were found to be similar as well. It was safe

to assume that the number of minimum samples required would be achieved throughout

the study without specific enrichment strategies since a sample without any of the 9

clinical signs would serve as a common pool of negative samples for all of the 9 clinical

signs. This assumption was found to be correct in the course of the analysis.

Based on this requirement, samples were enrolled into the validation set until this

sample size of 191 positive samples was reached for all 9 clinical signs under

consideration. In the course of the study, the last set to reach this threshold were

positive samples for preretinal hemorrhages, and at that point further enrolment of

samples into the study was stopped, and the final sample set for the study was

considered final and frozen.

In creating the original gold standard benchmark data set for evaluation, a total of 55962

sets of labels from 28308 eyes were created across 14718 patients by the readers.

Photographs were then eliminated if they only contained signs outside the scope of the

study, and undiagnosable photographs were removed. Further, photographs of the

same eye were removed, leaving a single image per eye at random. After this, the final

validation set of 3484 photographs of 3484 unique eyes from 3305 patients was frozen.

Statistical Analysis
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There were two primary metrics of interest in the study; namely, the sensitivity and

specificity of the algorithm in detecting each of the 9 clinical signs. 95% confidence

intervals were calculated as standard binomial intervals. All calculations were done

using Python scripts using numpy and scipy. Table 2 enumerates the results of the

performance testing. In addition to the primary metrics of sensitivity and specificity, we

also wished to report the variability in the performance of the algorithm with respect to

age, sex, camera and field of view. This was done to evaluate statistically whether the

error rates of the algorithm (false positives and false negatives) were independent of the

above factors, or were different for different characteristics. The independence of the

algorithm to the above factors is not the primary endpoint. Nonetheless, we report some

signals and leave further investigation to a future work.

In calculating these results, chi-square tests of independence were used to establish

whether or not the categorical variables of the study showed any dependence on the

outcomes. The null hypothesis was that the rate of false positives and false negatives

for different categories would be independent of the category. A p-value of less than

0·05 would indicate that the null hypothesis needed to be rejected, ie, the rates of error

in the algorithm are dependent on the covariate. A p-value of more than 0·05 would

indicate that the null hypothesis was true, ie, no effect of the categories of the variable

under investigation, such as different types of camera models or different sexes were

seen on the rates of error of the algorithm. If a certain variate had very few or

insufficient samples, they were removed. (Table 3) (detailed description of this data is
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available as Supplementary Information of clinical data for each individual clinical sign).

RESULTS

Description of Data

RadicalEye Triage and Notification was validated on a set of 3484 retrospective

macula-centred fundus photographs acquired through various fundus cameras at

multiple clinical sites at tertiary and secondary eye care facilities in India. All data was

captured in regular clinical workflow and reflects a real-world setting of an ophthalmic

photographer or optometrist capturing the photograph on various cameras.

A total of 15 different types of fundus cameras were used in the study to study any

statistically significant variation in the errors in the algorithm. Further, they had 6

different fields of view (the same camera could also be operated on different fields of

view). Each clinical feature had photographs from at least 2, at most 7 and on

average 4.4 cameras (refer to Supplementary Information of clinical data for more

information). Further, since the algorithm does not diagnose a specific disease but

looks at specific clinical signs, such as hemorrhages and exudates, they are racially

invariant. The prevalence of a disease may be influenced by race, ethnicity or other

clinical factors, but the underlying clinical signs that are related to a disease do not

vary.
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Undiagnosable photographs refer to photographs where the following retinal landmarks

are not visible: the optic disc, the macula and the major arcade vessels. They do not

refer to photographs where these may be occluded by a clinical feature, for example, a

preretinal hemorrhage. No two images belong to the same eye.

1080 photographs did not have any of the signs under consideration. 2404

photographs had at least one sign under consideration, with a maximum of 6 signs in a

single image and an average of 2.17 signs per image.

Of the 3484 images considered in total, the number of positive samples for each

clinical sign under consideration as per the gold standard data set created as in Table

4. The two sexes in the dataset were male (64.2%) and female (35.8%). The age

categories in the dataset were: 18 to 29 years old, 30 to 39 years old, 40 to 49 years

old, 50 to 59 years old, 60 to 69 years old, and 70 years or above. The mean age was

50.19 years (SD: 28.06 years).

The different fields of view in the dataset were (degrees): 30, 35, 40, 45, 50 and 60.

The different fundus cameras in the dataset were as follows: Canon CR-5, Canon

CR-1, Canon CF-60UVi, Film Camera Scan (Scanned photographs from non-digital,

film-based fundus cameras), Forus 3Nethra Classic, Kova VX-10, Nidek AFC-210,

Nidek NM-200-D, Topcon TRC-NW400, Topcon 50DX, Topcon TRV-50, Topcon

TRC-NW6, Zeiss FF450 Plus, Zeiss Visuscout and Zeiss Visucam 500.
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Performance Characteristics: Primary Metrics

Since this system analyses the photograph for 9 different signs, we also present a set

of macro, averaged metrics for ease of understanding and communication in Table 5.

The overall mean was  90.19% for sensitivity and 88.38%  for specificity.

Performance Characteristics: Secondary Metrics

The results of the algorithm were found to be independent of age, sex, camera and

field of view. Had it been dependent, it would not be possible to indicate the system for

use irrespective of the above factors. It should be noted that the same camera can

sometimes be operated at different fields of view depending on the operator and the

manufacturer or mode of use, and hence field of view is considered a separate

measure from the camera itself. The data considered in this study contains no

wide-field fundus camera or ultra-wide field fundus camera and hence the algorithm

should be considered untested on wide field fundus camera photographs.

A further performance characteristic that was measured was the average time for

inference. The time was measured on inference over all samples in the validation set on

Amazon Web Services (AWS) cloud servers. They were measured on p3.2xlarge

instances on AWS, in batch mode with a batch size of 32. As an intended cloud-based
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multi-tenant solution, this represents the intended use scenario for the algorithm. GPU

evaluations were carried out on an NVidia Tesla V100 GPU. CPU evaluations were

carried out on an Intel CPU (Xeon E5-2686v4 (2.30 GHz) with 8 Cores). For CPU

evaluations, inference was parallelised across all cores. The mean time taken on

GPU-accelerated inference was 2.74 milliseconds (ms) per image (SD: 2.64 ms) and

the mean time taken on CPU inference was 222.48 ms per image (SD: 10.76 ms). For

most use cases, an optimised and CPU-accelerated inference would suffice (with the

capacity to analyse 2 patients per second per server considering one photograph per

eye), but for critical and near-instantaneous results, GPU-acceleration for inference

could be used (with the capacity to analyse 182 patients per second per server

considering one photograph per eye).

DISCUSSION

Clinical Applicability

The core algorithmic principle upon which the system runs is the analysis of a retinal

fundus photograph for the presence of one or more of the nine clinical signs mentioned

above. These clinical signs individually and in combination are suggestive of various

ophthalmic diseases such as DR, AMD, hypertensive retinopathy, glaucoma, retinal vein

or artery occlusions, and vasculitis among many others. The model is useful in
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scenarios where retina specialists are not available as it can flag the abnormal signs

and suggest the need for a more detailed evaluation, both of the eye and the systemic

diseases that the retinal pathologies may indicate. The model helps to detect the nine

retinal signs and may be used in various settings such as screening camps and diabetic

clinics. However it does not preclude the need for a comprehensive examination. It may

also find application in ophthalmology hospitals to direct patients to appropriate

specialty clinics as per the findings of the scan. For example, a fundus photograph with

a glaucomatous disc merits to be seen by a glaucoma specialist whereas a photograph

with retinal hemorrhages is more suited for a referral to a retina specialist.

Making the model part of screening programs makes it possible for a much larger

population to be screened for retinal diseases without the burden of availability of

specialists for the same. This in turn leads to an early diagnosis. As most retinal

diseases are vision threatening if not treated timely, an early identification allows

significant improvement in the patient’s quality of life and reduces financial burden of

treatment.

As opposed to screening programs which can be conducted at large scales using the

RETN model, programs conducted with physical eye examination may have limited

capacity and long waiting time for appointments may lead to a delayed diagnosis

leading to advanced stages of the disease, resulting in frequent complications and

requiring more expensive interventions.

For glaucoma, the cost of treatment increases from $455 in the earliest stage doubling

to $969 in the advanced[18] stages. Similarly, it has been studied that even a 6 month
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delay in treatment of vein occlusion can lead to a loss to 9 to 11 ETDRS Letters.[19]

Specifically for AMD, early treatment at non-neovascular stages can be effective in

halting the progression of disease. 84% of individuals with AMD in the US are unaware

of their disease.[20] It is especially important since drusens usually present

asymptomatically, and once the disease progresses to wet or neovascular AMD,

untreated patients can progress rapidly. One line of visual acuity loss is reported as

early as 3 months.[21] Once AMD reaches the stage where CNV has developed,

progression of CNV can be rapid, with immature vessels reaching a maturation state

within 10–14 days,[21] and patients may remain asymptomatic during this growth. Using

RETN, a more active and relatively more comprehensive screening can be envisioned

rather than patients seeking care when they experience symptoms of disease. However,

we acknowledge that detection of some signs such as glaucomatous disc subjects itself

to variability even between two glaucoma specialists and hence clinical correlation is

advised on clinical signs triaged on RETN.

Retina is a mirror of systemic diseases. For example, flame shaped hemorrhages on a

retinal image can be related to retinal vein occlusion (RVO), which in turn may be

manifestation of hypertension or cardiovascular disease (CVD).[22]

The nine retinal signs identified by RETN, may be common to several retinal and

systemic diseases. For example, systemic lupus erythematosus (SLE) presents with

signs similar to DR such as cotton wool spots and retinal hemorrhages.[23] Specific types

of anemias may also mimic DR. For example, sickle cell retinopathy can simulate a DR
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fundus in both its proliferative and pre-proliferative stages.[24] Radiation retinopathy[25]

can also present with intraretinal hemorrhages.

Cotton wool spots develop in areas of retinal hypoperfusion and can be seen in

diseases like DR, hypertensive retinopathy, and also infectious diseases such as those

caused by the human immunodeficiency virus (HIV).[26] The presence of drusens in

younger populations may point towards underlying inflammatory diseases.[27-29]

The output from RETN may help in triaging the patients based on their retinal signs

identified thereby helping them seek early medical advice. The nine clinical signs

detected by RETN are among some of the common signs seen on a fundus photograph

and represent most major retinal diseases (refer to Supplementary Information table 2

for a complete list). The algorithm is agnostic to use cases. For instance, the model may

be used to triage and prioritize cases in a patient list at an eyecare institution. It may

also be used in non-ophthalmic setups such as a diabetic clinic or optical store for

referral to ophthalmologists based on the generated report. Each of these settings will

present a population with different prevalence rates for the various signs. For instance,

the population at a diabetic clinic will self-select for a higher prevalence of hard

exudates and dot and blot hemorrhages. Thus, certain statistical measures, such as

positive predictive value (PPV) and negative predictive value (NPV), which are linked to

prevalence, will vary. To take this into account, we have included the expected statistical

performance across a range of prevalences as a table 3 in the supplementary

information.
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Comparison with State of the Art

In our study, we found that among all clinical signs, the worst sensitivity of RETN was

85.06% for vascular tortuosity and that of specificity was 85.21% for drusens. The best

sensitivity and specificity was 94.65% and 95.36% respectively for glaucomatous disc.

On review of literature, we found that these metrics in isolation are comparable to the

ones previously reported by various authors such as Gulshan et al,[30] who reported a

sensitivity of 97.5% and a specificity of 93.4% (at an operating point for high sensitivity

for detecting referable DR), Rajalakshmi et al[31] reported a sensitivity of 95.8% and

80.2% specificity (for detecting DR), Abramoff et al[10] have reported a sensitivity of

87.2% and a specificity of 90.7% (which was also used by the FDA in approving their

algorithm for diagnostic use for detecting DR), Burlina et al[32] reported an accuracy

between 88.4% and 91.6% for detecting AMD, Olvera-Barrios et al[9] reported sensitivity

of any retinopathy ranging from 92.26% to 92.27%. However, all these algorithms

previously reported were focussed on detecting specific diseases, whereas this study

focuses on simultaneous detection of nine retinal signs.

It is useful to compare the current system under evaluation with previously published

work. On comparing RETN with the existing devices such as IDx-DR and EyeArt, the

major advantage is that this device flags the various clinical signs irrespective of the

underlying cause and thereby not restricting itself to diagnosing a particular pathology

such as DR. Cotter et al emphasized that even in images unreadable for DR, other

important pathology may be captured and hence it is important for screening tools to be

able to diagnose other treatable eye diseases in addition to DR.[33]
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IDx-DR is designed to detect one specific disease, more than mild diabetic retinopathy

in pre-diagnosed populations. RETN is a triage and notification device designed to

notify the user for the presence of medical signs, not one specific disease. Hence, the

device outputs are entirely different. IDx-DR is indicated for use on a pre-diagnosed

diabetic population. This device is designed to be used for any patient who the ordering

provider believes has the potential for having any of the nine clinical signs identified by

the algorithm, regardless of whether the patient has current symptoms suggestive of

disease. In other words, there is no preset diagnostic or other restriction on the

population for which RETN is designed to be used. Hence, the populations for which the

devices are designed to be used are different (RETN’s population is a superset of

IDx-DR’s population). IDx-DR is indicated for use only with the Topcon NW-400 Fundus

Camera. RETN’s performance is invariant over multiple fundus cameras, and hence is

not restricted to be used with a specific fundus camera.

IDx-DR is labelled for use autonomously. RETN however is not envisioned to be a

standalone diagnostic device, and the results must be correlated clinically. It is not

designed to be a diagnostic device with the capability to definitively rule out or in any of

the signs listed above. Hence, it is appropriate for use by a clinician at their discretion.

The clinical judgement of the ordering physician determines the subject’s diagnosis,

treatment and other clinical activity.

A feature of RETN is the use of a multi-label classifier. A binary classifier typically

produces an output which classifies an image into one of two classes (such as,

presence or absence of diabetic retinopathy). Previous work on analyzing multiple signs
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from a single fundus photograph have been demonstrated in the work of Son et al.[34] In

that work, the authors evaluated a system with the ability to detect 12 clinical signs.

However, they employed 12 different binary classifiers in each of these clinical signs. It

was noted in editorial commentary of their work[35] that a future direction of work could

be to produce ensemble models that aggregated all 12 binary classifiers. The current

system under consideration addresses that issue, by using multi-label classification on a

single algorithm, rather than creating nine different models. This has the potential to be

much easier to maintain one single algorithm rather than multiple ones. Moreover, deep

learning algorithms are essentially hierarchical in nature. The lower layers of these

neural networks learn low-level features, which can be shared among many different

higher level tasks (of learning to recognise multiple clinical signs) without duplication

and re-training. It is generally known that such types of learning algorithms (generically

known as multi-task learning algorithms) provide advantages in performance when the

underlying distribution of data is similar. Son et al also mention vascular abnormalities

as one of the detected abnormalities but do not subclassify them. In contrast, RETN is

capable of diagnosing vascular tortuosity and neovascularization as two specific

instances of vascular anomalies in the retina.

Limitations and Future Directions

The number of clinical signs that exist in the retina is substantially larger than what has

now been considered in the scope of this study. A definite future direction would be to

evaluate the efficacy of the system in being able to detect more clinical signs than are

currently indicated. General principles of deep learning provide an intuition that the
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single-model approach that is currently used may provide a stronger basis for adding

more signs and an easier pathway towards improvements rather than training a new

model from the beginning for every new sign. A primary metric of interest in future

studies may be long-term and prospective settings to evaluate the time and costs saved

in clinical evaluation or referrals by triaging patients, as well as measurable benefit to

patient health. Another direction of work would be to analyze the effectiveness of the

same or a similar system on ultra-wide field camera photographs. These photographs

are substantially different from any camera photograph with less than 60 degrees field

of view. Future AI models may be used to predict the natural history of each clinical sign

and disease process, in turn substituting the control arm by virtual controls. This may

reduce the burden of recruitment significantly. The efficacy of this system has not been

evaluated on non-macula centered fundus photographs. Future studies should also

include conducting the trial on different races and in different geographies to make the

results more inclusive.
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Table 1. EfficientNet B0 Architecture Specification

Stage (i) Operator
F_i

Resolution
H_i x W_i

#Channels
C_i

#Layers L_i

1 Conv3x3 224x224 32 1

2 MBConv1,
k3x3

112x112 16 1

3 MBConv6,
k3x3

112x112 24 2

4 MBConv6,
k5x5

56x56 40 2

5 MBConv6,
k3x3

28x28 80 3

6 MBConv6,
k5x5

14x14 112 3

7 MBConv6,
k5x5

14x14 192 4

8 MBConv6,
k3x3

7x7 320 1

9 Conv1x1,
Pooling, FC

7x7 1280 1
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Table 2. Sensitivity and specificity metrics for detection of each clinical sign

using RETN.

Clinical Sign Sensitivity (95% CI) Specificity (95% CI) Number of

Positive

Samples

Drusens 91.04% (88.03% -

94.05%)

85.21% (83.97% -

86.46%)

346

Preretinal

Hemorrhages

89.01% (84.57% -

93.44%)

90.59% (89.59% -

91.58%)

191

Dot and Blot

Hemorrhages

92.98% (91.42% -

94.55%)

85.23% (83.83% -

86.63%)

1026

Cotton Wool Spots 91.05% (88.58% -

93.52%)

89.23% (88.11% -

90.34%)

514

Hard Exudates 90.06% (88.28% -

91.85%)

89.28% (88.05% -

90.52%)

1077

Flame Shaped

Hemorrhages

88.03% (86.01% -

90.05%)

86.22% (84.87% -

87.58%)

994

Glaucomatous Disc 94.65% (92.65% -

96.65%)

95.36% (94.61% -

96.12%)

486
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Neovascularization 89.81% (86.52% -

93.11%)

87.44% (86.28% -

88.59%)

324

Vascular Tortuosity 85.06% (80.73% -

89.38%)

86.84% (85.68% -

88.01%)

261

Table 3. Effects of sex, age, camera and field of view on the error rates of the deep

learning algorithm. All p-values above 0.05 indicate no statistically significant

effect.

Clinical Sign Sex Age Camera Field of View

Drusens 0.633 0.197 0.588 0.752

Preretinal Hemorrhages 0.125 0.963 0.107 0.107

Dot and Blot

Hemorrhages

0.729 0.245 0.902 0.830

Cotton Wool Spots 0.566 0.950 0.818 0.094

Hard Exudates 0.212 0.785 0.295 0.299

Flame Shaped

Hemorrhages

0.615 0.613 0.168 0.092

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 8, 2022. ; https://doi.org/10.1101/2022.03.04.22270834doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.04.22270834


Glaucomatous Disc 0.909 0.255 0.352 0.917

Neovascularization 0.265 0.366 0.351 0.452

Vascular Tortuosity 0.390 0.213 0.155 0.155

Table 4. Number of positive samples for each clinical sign under consideration

Drusens 346

Preretinal Hemorrhages 191

Dot and Blot Hemorrhages 1026

Cotton Wool Spots 514

Hard Exudates 1077

Flame Shaped Hemorrhages 994

Glaucomatous Disc 486

Neovascularization 324

Vascular Tortuosity 261
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Table 5. Macro metrics of sensitivity and specificity for nine clinical signs

detected by RETN.

Macro Performance Metric Sensitivity Specificity

Best 94.65% 95.36%

Worst 85.06% 85.21%

Arithmetic Mean 90.19% 88.38%

Median 90.06% 87.44%
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