
 1 

Investigation of Genetic Variants and Causal Biomarkers Associated 
with Brain Aging 
 
Jangho Kim, Junhyeong Lee, and Seunggeun Lee 
 
Graduate School of Data Science, Seoul National University, Republic of Korea 
 
 
Corresponding Author: 
Seunggeun Lee 
Graduate School of Data Science 
Seoul National University, Seoul, South Korea 
lee7801@snu.ac.kr 
 
 
 
Abstract 
 
Delta age is a biomarker of brain aging that captures differences between the 
chronological age and the predicted biological brain age. Using multimodal data of 
brain MRI, genomics, and blood-based biomarkers and metabolomics in UK 
Biobank, this study investigates an explainable and causal basis of high delta age. 
A visual saliency map of brain regions showed that lower volumes in the fornix 
and the lower part of the thalamus are key predictors of high delta age. Genome-
wide association analysis of the delta age using the SNP array data identified 
associated variants in gene regions such as KLF3-AS1 and STX1. Mendelian 
randomization (MR) for all metabolomic biomarkers and blood-related 
phenotypes showed that immune-related phenotypes have a causal impact on 
increasing delta age. Our analysis revealed regions in the brain that are susceptible 
to the aging process and provided evidence of the causal and genetic connections 
between immune responses and brain aging.  
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Introduction 
 
Aging is a primary risk factor for a myriad of health problems. Since aging 
proceeds at different rates for each individual, various methods to measure the 
biological age have been developed for a more accurate diagnosis of health status. 
Among the concerns related to aging, cerebral atrophy, which leads to cognitive 
decline, is a substantial risk to the individual well-being, constituting a major 
public health burden. Brain volume loss is also associated with neurodegenerative 
diseases such as Alzheimer’s disease and Parkinson’s disease [1, 2].  
 
The aging process in different brain regions can be detected through structural 
and functional Magnetic Resonance Imaging (MRI). As large-scale datasets such as 
UK Biobank that contain neuroimaging data are becoming available, there have 
been efforts to accurately predict an individual’s chronological age with the 
neuroimaging datasets. Franke et al. [3] used principal component analysis and 
relevance vector machine to predict age. Studies since then primarily used neural 
network models for prediction and data-driven feature extraction [4-11]. The 
convolutional neural network (CNN) models have been used with a high level of 
accuracy. The mean absolute error of the prediction in most literature with CNN 
models is between 2.14 and 3.4 years. 
 
The difference between the predicted age and the actual chronological age, called 
delta age, has been used as an aging biomarker [3, 4]. After estimating the delta 
age, phenome-wide and genome-wide association tests have been conducted to 
identify significantly associated genetic and clinical factors. Recent studies have 
shown that bone mineral density, blood pressure, and type 2 diabetes are 
associated with delta age [6, 7]. Genome-wide association analyses identified that 
KANSL1, MAPT-AS1, CRHR1, NSF in chromosome 17, KLF3 (chromosome 4), 
RUNX2 (chromosome 6), and NKX6-2 gene (chromosome 10) were significantly 
associated [5, 9, 10]. When combined with the cognitive test results, SNPs in 
MED8, COLEC10, and PLIN4 genes were also significantly associated [10].  
 
To extend our understanding of the genetic and molecular basis of brain aging, we 
analyzed multimodal UK Biobank data. Compared to the previous studies, our 
analysis includes whole-exome sequencing (WES) and metabolomics data, which 
enabled us to identify novel genetic and biomarker associations. In addition, we 
carried out large-scale Mendelian randomization studies of 310 blood and 
metabolomic phenotypes to identify causal biomarkers and used an explainable AI 
method for medical images to identify brain regions that drive high delta age. 
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Results 
 
Overview of the Analysis 
 
Figure 1 provides an overview of our analysis. First, a 3D CNN model was trained 
for age prediction with the T1-weighted structural brain MRI of healthy white 
British samples in the UK Biobank, excluding individuals with diseases related to 
cancer, diabetes, dementia, and mental disorders. The training was conducted via 
cross-validation to use all available samples in the downstream analysis (see 
Methods). The Integrated Gradients (IG) method was then used to identify an 
accurate attribution of each voxel (volume + pixel) to the prediction [12]. Second, 
genome-wide association tests were conducted on different test levels to uncover 
novel loci associated with brain aging. We applied a single-variant test, SAIGE 
(Scalable and Accurate Implementation of GEneralized mixed model), to the array-
genotyped and imputed markers, and a gene-based test, SAIGE-GENE+, to the 
WES datasets [13, 14]. Lastly, we examined linear and nonlinear causal 
relationships between the delta age and the phenotypes (metabolomics and blood) 
with Mendelian randomization methods. The number of samples used in each 
step is in Table 1. 
 
Age Prediction Accuracy and Saliency Map  
 
Table 2 and Figure 2 show the prediction results of the 3D CNN model. We used 
the cross-validation scheme to use all available samples [9]. Table 2 shows the 
mean absolute error of the samples with diseases and the samples without 
diseases and four-fold cross-validation groups (see Methods). The mean absolute 
error in the healthy individuals was about 2.6406 years in the test set and 0.8989 
years in the training set. The existing studies on brain age estimation had similar 
accuracy to this result [6-9]. The mean absolute error in the samples with diseases 
was 2.651 years. Figure 2 (a) shows the strong positive correlation between the 
chronological age (x-axis) and the predicted age (y-axis). The age-related bias was 
corrected by linear regression on the chronological age (Figure 2 (b)) [15]. Figure 2 
(c) is a scatter plot between the chronological age and the adjusted delta age. 

Figure 3 shows the saliency maps of the age prediction model with integrated 
gradients. Absolute values of the integrated gradients were averaged for 100 
samples with the youngest predicted age. Figure 3 (a) shows the voxels with 
averaged integrated gradients greater than five. According to the Automated 
Anatomical Labeling atlas (AAL) and the Natbrainlab atlas, when highlighting the 
regions with integrated gradients greater than ten, the regions were the fornix and 
the lower part of the thalamus (Figure 3 (b)) [16, 17]. Similar results were shown 
when 100 samples were chosen randomly or by descending order of the delta age 
values (data not shown).  
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Genetic Variants Associated with Delta Age  

We performed genetic association analyses for the predicted delta age. We carried 
out single-variant tests for 38 million array-genotyped and imputed genetic 
variants using SAIGE. Since the single-variant test for rare variants in WES has low 
power, we used a gene-based test method for the WES dataset [18]. We used 
SAIGE-GENE+ to test for rare variant associations (18,308 genes).  

Figure 4 is the Manhattan plot of single-variant analysis results from array-
genotyped and imputed data. Table 3 lists significant variants. The single-variant 
test results showed that five loci in chromosomes 1, 4, 6, 10, 11, and 17 were 
significantly associated with the delta age. The nearest genes were STX6, MR1, 
KLF3-AS1, WNT16, INPP5A, NKX6-2, and several genes in chromosome 17, 
including KANSL1, MAPT-AS1, and NSF. Genetic heritability calculated by the 
variance components in the SAIGE model was 21.5 percent. 

The gene-based rare variant test on the WES dataset identified no significant 
genes. The p-value threshold was the Bonferroni corrected level of 0.05 
(0.05/18,308). SEC62, PPM1F, ABCC2, ADMA15, and NDN were the top five genes 
with the smallest p-value. (Table 4) 

To check whether the delta age prediction was truly driven by voxel values in the 
fornix and the lower part of the thalamus, we carried out the same GWAS 
procedure with the average voxel value of the two regions. The SAIGE results 
showed that the significant loci associated with the two regions were also 
concentrated on chromosome 17 (Supplementary Table 1 and Supplementary 
Figure 2 (a), (b)). SLC39A8 and C16orf95 genes were commonly shown to be 
associated with the two regions. We also calculated the genetic correlation among 
delta age and average voxel values of the two regions and observed high genetic 
correlation values (Supplementary Table 2). Our analysis results clearly 
demonstrated the shared genetic basis of delta age and the two regions. 

Additional validation on the delta age of 1,610 healthy non-British white samples 
was conducted. In single-SNP GWAS, two SNPs in chromosome 4 with no specific 
gene region and two SNPs in chromosome 17 (rs375822897 in PLEKHM1 and 
rs56303031 in LINC02210-CRHR1) had p-values less than 0.05. Due to the small 
sample size (905 samples), none of the genes had p-values < 0.05 in non-British 
white samples. 

Causal Biomarkers of Delta Age 

Among the 310 phenotypes (249 metabolomic phenotypes and 61 phenotypes 
related to blood), 59 had p-values less than 0.05 in causal estimates from at least 
one of the three linear MR methods (MR-Egger regression, inverse variance 
weighting, and weighted median). Table 5 lists the top five phenotypes by MR-
Egger regression (Eosinophil count, Eosinophil percentage, Neutrophil count, Total 
protein, and White blood cell count), and Supplementary Table 3 shows the other 
54 phenotypes. The Top five phenotypes were immune-related biomarkers and 
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had positive relationship with the delta age. Among them Eosinophil count (P-
value=5.16E-06) was statistically significant after the Benjamini-Hochberg 
procedure (FDR=0.05).  

Figure 5 is a PheWAS plot of the causal estimates from the MR-Egger regression. 
Overall, phenotypes related to white blood cells showed more significant causal 
relationships with delta age than other phenotypes. Similar results were replicated 
by the weighted median method (Supplementary Figure 3 and Supplementary 
Table 4).  

We also carried out association analysis with a linear regression model. HbA1C (P-
value=7.31E-28) and Glucose (P-value=1.11E-26) were most significantly 
associated with the delta age (Supplementary Figure 4 and Supplementary Table 5) 
with a positive association direction. This may indicate the association between 
diabetes and brain aging.  

Nonlinear MR analysis using piecewise MR and kernel IV showed similar results. 
Total cholines (P-value=0.03413), total lipids in small LDL (P-value=0.03599), and 
cholesteryl esters to total lipids in very large HDL percentage (P-value=0.01002) 
passed the test of the assumptions for instrument variable regression and 
returned p-value less than 0.05 in the trend test, indicating that there was 
nonlinearity in the causal relationship between the biomarkers and delta age (the 
values in the parenthesis indicate the p-values). Total cholines showed a causal 
relationship with the threshold. It increases delta age when it is above 2.5 mmol/l. 
The other two biomarkers showed an inverted U-shaped relationship 
(Supplementary Figure 5). However, when applying multiple testing corrections, 
none of the three biomarkers were significant. 
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Discussion 
 
In this paper, we have analyzed the risk factors of brain aging with multimodal 
data. The CNN model that predicts age from brain MRI had high accuracy with a 
mean absolute error of 2.64 years. Visual information of the regional importance 
in the brain was extracted from the neural network model. Genetic variants and 
biomarkers that have significant links to brain aging were identified using GWAS 
methods and Mendelian randomization. 
 
We used integrated gradients to make accurate saliency maps by incorporating 
information from a wider range of pixel values not present in the original images. 
This information revealed important brain regions missed by other mapping 
methods. The saliency map in the previous studies highlighted the brain regions 
such as the hippocampus, brainstem, and amygdala [6, 7, 19]. When highlighting 
the important points with higher integrated gradients in our study, they were 
centered on the fornix and the lower part of the thalamus. This indicates that the 
aging process affects the brain mainly through the atrophy in the inner area 
connected to memory and learning ability [20-23]. In addition, genetic variants 
associated with volumes of these regions and delta age were highly similar, 
supporting the result. 
 
Investigating gene-level rare variant associations in the WES data, we identified no 
significant genes associated with the delta age. However, the NDN gene, one of 
the top five genes with the smallest p-value, is known to play an important role in 
neural differentiation and survival of postmitotic neurons [24, 25]. In addition, this 
gene is associated with the PWS (Prader-Willi syndrome), which is known to have 
a significantly higher delta age in the PWS [26]. 

In the single-variant test of array-genotyped and imputed variants, we replicated 
strong association signals in chromosome 17. The significant variants in other 
chromosomes were in STX6, MR1, KLF3-AS1, WNT16, INPP5A, and NKX6-2. STX6 
and KLF3-AS1 relate to carcinogenesis [27, 28]. MR1 and WNT16 participate in 
immune response via antigen presentation to T cells and lymphocyte proliferation 
[29, 30]. Mutations in INPP5A and NKX6-2 were shown to cause neurologic 
problems [31, 32].  

Our investigation of the causal effects of 310 blood and metabolomic biomarkers 
on delta age showed the potential causal roles of immune responses to delta age. 
Especially, biomarkers related to white blood cells had a significant causal effect. 
This claim is supported by existing literature [33, 34]. 

This study, however, is subject to several limitations. First, the analysis was done in 
the European ancestry group only. The aging process and genetic variants 
associated with aging can differ according to ancestry. Second, replication of the 
results in an independent dataset was not conducted due to a lack of datasets 
with genetics data, extensive biomarkers, and brain MRI. Future research should 
focus on addressing the limits and making results more generalizable.  
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In conclusion, our multimodal data analysis shows many aspects of brain aging, 
including brain regions most affected by the aging, associate genes, and causal 
biomarkers. As more biobanks with multimodal data are collected, more diverse 
aspects of brain aging can be revealed. Biobanks of other ancestry groups can 
identify novel biomarkers associated with brain aging not identified in this study. 
In addition, potential mediating factors between immune responses and brain 
aging can be revealed. This would allow a deeper understanding of brain aging 
mechanisms that develop proper prevention and treatment. 

  

 . CC-BY 4.0 International licenseIt is made available under a 
to display the preprint in perpetuity. 

 is the author/funder, who has granted medRxiv a license(which was not certified by peer review)holder for this preprint 
The copyrightthis version posted September 14, 2022. ; https://doi.org/10.1101/2022.03.04.22271813doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.04.22271813
http://creativecommons.org/licenses/by/4.0/


 8 

Methods 
 
Data Preprocessing 
 
T1-weighted structural MRI images of 34,129 white British samples in the UK 
Biobank were used for the analysis to minimize the effect of ancestry (average age 
of 60.964) [35]. All of the images downloaded from the UK Biobank had been 
normalized into MNI152 space (Montreal Neurosciences Institute) to render the 
comparison of each voxel possible [36]. The samples were selected if they had 
proper images and if they had no relation to any other individuals in the dataset. 
Each image was resized from 182x216x182 to 128x128x128 to reduce the 
computation cost. First, a part of z-axis voxels (from 26 to 153 out of 182 points) 
was selected to include various brain regions in the prediction task. The voxels in 
the upper outermost surface of the brain were excluded since they were 
considered negligible in the prediction and redundant due to the inclusion of 
other parts of the cerebral cortex. Second, each 2-dimensional 182x216 image (x, 
y-axis) in z-axis points was resized to a 128x128 image with the nearest neighbors 
scaling algorithm. The preprocessing of nifti format MRI images was performed 
with oro.nifti and OpenImageR packages in R [37, 38].  
 
For the genetics data, we downloaded bgen files of 93 million array-genotyped 
and imputed variants dataset. And we used plink files of 26 million whole-exome 
sequencing (WES) variants dataset from the UK Biobank. The 450K WES data were 
used in our analysis, and the analysis was performed on the DNA nexus. 
 
The 249 metabolomic phenotypes and 61 biomarkers from blood assays and blood 
count were used in the Mendelian randomization (MR) analysis. The metabolomic 
phenotypes and biomarkers were collected separately from MRI imaging, from 
2006 to 2010; this would enable the investigation of the biomarkers’ longitudinal 
and cumulative effect on the brain. The missing values in the selected biomarkers 
were imputed with multiple imputation by chained equations (MICE) to fit the 
missing values to the overall multivariate distribution [39]. After filling the missing 
values, 8,464 individuals with the brain MRI had corresponding values of 
metabolomic phenotypes, and all 34,129 individuals had values of blood-related 
phenotypes. The 310 selected biomarkers were divided into 17 groups, including 
amino acids, cholesterol, and glycolysis-related metabolites. 
 
3D CNN Prediction Model and Integrated Gradients 
 
3D CNN model was used to predict the age of the individuals. Supplementary 
Figure 6 is the overall network structure of the prediction model. The neural 
network model takes the resized images (128x128x128) as input and has less than 
three million parameters to train. The spatial dropout layers were added in the 
first two blocks to prevent the model from overfitting. The kernel size is 3x3x3 in 
convolution layers and 2x2x2 in pooling layers. The model conducts max-pooling 
until the size of an image in each feature becomes 2x2x2. The number of features 
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increases as the input image size reduces. Adam optimizer with learning rate 
0.001 and He uniform initializer were used since the activation function is the 
rectified linear unit (ReLU).  
 
Healthy white British individuals (25,656) were selected to train the prediction 
model. Individuals with diseases (all types of cancers, diabetes, neoplasm, 
dementia, and mental disorders) were excluded from the training process. The 
dataset with healthy individuals was divided into four sets (CV1, CV2, CV3, and 
CV4) for four-fold cross-validation so that every sample is included in the test set 
at least once and has a predicted age value. When CV1 is the test dataset, the 
other three sets become the training dataset. For each training set, three separate 
models (the same structure in Supplementary Figure 6 with different initial 
weights and dropouts) were trained for more robust prediction. They constitute a 
single model set. After training the models, the test images were given to the 
models as input. The average of the predictions from the three models becomes 
the final predicted age of the test images, hence a total of 12 models to train 
(three models for each of the four cross-validation batches). Prediction of the age 
of individuals with diseases was made with the average of the predicted age from 
the four trained model sets. The delta age value of each sample was calculated by 
subtracting the individual’s chronological age from the predicted age. The age-
related bias in the delta age value was adjusted through linear regression on the 
chronological age. The adjusted delta age values were used in the later association 
tests.  
 
To identify which regions in the brain contributes significantly to age prediction, 
the Integrated Gradients (IG) method was used. The IG method is an explainable 
AI method for neural networks that uses multiple images between blank and 
original images [12]. In this study, the number of images generated for each 
sample was 101 in reference to the recommended step size in the original paper.  
 
Genome-wide Association Test with Single Variants and Gene Regions 
 
We used SAIGE for array-genotyped and imputed variants and SAIGE-GENE+ for 
the WES variants. Variants with minor allele frequency less than 0.0001 were 
excluded in the SAIGE analysis. SAIGE uses a mixed effect model to account for the 
relatedness among the individuals. SAIGE-GENE+ is a gene-based rare variant 
association test and it performs BURDEN, SKAT, and SKAT-O tests [14]. Since the 
number of tests decreases in the gene-based test, multiple testing correction is 
less stringent. 
 

34,129 (=N) samples were used in SAIGE analysis. The delta age values of the 
individuals were inverse-normal transformed. Covariates were sex, age, ten 
principal component scores, and four dummy variables which indicate different 
cross-validation test sets plus samples with diseases. N × N genomic relation 
matrix (GRM) was calculated 784,256 markers in called autosomal genotypes. 
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Leave-one-chromosome-out (LOCO) option was applied when estimating the GRM.  

 

18,308 regions were identified with annotation on the WES genotype by the 
ANNOVAR software [40]. The size of the samples n in the gene-based test was 
30,812 (white British individuals with proper MRI images included in the UK 
Biobank 450k whole-exome sequencing data). The SAIGE-GENE+ analysis was 
done with 3 MAF cutoffs (MAF=0.01, 0.001, 0.0001) and 3 functional annotation 
groups (LOF, LOF+Missense, LOF+Missense+Synonymous). In addition to the same 
covariates in the SAIGE test, the batch indicator variable was included to adjust for 
possible batch effect in the WES dataset.  

Genetic correlation among delta age and the average volume of two brain regions 
(the fornix and the lower part of the thalamus) was derived using LD score 
regression with western European LD scores [41]. 

 
Linear and Nonlinear Mendelian Randomization 
 
We used variations of Mendelian randomization methods to identify the causal 
effect of biomarkers (exposure) on delta age (outcome). The overall workflow of 
the Mendelian randomization in this study is in Supplementary Figure 7. 
Instrument genetic markers for each of the 310 biomarkers were selected as 
follows. First, we chose variants significantly associated with the exposure (p-value 
under 5e-8) among the called autosomal genetic markers. The markers with minor 
allele frequencies less than 0.01 were pruned because the estimation of the effect 
size from rare variants is unstable. The GWAS summary statistics for the 
metabolomics measured by the Nightingale Health are from open datasets in MRC 
Integrative Epidemiology Unit at the University of Bristol (IEU) [42]. The GWAS 
results of blood phenotypes are from Pan-UK Biobank GWAS summary statistics by 
the Broad Institute (available at https://pan.ukbb.broadinstitute.org). We used 
effect size, standard error, and p-value from the samples with European ancestry. 
Second, the linkage disequilibrium (LD) pruning process was conducted with PLINK 
software with a window size of 50 base pairs to ensure that the selected 
instruments were independent of each other [44]. Pairs of variants with a 
correlation coefficient larger than 0.01 were LD pruned. Lastly, since the markers 
should not directly affect the outcome, variants with p-value with regard to the 
outcome less than 0.05 divided by the number of markers left were excluded. The 
effect size and standard error of the remaining markers were used in the MR 
analysis.  
 
Linear and Nonlinear Exposure-Outcome Relationship 

We first calculated the causal impacts of the biomarkers (exposure) on delta age 
(outcome) with three linear Mendelian randomization methods: MR-Egger 
regression, weighted median method (WM), and inverse variance weighting 
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method (IVW) [45-46]. The MendelianRandomization package in R was used to 
carry out the MR-Egger regression [47]. The estimates and p-values from the 
default version of MR-Egger regression were selected. The same was done for the 
estimates of the WM and IVW method. The estimates in all methods were 
assumed to follow the normal distribution. The Benjamini-Hochberg procedure 
was applied to control the false discovery rates at 0.05 [48]. 

We also carried out an association analysis between delta-age and blood-
chemistry and metabolomics biomarkers. The following linear regression model of 
a single biomarker was used.  

delta age ~ biomarker + sex + age + PC scores + cross-validation batch 

Nonlinear MR was conducted with the nlmr package in R [49]. The key rationale 
for using the nonlinear Mendelian randomization method is to find a nonlinear 
pattern of causal estimates from different ranges of exposure, as the impact of 
exposure on delta age can vary according to the ranges. 

The assumptions for instrument variable regression were first thoroughly tested. 
Among the instruments selected for each biomarker from the linear MR procedure, 
the ones with positive effect sizes were collected. We constructed each sample’s 
single allele score 𝐺 with those markers. Each marker has genotype 0, 1, or 2 for 
each sample. When there are n samples and m genetic markers, the allele score of 
sample i is in (1). 

𝐺𝑖 = ∑ 𝛽𝑗𝑔𝑖𝑗
𝑚
𝑗=1                           (1) 

Here 𝛽𝑗 is the effect size of the jth marker and 𝑔𝑖𝑗  is the genotype of sample i in 

the jth marker. The allele scores and the exposure values were tested for a 
significant positive relationship (p-value of the Pearson’s correlation coefficient 
lower than 0.05 using the cor.test function in R). Exclusion restriction was assumed 
to be testable with conditional independence tests (Y and G conditionally 
independent given X) because the directions of effect between G, X, and Y were 

fixed (G → X → Y). The allele score shows a genetically determined level of the 

biomarker, and the delta age was calculated from images taken after the level of 
the biomarker had been measured. In order to test for nonlinear conditional 
independence, Randomized Conditional Independence Test (RCIT) was used [50]. 
We repeated the RCIT three times. The assumptions were considered to have 
been met if none of the three tests had a p-value less than 0.05 with the null 
hypothesis of the conditional independence between Y and G given X. Only 12 out 
of 310 variables were found to satisfy all the assumptions for instrument variable 
regression. 

Then, we conducted the piecewise MR analysis for the 12 variables that met the 
assumptions [49]. The samples were divided into ten groups according to deciles 
by the IV-free exposure. Assumptions of the IV-exposure relationship in the 
piecewise MR are the homogeneity and the linearity across all samples. These 
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assumptions were tested by the heterogeneity test using Q statistics. If the null 
hypothesis of homogeneity in the estimates between the groups was not rejected 
in the heterogeneity test, the trend test was conducted on the biomarker. The 
trend test evaluated whether the local average causal effect in each group is 
explained by the average value of the exposure in the corresponding group. Kernel 
IV regression with radial basis function kernel was performed with the 12 passed 
phenotypes to check if the results were replicated. Due to the heavy computation 
cost, we sampled 2,000 individuals for the Kernel IV regression. The test values 
were 1,000 numbers with an equal distance between the minimum and the 
maximum of the exposure values. 
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Data Availability 
 
The summary statistics used in the Mendelian randomization analysis are available 
for public download at the IEU OpenGWAS Project (https://gwas.mrcieu.ac.uk) 
and the Pan-UK Biobank (https://pan.ukbb.broadinstitute.org). 

Code Availability 

The code used in the analyses is available at our Github page. 

https://github.com/Flumenlucidum/Brain-Aging. 

We used publicly available software for the analyses. 

MICE: https://github.com/amices/mice 

TensorFlow: https://www.tensorflow.org 

SAIGE: https://github.com/weizhouUMICH/SAIGE 

SAIGE-GENE+: https://saigegit.github.io//SAIGE-doc/  

SKAT: https://github.com/leelabsg/SKAT 

LDSC: https://github.com/bulik/ldsc 

PLINK2: https://www.cog-genomics.org/plink/2.0 

MendelianRandomization: https://github.com/cran/MendelianRandomization 

nlmr: https://github.com/jrs95/nlmr 
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Figure 1 Overview of the analysis 
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. 
(a)                 (b)                   (c) 

 

Figure 2 Scatterplots of chronological age (x-axis) vs. (a) predicted age, (b) delta age, and 
(c) bias-adjusted delta age (y-axis) 
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(a) 

 

 

(b) 

 

Figure 3 Integrated gradient (IG) analysis results. (a) Points with absolute IG > 5 in the 
four CV model sets from 100 individuals with the youngest predicted age. (b) A brain 
image at the x-coordinate of 62. Voxels with absolute IG > 10 are highlighted with colors.   
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Figure 4 Manhattan plot of Single-variant tests with the array-genotyped and imputed 
genetics data on the delta age.  
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Figure 5 A PheWAS plot of Linear MR causal estimates from MR-Egger regression. The 
horizontal red line is the p-value threshold of 0.05. Each color indicates a different group 
of biomarkers. The two most significant in each group with p-values < 0.05 were labeled. 
The shape of the points indicates the direction of the causal effect. Triangles are the 
biomarkers that contribute to higher delta age, and circles are the biomarkers that 
contribute to lower delta age. 
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Table1 The number of samples in each stage of the analysis 
 

3D CNN 
(Training) 

3D CNN 
(Test) 

IG GWAS 
(SNPs) 

GWAS 
(WES) 

MR and 
Association 
(Metabolo
mics) 

MR and 
Associatio
n (Blood 
Chemistry) 

25,656 34,129 34,129 34,129 30,812 8,464 34,129 

 
 
Table 2 The mean absolute error (MAE) of individuals without diseases, each 
cross-validation batch, and individuals with diseases 
 

 Overall CV1 CV2 CV3 CV4 Disease 

Training set 0.8989  0.7801  0.8948  0.9900  0.9309  - 

Test set 2.6406  2.6226  2.7113  2.6351  2.5933  2.6510  

 

Table 3 Significant loci associated with delta age. Single-variant test, SAIGE, was 
applied to array-genotyped and imputed genetics data. 

Chromo
some 

Location 
(GRCh37) 

rsID Nearest 
gene 

Effect 
size 

SE P-value MAF 

17 44,335,635 rs147431626 AC0058
29.2 

0.0875 0.0091 5.36E-22 0.2272 

4 38,638,966 rs201791735 KLF3-
AS1 

0.0661 0.0082 1.14E-15 0.3417 

10 134,559,486 -(deletion) INPP5A 0.0607 0.0089 1.10E-11 0.2401 

1  180,963,000 rs534102361 STX6 -0.0480 0.0076 3.46E-10 0.5714 

11  112,766,643 rs536165403 AC0169
02.1 

1.7857 0.3163 1.64E-08 0.0002 

7 120,981,641 -(deletion) WNT16 -0.0438 0.0078 1.90E-08 0.4698 
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Table 4 Top 5 genes with the smallest p-value. Gene-based test, SAIGE-GENE+, was 
applied to the WES data. P-values were calculated using Cauchy-combination in 
SAIGE-GENE+. 

Chromosome Starting location 
(GRCh38) 

Gene P-value  

3 169966635 SEC62 1.38E-05 

22 21919425 PPM1F 2.50E-05 

10 99782640 ABCC2 4.82E-05 

1 155050566 ADAM15 5.48E-05 

15 23685400 NDN 5.64E-05 

 

Table 5 Top 5 blood biomarkers with the smallest p-value. Causal estimates, 
standard error, and p-values of blood biomarkers in the MR-Egger regression. 

Biomarker Estimates SE P-value 

Eosinophil count 0.151  0.033  5.16E-06 

Eosinophil 
percentage 

0.156  0.045  5.04E-04 

Neutrophil count 0.153  0.048  1.28E-03 

Total protein 0.181  0.057  1.42E-03 

White blood cell 
(leukocyte) count 

0.100  0.038 8.01E-03 
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