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 ABSTRACT 

Background 

Real-time disease surveillance is an important component of infection control in at-risk 

populations. However, data on cases or from lab testing is often not available in many low-

resource settings. Rapid diagnostic tests (RDT), including immunochromatographic assays, 

may provide a low cost, expedited source of infection data. 

Methods 

We conducted a pilot survey-based prevalence mapping study of enteric infection in Camp 

24 of the camps for the forcibly displaced Rohingya population from Myanmar in Cox’s 

Bazar, Bangladesh. We randomly sampled the population and collected and tested stool 

from under-fives for eight pathogens using RDTs in January-March 2021 and September-

October 2021. A Bayesian geospatial statistical model allowing for imperfect sensitivity and 

specificity of the tests was adapted.  

Results 

We collected and tested 396 and 181 stools in the two data collection rounds. Corrected 

prevalence estimates ranged from 0.5% (Norovirus) to 27.4% (Giardia). Prevalence of E.coli 

O157, Campylobacter, and Cryptosporidium were predicted to be higher in the high density 

area of the camp with relatively high probability (70-95%), while Adenovirus, Norovirus, and 

Rotavirus were lower in the areas with high water chlorination. Clustering of cases of Giardia 

and Shigella was also observed, although associated with relatively high uncertainty.  

Conclusions 

With an appropriate correction for diagnostic performance RDTs can be used to generate 

reliable prevalence estimates, maps, and well-calibrated uncertainty estimates at a 

significantly lower cost than lab-based studies, providing a useful approach for disease 

surveillance in these settings.   
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INTRODUCTION 

Real-time surveillance is an important component of preventative interventions against 

infectious disease epidemics. The identification of emerging disease clusters can support the 

targeting of preventative measures to reduce disease transmission. Ratnayake et al, for 

example, review the use of case area-targeted intervention (CATI) for cholera.[1] In 

response to the early detection of a cluster, measures including chemoprophylaxis, water 

treatment and vaccination can be deployed to small areas.  

The identification of disease clusters typically relies on the statistical modelling of 

georeferenced and time-stamped case data. The “Gold standard” case data is a large 

random sample of the population using PCR-based testing. However, PCR-based testing is 

expensive and requires laboratories with skilled technicians, which may be unavailable in 

many contexts. Alternative data sources with location and time information, such as hospital 

admissions or use of electronic health services, can be used to monitor disease spread in a 

population and model changes in incidence.[2, 3] Again though, this information may not be 

routinely available in many low resource settings. In the absence of geolocated case data or 

PCR-based surveys, surveys using rapid diagnostic tests (RDTs) may present a useful 

alternative for real-time disease surveillance. 

RDTs are typically immunochromatographic assays that provide a visual response in the 

presence of specific antigens. These tests are relatively low cost, they can be administered 

by people with little training, and provide results within around 20 minutes (e.g.[4–7]) The 

performance of diagnostic tests is generally reported in terms of its sensitivity (the probability 

a person with the disease tests positive) and its specificity (the probability a person without 

the disease tests negative). With imperfect sensitivity and specificity, the crude test positive 

proportion is a biased estimator for the prevalence, and hence any derived measures like 

relative risk or odds ratios are also like to be biased.[8, 9] However, one can allow for the 

sensitivity and specificity in statistical analyses, which would produce unbiased estimators 

that appropriately reflect the additional uncertainty caused by the imperfect test.[8, 10]  
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When used and modelled appropriately RDTs may therefore be a useful tool for monitoring 

infection in a population. Indeed, their uses may extend to other applications including as an 

outcome measure in evaluations of interventions. For example, water, sanitation, and 

hygiene (WASH) interventions have been the subject of many large-scale trials in recent 

years.[11–14] Almost without exception though, these studies have used self-reported 

diarrhoea as their primary outcome. Diarrhoea is subject to many biases in its measurement 

and can be considered to have very poor “diagnostic performance” with respect to enteric 

infection, the transmission of which WASH interventions aim to prevent. PCR testing for 

enteric pathogens may be too costly or the infrastructure unavailable to include in such large 

trials. RDTs may therefore also provide a useful middle ground beyond surveillance 

applications. 

In this study, we use RDTs to estimate and map the prevalence in the under-fives of several 

enteric pathogens at two time points in the camps for Forcibly Displaced Rohingya 

Population from Myanmar (FDRPM) in Cox’s Bazar, Bangladesh. These camps are typically 

densely populated and have inadequate WASH related facilities, leading to potentially high 

risk of diarrhoeal diseases. Our aim was to predict the prevalence of enteric infection of 

different pathogens and their spatial and temporal distribution in a FDRPM camp, and in so 

doing establish that RDTs could be used in such settings given the absence of previous 

research using them for this purpose, and develop the statistical methodology to incorporate 

uncertainty about the performance of the tests. 

METHODS 

Study setting 

We conducted our study in Camp 24 of the FDRPM Camps in Cox’s Bazar, Bangladesh. 

Figure 1 shows a map of the camp. The camp consists of a densely populated area in the 

North-East with lower density settlements in the remaining area. WASH infrastructure has 
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been slowly developed by several NGOs in the previous few years and generally consists of 

tube wells to provide water and improved latrines for sanitation. 
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FIGURE 1 Map of Camp 24. The camp shows the structures in the camp reflecting the high 
density in the North-East of the camp. The boundary is indicated in red, the roads are brown, 
and water is blue. 
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Sample 

We aimed to include 400 households with a child between the age of 18 and 48 months in 

the study, with good dispersion across the area of the camp. We lacked a complete census 

for the camp that could identify eligible households. We therefore drew a sample from all 

households in the camp. Each sampled household was then visited and if they had a child 

under five years of age, we proceeded with the consent and interviewing process.  The 

camp is divided into “blocks” and each residential location in each block is assigned a 

sequential “door number”, starting at one. We obtained the total number of households in 

each block and then sampled from the door numbers proportional to the block size. Based 

on previous work in the area we estimated that approximately one third of households would 

have a child under the age of five and the response rate would be close to 100%. We 

conducted two rounds of the survey in January-March 2021 (Round 1) and September-

October 2021 (Round 2). We therefore sampled 1,200 households to obtain a sample of 400 

in round 1. We aimed to revisit the same participating households in round 2. 

Survey and stool sampling 

Household survey 

At each participating household, we sought consent from the primary caregiver of the 

children under five. We then conducted a short survey capturing basic demographic and 

socioeconomic background data using the Open Data Kit software on tablet devices, 

including age, sex, level of education, time in Bangladesh, and water and sanitation facilities. 

We also captured the GPS location of the household in the camp. 

Stool testing 

A random child under five was sampled and the caregiver was provided with a plastic 

container with a barcode identifier for the child’s stool. The fieldworkers then returned the 

next day to collect the stool. A sample of the drinking water from the household was also 

collected from the container they normally used for testing the concentration of chlorine. The 
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stool was taken to a field office in the camp. We used ProFlow tests produced by Pro-Lab 

Diagnostics, Wirral, United Kingdom for a set of eight pathogens listed in Table 1. Results 

from the tests were recorded in a survey form and linked to the household ID. The field 

worker also recorded whether the stool was diarrhoea or not. 

Data and analysis 

Sensitivity and specificity 

As stated, we planned to account for the uncertainty due to the performance of the 

diagnostic tests in our statistical analysis. Table 1 provides estimates of test performance in 

terms of the sensitivity and specificity for each test based on values reported in the literature. 

All of the tests had high reported sensitivity, however specificity was more variable. 

 

Table 1. Summary of used rapid diagnostic tests and their reported sensitivity and specificity 

in the literature 

Pathogen Reported 
sensitivity 
range 

Prior Reported 
specificity 
range 

Prior Refs 

E. Coli O157 80 to 98% Beta(18,2) 95 to 100% Beta(98,2) [6] 
Cryptosporidium 50 to 100% Beta(15,5) 90 to 100% Beta(95,5) [7, 15] 
Giardia 50 to 95% Beta(15,5) 90 to 100% Beta(95,5) [7, 15] 
Shigella 80 to 95% Beta(18,2) 95 to 100% Beta(98,2) [16] 
Campylobacter 80 to 90% Beta(17,3) 95 to 100% Beta(98,2) [17, 18] 
Rotavirus 75 to 100% Beta(17,3) 98 to 100% Beta(99,1) [4, 5] 
Norovirus 90 to 100% Beta(19,1) 99 to 100% Beta(99,1) [5, 19] 
Adenovirus 90 to 100% Beta(19,1) 98 to 100% Beta(99,1) [20–22] 
 

 

 

Covariates 

We included two spatially-referenced covariates in our statistical model. First, we used the 

density of structures on the map (Figure 1) as a proxy for population density. Second, we 
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used the estimated level of water chlorination in parts per million (ppm). From each surveyed 

household’s water sample we tested the chlorine levels, these data were then smoothed 

over the area for each survey round using kernel density smoothing. Figure 2 shows the 

covariates within the boundary of the camp.  

Inclusion of covariates can improve predictions and reduce uncertainty.[3, 23] We note that 

the parameters in geospatial statistical models may be biased and difficult to interpret,[24, 

25] and so we do not aim to provide inference on the “effects” of either of the included 

covariates beyond their relative comparisons of their magnitudes in predicting the outcome. 
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Figure 2 Spatially-referenced covariates in Camp 24: building density (top) and spatially-

smoothed levels of chlorine in the drinking water supply in both survey rounds (bottom). 

 

Statistical model 

A technical description of the methods is provided in the Supplementary Information. In brief, 

we specified a binomial geospatial statistical model. For a location � in our area of interest at 

time � � 1,2 we observe the outcome of the test for person � � 1, … ,	 as 
��� , �� where: 
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��� , ��~�������������� , ��� 

For each location and time we define the linear predictor: 

���� , �� � ���� , ��� � ���� , �� 

where ���, �� are the spatially and temporally referenced covariates (Figure 2) and ���, �� is 

a smooth latent process over the area of interest, which we describe below. If we ignore the 

diagnostic performance of the tests then the model would have ���� , �� � �������� , ��� where 

����. � is the inverse-logit function. We refer to this as the “uncorrected model”. 

To take into account the sensitivity and specificity, the probability in the model should reflect 

the probability of testing positive, rather than the probability of having the disease. The test 

positive probability is: 

���� , �� � �1 �  ��!� � � ��� �  ��! � 1� " �������� , ��� 

where  ��� is the sensitivity and  ��! is the specificity. We refer to this as the “corrected 

model”. 

Prior distributions 

The standard geospatial statistical model formulation specifies a Gaussian process prior for 

the term ���, ��. We use an accurate approximation to a Gaussian process prior to improve 

computational time and stability, given the number and complexity of models, with an 

exponential covariance function.[26, 27] We use an auto-regressive specification with a 

single autoregressive parameter # to allow for temporal correlation. 

For the model parameters we specify weakly informative prior distributions, which provide a 

degree of regularisation and computational stability by limiting the parameters to a plausible 

range while not being informative within this range.   
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For the sensitivity and specificity we reviewed previous studies on the performance of RDTs 

for the different pathogens and specified Beta prior distributions on this basis. The 

distributions we used are reported in Table 1. 

 

RESULTS 

Prevalence of enteric pathogens 

In total we surveyed and collected stools from 396 infants in round 1 and 181 infants in 

round 2. Table 2 reports the estimated camp-wide prevalence of the different pathogens. 

Across both rounds, 62% of infants tested positive for at least one pathogen, with 34% 

testing positive for two or more. The most common pathogens in both rounds were 

Campylobacter, Giardia, and Cryptosporidium, all with prevalence over 10% in both rounds 

of the study. Table 3 reports the proportion of those who tested positive who reported an 

episode of diarrhoea in the preceding 24 hours. In all cases only a small minority of test 

positives had had diarrhoea. 
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Table 2. Estimated prevalence of the pathogens from an uncorrected estimator and an 

estimator corrected for the sensitivity and specificity of the RDTs 

Pathogen Round 
 1 (Jan-Mar 2021) 2 (Sep-Oct 2021) 
 Uncorrected Corrected Uncorrected Corrected 
E. Coli O157 1.7 (0.8, 2.9) 1.1 (0.1, 2.6) 2.7 (1.1, 4.9) 1.9 (0.2, 4.5) 
Cryptosporidium 14.8 (11.9, 17.8) 14.1 (9.4, 18.6) 14.2 (10.2, 18.5) 13.0 (7.9, 18.4) 
Giardia 19.4 (16.1, 22.7) 18.6 (10.8, 26.4) 26.8 (21.7, 32.2) 27.4 (18.3, 37.8) 
Shigella 5.5 (3.8, 7.5) 5.3 (2.4, 8.3) 2.2 (0.8, 4.3) 1.8 (0.2, 4.3) 
Campylobacter 22.1 (18.7, 25.6) 22.3 (14.9, 30.4) 20.7 (15.9, 25.4) 19.7 (11.2, 28.8) 
Rotavirus 3.0 (1.8, 4.5) 2.3 (0.4, 4.2) 1.6 (0.4, 3.4) 1.2 (0.1, 3.1) 
Norovirus 1.3 (0.5, 2.3) 0.9 (0.1, 2.0) 0.5 (0.0, 1.6) 0.5 (0.0, 1.6) 
Adenovirus 1.2 (0.5, 2.3) 0.9 (0.1, 2.0) 0.5 (0.0, 1.7) 0.6 (0.0, 1.7) 
 

Table 3 Proportion of those who test positive for each pathogen whose stool was diarrhoea 

Pathogen Round 1  Round 2  
 Test positive, 

n 
Reporting 
diarrhoea 

Test positive, 
n 

Reporting 
diarrhoea 

E. Coli O157 6 0% 4 25% 
Cryptosporidium 58 0% 25 4% 
Giardia 76 0% 48 6% 
Shigella 21 5% 3 0% 
Campylobacter 87 3% 37 8% 
Rotavirus 11 0% 2 0% 
Norovirus 4 25% 0 0% 
Adenovirus 16 6% 6 0% 
 

 

Geospatial mapping 

Figures 3 to 5 show the geospatial model outputs for Campylobacter, Giardia, and 

Adenovirus, respectively (all other outputs are shown in the Supplementary Information). For 

Campylobacter (Figure 3) there is evidence of raised prevalence in the North-West of the 

camp where the settlement density and water chlorination is highest, with predicted 

prevalence 10 percentage points higher than other areas of the camp. The probability that 

prevalence was above 25% was 60% and 70% in rounds 1 and 2, respectively. For Giardia 
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(Figure 4), there was evidence of clustering of cases in different locations unexplained by 

observed covariates, particularly in round 2. There was a high probability that the prevalence 

of Adenovirus (Figure 5) was lower in the chlorinated areas.  

Table 4 reports the model parameters: chlorine was highly predictive of lower prevalence of 

for all the viruses and Shigella. Comparing all the pathogens tested, all three viruses and 

Shigella displayed a high probability of reduced prevalence in the area with higher levels of 

water chlorination. The opposite relationship was predicted for E. coli, Campylobacter, and 

to a lesser extent Cryptosporidium. 

Model outputs from uncorrected models were qualitatively similar to the corrected model. 

The uncorrected models suggested higher certainty around the presence of high prevalence 

areas than the uncorrected models. For example, in round 2 for Giardia, the clustering 

appears more certain with lower probability of high prevalence in the area around the high 

prevalence area. Similarly, the credible intervals of the parameters were narrower in the 

uncorrected models (Table 3). 
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Figure 3 Shigella (corrected). From left to right, from top row to bottom row: log odds ratio 
describing the latent risk in round 1, predicted prevalence in round 1, log odds ratio in round 
2, predicted prevalence in round 2, the probability the odds ratio exceeded 1.5 in round 1, 
the probability the prevalence exceeded 8% in round 1, and the bottom row is the respective 
probabilities for round 2. 
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Figure 4 Giardia (corrected). From left to right, from top row to bottom row: log odds ratio 
describing the latent risk in round 1, predicted prevalence in round 1, log odds ratio in round 
2, predicted prevalence in round 2, the probability the odds ratio exceeded 1.5 in round 1, 
the probability the prevalence exceeded 30% in round 1, and the bottom row is the 
respective probabilities for round 2. 
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Figure 5 Adenovirus (corrected). From left to right, from top row to bottom row: log odds 
ratio describing the latent risk in round 1, predicted prevalence in round 1, log odds ratio in 
round 2, predicted prevalence in round 2, the probability the odds ratio exceeded 1.5 in 
round 1, the probability the prevalence exceeded 2% in round 1, and the bottom row is the 
respective probabilities for round 2. 
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Table 2. Posterior mean and 95% credible interval of model a parameters from both the uncorrected and corrected models. 

Parameter Pathogen 

 E. Coli O157 Cryptosporidium Giardia Shigella Campylobacter Rotavirus Norovirus Adenovirus 

Uncorrected 

Intercept -4.62 
(-6.39, -3.15) 

-1.59 
(-2.28, -0.89) 

-1.39 
(-2.15, -0.56) 

-3.78 
(-5.06, -2.56) 

-1.48 
(-2.18, -0.71) 

-4.03 
(-5.58, -2.61) 

-6.80 
(-9.80, -4.18) 

-2.85 
(-3.92, -1.83) 

Population density 0.04 
(-0.45, 0.60) 

-0.20 
(-0.40, 0.00) 

-0.04 
(-0.23, 0.15) 

0.42 
(0.03, 0.82) 

0.03 
(-0.16, 0.21) 

0.14 
(-0.33, 0.65) 

0.69 
(-0.15, 1.60) 

-0.05 
(-0.37, 0.30) 

Chlorine 0.23 
(-0.41, 0.85) 

0.24 
(-0.06, 0.54) 

0.24 
(-0.17, 0.66) 

-0.61 
(-1.11, -0.11) 

0.06 
(-0.29, 0.36) 

-0.22 
(-0.83, 0.37) 

-0.46 
(-1.38, 0.45) 

-0.28 
(-0.75, 0.16) 

Length scale 1.58 
(0.12, 3.72) 

1.72 
(0.17, 3.68) 

0.81 
(0.07, 2.68) 

1.36 
(0.08, 3.38) 

1.48 
(0.16, 3.68) 

1.68 
(0.20, 3.63) 

1.50 
(0.10, 3.59) 

1.58 
(0.09, 3.74) 

Autoregressive 
parameter 

0.03 
(-0.87, 0.88) 

0.02 
(-0.87, 0.86) 

0.10 
(-0.80, 0.89) 

-0.05 
(-0.88, 0.85) 

0.10 
(-0.82, 0.90) 

-0.01 
(-0.86, 0.85) 

0.03 
(-0.85, 0.89) 

0.06 
(-0.82, 0.89) 

Corrected 

Intercept -6.66 
(-11.40, -3.38) 

-1.63 
(-2.54, -0.77) 

-1.49 
(-2.91, -0.20) 

-4.70 
(-7.77, -2.55) 

-1.68 
(-2.88, -0.40) 

-6.17 
(-10.92, -2.96) 

-7.48 
(-11.94, -

3.94) 

-5.52 
(-11.08, -1.94) 

Population density -0.55 
(-1.99, 0.83) 

-0.23 
(-0.49, 0.00) 

-0.04 
(-0.34, 0.24) 

0.58 
(-0.11, 1.41) 

0.07 
(-0.22, 0.36) 

-0.24 
(-1.61, 0.85) 

-0.17 
(-1.75, 1.16) 

-0.42 
(-1.68, 0.68) 

Chlorine 0.01 
(-1.64, 1.61) 

0.27 
(-0.11, 0.66) 

0.34 
(-0.21, 0.94) 

-0.88 
(-1.92, -0.05) 

0.09 
(-0.33, 0.51) 

-0.39 
(-1.79, 1.00) 

-0.41 
(-1.85, 0.97) 

-0.47 
(-1.76, 0.92) 

Length scale 1.53 
(0.12, 3.65) 

1.66 
(0.12, 3.64) 

0.82 
(0.10, 2.65) 

1.47 
(0.10, 3.58) 

1.42 
(0.15, 3.65) 

1.53 
(0.11, 3.61) 

1.45 
(0.09, 3.57) 

1.45 
(0.06, 3.50) 

Autoregressive 
parameter 

0.00 
(-0.88, 0.86) 

0.04 
(-0.83, 0.89) 

0.03 
(-0.83, 0.87) 

-0.04 
(-0.89, 0.86) 

0.09 
(-0.85, 0.92) 

0.00 
(-0.87, 0.89) 

-0.01 
(-0.88, 0.86) 

-0.01 
(-0.85, 0.86) 

Sensitivity 0.85 
(0.70, 0.96) 

0.90 
(0.76, 0.98) 

0.74 
(0.56, 0.88) 

0.85 
(0.69, 0.96) 

0.73 
(0.55, 0.88) 

0.95 
(0.85, 1.00) 

0.95 
(0.86, 1.00) 

0.90 
(0.78, 0.98) 

Specificity 0.98 
(0.97, 0.99) 

0.98 
(0.94, 1.00) 

0.94 
(0.89, 0.98) 

0.99 
(0.97, 1.00) 

0.94 
(0.88, 0.98) 

0.98 
(0.97, 1.00) 

0.99 
(0.99, 1.00) 

0.97 
(0.95, 0.99) 
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DISCUSSION 

Use of RDTs 

We used RDTs to survey and map the prevalence of eight enteric pathogens in a FDRPM 

camp in Bangladesh. The motivation for using RDTs is that they have a lower price, can 

expedite results, can be used in the field with relatively little training, and obviate the need to 

transport samples. In previous work in Cox’s Bazar, we collected stool samples in the same 

manner, but then froze them and shipped them to a laboratory in Dhaka where we then used 

an appropriate lab-based methods to identify pathogens.[28] We estimated the cost per 

sample was at least 80% lower with the RDTs than in our earlier study. The field workers in 

the current study were recruited locally and provided with training and the appropriate 

materials, which further provided a useful link between the research and the population. 

Thus, in terms of feasibility, the RDTs were successful. 

Correction and effects 

The epistemic cost of using RDTs to collect epidemiological outcomes is the large increase 

in classification error owing to the imperfect sensitivity and specificity. Our statistical 

approach incorporated terms for these parameters to allow for the additional uncertainty 

following previous work in this area.[8, 9] Our results showed that ignoring the error would 

result in overconfidence and bias in the results, both in terms of the crude prevalence and its 

spatial and temporal distribution. However, meaningful and interpretable results could be 

obtained from our corrected models. A key weakness of this study is that we did not have a 

Gold standard, from which we could estimate the “true” spatial distribution of cases and 

compare to our results. However, the cost to obtain sufficient samples to estimate these 

geospatial models was prohibitive. We aimed to use all available evidence on the sensitivity 

and specificity of the tests to inform our priors for the parameters in the model.  

Prevalence of pathogens and distribution 
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Our overall prevalence estimates were highly comparable to our previous study in this camp 

where PCR-based methods were used.[28] Our results suggest that recent efforts in the 

camp to chlorinate the water were successful in reducing the prevalence of particularly 

viruses. However, E.coli, Campylobacter, and Cryptosporidium were predicted to have 

higher prevalence in the high density region of the camp. Two mechanisms might explain 

these observations. First, transmission may be linked to food or environmental 

contamination, facilitated by higher population densities, rather than water. Second, they 

may be resistant to lower levels of chlorination. Cryptosporidium is known to be highly 

chlorine tolerant.[29, 30] One recent study suggested that Campylobacter isolates can 

survive or be revived from exposure to relatively high concentrations of chlorine,[31] and 

similar observations have been made for various strains of E.coli.[32, 33] Our highest 

recorded value for chlorine was 3 ppm.  

Limitations 

There were other limitations to our study. Our fieldwork was significantly affected by Covid-

19. We aimed to conduct a survey at the heights of both the wet and dry seasons, as the 

prevalence of viruses and bacteria vary.[28] However, this was not possible and the two 

rounds of our survey took place in relatively similar climates. We also aimed to follow up with 

the same households in rounds 1 and 2 to consider intra-person comparisons and facilitate 

sampling in round 2. However, many of the infants could not be re-located in round 2 due to 

significant movement of people within and between camps due to on-going programs to 

relocate the FDRPMs.  

Diarrhoeal disease 

Our results also suggest that the carriage rate of all the organisms was much higher than the 

rate of symptomatic diarrhoeal illness. The vast majority of test positive stools were not liquid 

or watery. Many studies evaluating WASH interventions have used self-reported diarrhoea 

as an outcome. In previous work, we have shown how diarrhoea is poorly associated with 
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enteric infection, irrespective of how diarrhoea is measured.[28] We argue that diarrhoea 

itself can be seen as an imperfect test of enteric infection, albeit with much poorer diagnostic 

performance than the RDTs we used in this study. The diagnostic error associated with 

diarrhoea is unknown and is likely to vary from place to place, meaning an appropriate 

correction cannot be made, leading to bias in estimators of prevalence and hence the 

effectiveness of interventions using these measures. One of the arguments for using self-

reported diarrhoea is that it is cheap to collect, meaning large samples can be obtained, and 

it does not require access to expensive specialist labs, equipment, and personnel, which are 

often not available in resource-poor contexts. In this study, we have demonstrated that RDTs 

can provide a useful middle-ground, facilitating the collection of data on the prevalence of 

enteric pathogens while being low cost and possible to use in difficult or isolated 

environments. 
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