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Abstract 

Long non-coding RNAs (lncRNAs) are emerging as key regulators in many biological processes. The 
dysregulation of lncRNA expression has been associated with many diseases, including cancer. Mounting 
evidence suggests that lncRNAs are involved in cancer initiation, progression, and metastasis. Thus, 
understanding the functional implications of lncRNAs in tumorigenesis can aid in developing novel 
biomarkers and therapeutic targets. Rich cancer datasets, documenting genomic and transcriptomic 
alterations together with advancement in bioinformatics tools, have presented an opportunity to perform 
pan-cancer analyses across different cancer types. This study is aimed at conducting a pan-cancer analysis 
of lncRNAs by performing differential expression and functional analyses between tumor and normal 
adjacent samples across eight cancer types. Among dysregulated lncRNAs, seven were shared across all 
cancer types. We focused on three lncRNAs, found to be consistently dysregulated among tumors. It has 
been observed that these three lncRNAs of interest are interacting with a wide range of genes across 
different tissues, yet enriching substantially similar biological processes, found to be implicated in cancer 
progression and proliferation. 
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Introduction 
Cancer is a complex disease that continues to be a health burden globally [1]. It is characterised by 

dynamic alterations in the genome, including somatic mutations, epigenetic modifications, copy number 
variations and changes in expression profiles [2-4]. The emergence of massively parallel sequencing 
technologies has allowed for systematic documentation of the genetic changes in tumors and introduced 
the concept of the cancer genome [5-7]. Considered as a landmark cancer genomics program, The Cancer 
Genome Atlas (TCGA) program has produced, to date, more than 2.5 PB of multi layered genomic, 
transcriptomic, proteomic and epigenomic data along with clinical profiles for more than 11,000 patients, 
across 33 cancer types [8-10]. TCGA has improved our understanding of cancer genomics, revolutionised 
cancer classification and identified therapeutic targets [9,11,12]. 

Although cancers have their own genetic identity, with distinct, tissue specific changes, many tumors 
share similar genetic alterations that disrupt common biological processes [13,14]. Emerging computational 
technologies and rich datasets presented an opportunity to explore the differences and similarities of 
genetic and molecular changes across different tumor types using a set of techniques collectively referred 
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to as pan-cancer analyses [14,15]. The importance of pan-cancer profiling lies in its ability to provide a 
comprehensive analysis of the genetic changes associated with multiple cancers. In addition, not only does 
it identify shared patterns, which aids in the development of uniform treatments strategies, but also 
distinguishes those unique alterations and enhances personalised care [14]. 

With the decreasing cost of whole-genome sequencing, there is a growing focus on performing pan-
cancer analysis on non-coding regions of the genome. An increasing body of evidence suggests noncoding 
RNAs (ncRNAs) play an important role in biogenesis of cancer [16]. While some ncRNAs have been well 
studied, such as microRNAs [17], other types have been studied less extensively, including lncRNAs. 
LncRNAs are transcripts with a length greater than 200 nucleotides, exhibiting similar molecular 
characteristics as messenger RNAs (mRNAs) but lacking an appreciable potential to code for proteins 
[18,19]. Localised either in the nucleus or cytoplasm, lncRNAs form a complex network of interactions with 
DNA, RNA and proteins [20]. Although it is still debatable whether the majority of lncRNAs are simply 
transcriptional noise, some have been attributed with important, distinct biological roles. For example, 
lncRNA XIST is known to initiate silencing of the inactive X chromosome during X inactivation [21,22]. 
More generally, studies have suggested lncRNAs as cis- and trans-acting regulators of gene expression via 
chromatin reprogramming [23,24]. They have also been implicated in post-transcriptional regulation, 
including mRNA translation [25], as well as cell differentiation and development [26]. Despite these 
findings, lncRNA functions remain poorly understood. Nevertheless, lncRNAs are engaged in many 
processes and cellular functions; their dysregulation has been linked to many diseases, including cancer 
[16,27]. 

Aberrant expression of lncRNAs has been identified in many different tumors including brain, breast 
and colon cancer [28,29]. Many lncRNAs have also been shown to be regulated by oncogenes and tumor 
suppressors, suggesting a role in oncogenesis [30]. Furthermore, functional studies have revealed validated 
cancer roles for more than a hundred lncRNAs in tumors [31]. The discovery of lncRNAs has added another 
layer of complexity to cancer biology, with encouraging findings for potential clinical use. 

A wide range of cancer treatments are currently available, including targeted drug therapy, 
radiotherapy, chemotherapy, laser therapy and surgery [32,33]. Chemotherapy, however, continues to be 
preferred despite the fact that its effectiveness diminishes when cancer has advanced or metastasized 
[33,34]. Poor prognosis is probably due to late diagnoses of cancer, together with tumors having acquired 
drug resistance, and continues to be a major challenge in treating malignancies [34]. It is thus important to 
search for new biomarkers for early diagnosis and therapeutic targets for more effective treatments. A 
plethora of evidence has revealed dysregulation of lncRNAs to be associated with cell proliferation, 
apoptosis and drug resistance, processes found implicated in the pathogenesis of cancer [35,36]. These 
findings put forward lncRNAs as potential biomarkers and therapy agents. 

At present, there is an increasing focus on identifying lncRNAs associated with tumorigenesis and 
elucidating their functional implications. Rich RNA-seq datasets are a promising tool for this purpose, but 
their use can be computationally challenging. To highlight the importance of lncRNA association with 
cancer and overcome these challenges, The Atlas of Noncoding RNAs in Cancer (TANRIC) was developed 
[37]. TANRIC is a free and interactive database which gives users access to genomic, proteomic, clinical 
and lncRNAs expression data of 8,143 samples (tumorous and normal) from TCGA and others. 

In order to characterise common, aberrantly expressed lncRNAs we performed a pan-cancer analysis 
on lncRNA expression profiles from TCGA derived dataset using TANRIC platform. We hypothesise that 
those found to be implicated in different cancer types may exhibit similar functional implications across 
cancers. To assess this hypothesis, we sought to identify dysregulated lncRNAs across eight TCGA cancer 
types and explored commonality among different malignancies. We then investigated their functional 
implications, by performing functional analysis and exploiting the similarity of enriched biological 
processes. Previous pan-cancer studies have focused on somatic mutations of whole genomes [15], tumor 
microenvironments [38], as well as proteomic profiles [39]. Putative functions have been studied for onco-
lncRNAs dysregulated in multiple cancers [40] without focusing on common consistently dysregulated 
lncRNAs or exploring similarity of gene ontologies across different cancer types as performed in our study. 

Materials and Methods 
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An overview of the workflow of this study is shown in Figure 1 and explained in the following 
subsections. 

Data source 
We used TANRIC to access expression data of lncRNAs of 3,326 tumor samples and their related 

adjacent 416 normal tissue samples for eight cancer subtypes as categorised in TCGA. Included were 105 
normal and 837 tumor samples of breast invasive carcinoma (BRCA); 58 normal and 488 tumor samples of 
lung adenocarcinoma (LUAD); 17 normal and 220 tumor samples of lung squamous cell carcinoma (LUSC); 
52 normal and 374 tumor samples of prostate adenocarcinoma (PRAD); 59 normal and 497 tumor samples 
of thyroid carcinoma (THCA); 33 normal and 285 tumor samples of stomach adenocarcinoma (STAD); 50 
normal and 200 tumor samples of liver hepatocellular carcinoma (LIHC) and 42 normal and 425 tumor 
samples of head and neck squamous cell carcinoma (HNSC). The choice of cancer types in this study was 
based on the availability of data on the corresponding adjacent normal samples. 

Differential exprssion analysis & commonality exploration 
We carried out differential expression analysis by comparing lncRNA expression levels between 

tumor and related adjacent normal samples of a given set. Expression data for a total of 12,727 lncRNAs 
was downloaded from TANRIC v2.0, for each of the eight TCGA cancer types. Data files were stored as 
matrices with rows representing lncRNAs and columns representing samples. We then identified 
differentially expressed lncRNAs (up and down-regulated) with the threshold of |log2(FC)|>1. We used 
the Student’s t-test to calculate p-values and applied the Benjamini and Hochberg method to control the 
false discovery rate (FDR) [41]. Differentially expressed lncRNAs with adjusted p-value ≤ 0.01 were 
considered statistically significant. We then examined different pools of dysregulated lncRNAs across 
cancers to find commonalities. We identified common dysregulated lncRNAs (found in 2+ cancers) and 
unique dysregulated lncRNAs (specific to a given cancer type). Commonality was evaluated between each 
pair of cancers and represented by Jaccard index (J) [42]. These analyses were implemented in MATLAB 
with the code available at the GitHub repository (https://github.com/VafaeeLab/PanCancer-lncRNAs).  

mRNA correlation analysis 
We utilised TANRIC to explore mRNAs correlated with common dysregulated lncRNAs across each 

cancer type. Our approach was guided by the “guilt by association” principle which infers putative 
functions of a given gene (or, in this study, lncRNA) based on the functions of the genes it is co-expressed 
with [43]. Spearman rank correlation coefficient (rs) were calculated to examine correlation relationships 
between lncRNAs of interest and mRNAs expression. Lists of mRNAs correlating strongly with lncRNAs 
expression were extracted for each cancer type based on cut offs of rs ≥ 0.5 or rs ≤ - 0.5, for positive or 
negative correlation respectively, and correlation p-value ≤ 0.01. 

Functional enrichment analysis 
Exploration of large sets of genes can be achieved by organising them based on common functional 

features, such as biological pathways, molecular functions, or biological processes. One of the most widely 
used and standardised ways to understand genes and their products is to explore gene ontologies (GO) 
[44,45]. Thus, to investigate functional implications of lncRNAs of interest, we performed GO enrichment 
analysis with particular focus on biological processes. We exploited WebGestalt (WEB-based gene set 
analysis toolkit), to identify GO terms enriched by mRNAs lists, found to be correlated with common 
differentially expressed lncRNAs, with the aim of perusing their functional role as a set [46,47]. Statistical 
analysis of GO enrichment was performed using a Fisher’s exact test with Hypergeometric null distribution 
[48,49]. Significantly enriched GO terms were determined as FDR ≤ 0.05. 

GO similarity analysis 
GO, considered as a universal vocabulary, is structured as a hierarchical directed acyclic graph (DAG) 

where each node represents a class of gene function (GO term), and the connection between two GO terms 
indicates different relationships, such as “is a” or “part of”. This hierarchy allows exploring semantic 
similarities among enriched GO terms which could imply functional similarities between the associated 
genes [50,51]. Following the annotation of mRNAs lists by ontology, we merged GO terms enriched by 
each lncRNA across different cancers and distinguished two separate groups: GO terms enriched by 
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positively correlated genes and GO terms enriched by negatively correlated genes. After additional 
filtering, based on FDR ≤0.05, GO terms were then further investigated. Over the past decade, several 
methods and platforms have been developed to examine semantic similarity between GO terms [52-54]. In 
the present study, we chose to measure closeness of GO terms using NaviGO, an interactive software which 
allows the retrieval of functional similarity scores and visualisation as networks [55]. From the six different 
scoring schemes offered by NaviGO, we relied on Relevance Semantic Similarity (RSS), which measures 
relative depth and rareness of the biological processes involved [50]. RSS ranges from 0 to 1, with 0 
representing zero similarity and 1 indicating very high similarity. Functional similarity networks were 
created using the NaviGO visualiser based on threshold RSS ≥ 0.5. 

Results 
Common dysregulated lncRNAs 

Differentially expressed lncRNAs (|log2(FC)| > 1 and FDR ≤ 0.01) were identified across each cancer 
(Table S1). In total, 9,616 lncRNAs manifested significant differential expression across cancers. Whilst 
similarity between pairs of cancers, represented by Jaccard index, appears low (Figure S1), collectively the 
number of shared lncRNAs of one cancer type with the remaining types is quite high, with overlap ranging 
from ~80% to ~97% (Table S2). Of the large number of lncRNAs found to be overlapping among different 
cancer pairs, seven were observed to be differentially expressed in all cancer types (Table S3). Following 
the examination of log2(FC) values; often the same lncRNA deemed upregulated in one cancer type can be 
found downregulated in another, or the other way around. Nonetheless, three lncRNAs were found to be 
consistently dysregulated across all cancers: ENSG00000235904 (RBMS3-AS3) (hereafter, “Antisense”) and 
ENSG00000261472 (Novel transcript) (hereafter, “Novel”) are both upregulated, and ENSG00000272455 
(MRPL20-DT) (hereafter, “Divergent”) is downregulated (Table 1). For this reason, we chose to focus in the 
present study on the three consistently dysregulated lncRNAs: Antisense, Novel and Divergent. To infer 
putative functions, we investigated the correlation between these three lncRNAs and mRNA expression 
across each cancer. In total, 3,141 coding genes were selected (|rs| ≥ 0.5 and p-value ≤ 0.01), with 2,185 
mRNAs found to be co-expressed with Antisense, 69 mRNAs for Novel and 1,026 mRNAs for Divergent 
(Figure 2). We found little overlap between correlated mRNAs across different cancers. It appears that for 
a given lncRNA, the group of co-expressed mRNAs is specific for each cancer type (Figure 3). Full list of 
correlated mRNAs with lncRNAs of interest across cancers can be found in Table S4. 

Gene ontologies for inference of functional similarity 
After identifying GO terms enriched by different sets of statistically associated mRNAs, we combined 

GO terms enriched by each lncRNA across all cancers, depending on the nature of correlation (positive and 
negative). In total, six groups of GO lists were surveyed: Antisense positive, Antisense negative, Novel 
positive, Novel negative, Divergent positive and Divergent negative. Additional filtering of enriched GO 
terms based on FDR ≤ 0.05, resulted in acquisition of three GO terms lists for further research. Two lists of 
GO terms associated with Antisense and one list with Divergent, with no records linked with lncRNA 
Novel (Figure S2). In order to provide functional elucidation of the remaining lncRNAs of interest, we 
explored similarity between GO term pairs using NaviGO and created GO pairwise similarity networks 
(RSS ≥ 0.05). 

Similarity networks 
Starting with GO list enriched by mRNAs positively correlated with Antisense, three clusters in the 

network of functionally similar GO terms were identified (Figure 4a). The first cluster contains GO terms 
predominantly involved in tissues and vessel morphogenesis, together with tissues and vasculature 
development (Figure 4b). The second cluster includes GO terms of system and cellular processes (such as 
actin-mediated cell contraction) in addition to localisation and movement of cell and/or subcellular 
component (Figure 4c). Finally, GO terms in the third cluster found of extracellular matrix and structure 
organisation along with biological and cell adhesion (Figure 4d). Network of mRNAs negatively correlated 
with Antisense, displayed GO terms appear to be mainly associated with ncRNA metabolic processes, 
particularly ribosomal RNA (rRNA) and ribosome biogenesis, in addition to ubiquitination (Figure 5). 
Lastly, mRNAs positively correlated with Divergent have enriched substantially similar GO terms, 
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immersed with mRNA processing, splicing and metabolism, in addition to processes associated with cell 
cycle (Figure 6). 

Finally, we evaluated similarity scores of all GO terms enriched by both lncRNAs combined; 
comparison revealed high similarity between GO terms enriched by mRNAs negatively correlated with 
Antisense and those enriched by mRNAs positively correlated with Divergent (Figure 7). Interestingly, 
after further scrutinisation of the different networks, four GO terms were found to be shared between the 
two: DNA metabolic process, chromosome organisation, cell cycle and RNA processing (Figure 8). 

Discussion 
Dysregulation of lncRNAs among cancers 

The identification of 9,616 dysregulated lncRNAs suggests pervasive variation of lncRNA expression 
in cancers, consistent with previous studies [17,56]. Therefore, understanding functional implications of 
lncRNAs in malignancies is of high importance, as not only can it serve in developing diagnostic tools, it 
can also lead to new treatment strategies. Upon exploring commonality of dysregulated lncRNAs among 
different cancer types, it was observed that the number of common lncRNAs between tumors is quite high 
(average overlap ~90%). These results suggest that potentially the same lncRNAs could be associated with 
different tumors across different tissues. Whilst it has been suggested that lncRNAs are cancer specific, 
displaying distinct expression patterns in different types of tumors, even at times within subtypes as well 
[56,57], some evidence show otherwise. For instance, MALAT1 was suggested to be involved in multiple 
tumors; Inhibition of the well-studied lncRNA was found to prevent lung cancer metastasis [58]. 
Conversely, a more recent study showed that knocking out MALAT1 actually promotes metastasis in breast 
cancer, suggesting its role as a metastasis suppressant [59]. Additionally, oncogenic role has also been 
proposed for MALAT1 in colorectal carcinoma [60]. Nonetheless, we observed 2,855 lncRNAs to be 
dysregulated uniquely in one cancer type, denoting some level of specificity. 

Three consistently dysregulated lncRNAs 
Intriguingly, seven lncRNAs were commonly dysregulated across all tumors, out of which three 

showed striking consistent dysregulation: ENSG00000235904, known as RBMS3-AS3 gene and 
ENSG00000261472, a novel transcript, both exhibited up regulation in all tumor samples whilst 
ENSG00000272455, known as MRPL20-DT gene, manifested down regulation. 

ENSG00000235904, RBMS3-AS3 “Antisense” 
As with majority of lncRNAs, little is known about the functional implication of RBMS3-AS3 or its 

association with tumors. According to lncATLAS [61], RBMS3-AS3 is found to be expressed mainly in the 
cytoplasm. Generally, cytoplasmic lncRNAs are not well understood but believed, through formation of 
complexes with RNA binding proteins, to be involved in different mechanisms, such as mRNA translation 
and stability [62-64] and protein localisation [65,66]. With regards to cancer, RBMS3-AS3 has been proposed 
as a competing endogenous RNA (ceRNA), targeted by several miRNAs in breast cancer [67]. In addition, 
RBMS3-AS3 was shown to be serving as miRNA sponge, acting as a tumor suppressor in prostate cancer 
[68]. We explored TANRIC’s survival analysis for both of these cancer types, and found the survival rate 
across patients to be higher in those who have lower expression of RBMS3-AS3 (Kaplan-Meier analysis and 
log-rank test, p-value < 0.05). Taken together, RBMS3-AS3 seems to display aberrant expression patterns 
across tumors; further studies are required to investigate its function and potential involvement in cancer. 

ENSG00000261472 “Novel” 
Although this lncRNA was also found to be consistently upregulated across tumors, little is known 

about its association with cancer. ENSG00002614172 is small in size (<500bp), and unlike RBMS3-AS3, no 
localisation information was found in lncATLAS [61]. We explored its expression across tissues and found 
it to be almost negligible, with body fat having the highest value of only 1.7 TPM, according to the Genotype 
Tissue Expression project GTEX [69]. Lack of information on this transcript is possibly due to it being newly 
annotated, and most importantly minimally expressed across tissues. Searching through literature, we 
came across a breast cancer analysis where ENSG00000261472 was listed among other enriched lncRNAs 
[70]. However, to the best of our knowledge, no other studies have been published with reference to cancer. 
Concisely, ENSG00000261472 is a novel lncRNA whose cellular function is yet to be discovered. 
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ENSG00000272455, MRPL20-DT “Divergent” 
Similar to Novel, no localisation information was detected in lncATLAS for MRPL20-DT [61]. 

Additionally, there seems to be no previous experimental studies investigating its function or possible 
involvement with tumor. However, a recent cancer analysis reported that the promoter of MRPL20-DT was 
among those who are consistently upregulated across 13 tumor types [71]. Likewise, a 2021 study 
communicated its upregulation amid other lncRNAs, in muscle invasive bladder cancer [72]. In 
contradiction, TANRIC’s survival analysis displayed better survival probability for those with higher 
expression of MRPL20-DT in bladder cancer (Kaplan-Meier analysis and log-rank test, p-value < 0.05), 
which comes in conformity with our results of it being downregulated in malignancy. In essence, MRPL20-
DT role is still undetermined, but evidence suggest its possible association with cancer. Future research is 
needed to investigate its dysregulation in tumors and better understand the molecular mechanisms 
involved. 

Specificity of correlated mRNAs  
In total, we found 3,141 mRNAs to be co-expressed with all three lncRNAs combined. Co-expressed 

gene lists, classified between positively and negatively correlated, ranged in size across different cancers 
and different lncRNAs, proposing a wide and diverse network of gene interactions across tumors. In 
addition, the number of correlated mRNAs of a given lncRNA was dependant on the tissue type. For 
instance, 1,428 mRNAs were positively correlated with Antisense in stomach cancer sample set, compared 
to only 353 and 30 mRNAs in prostate and breast cancer accordingly (Figure 2), suggesting some level of 
tissue specificity, which comes in accordance with previous findings [73]. Upon comparing different lists 
of mRNAs, although there is little intersect between malignancies, mRNAs were noted to be predominantly 
different (Figure 3), suggesting that, despite the commonality of these three transcripts, they appear to be 
interacting with different mRNAs in different tissues. Taken together, lncRNAs seem to manifest both 
tissue specific and ubiquitous relations, interacting with a broad range of genes across different tumors. 

Enriched GO and functional similarity 
We investigated common functional features amongst statistically correlated gene lists by performing 

GO enrichment analysis, in order to understand the functional roles of lncRNAs of interest. We then 
differentiated three GO term lists, after further filtering by FDR. No GO terms were found to be notably 
associated with Novel post filtration, possibly because the number of correlated mRNAs was the lowest 
compared to Antisense and Divergent, hence, as a consequence no significant ontology enrichment was 
detected. The absence of GO terms is somewhat surprising, however does not undermine possible 
involvement of this lncRNA with tumors. It is worth noting that there is evidence of enrichment of Novel 
in breast cancer [70], in addition to the present study where consistent upregulation was outlined across 
all eight cancer types. These initial findings are promising; further studies would make a worthwhile 
contribution, to better understand the underlying mechanisms related to cancer.  

Networks of similar GO terms 
Finally, to better understand the functional similarities of the two remaining lncRNAs Antisense and 

Divergent, we identified three GO similarity networks. It is worth noting that the scoring scheme (RSS) we 
adopted in creating these networks showed minimal variation when compared with Resnik and Lin’s 
semantic similarity, another two widely used measures [50,74]. Whilst this increases our confidence with 
results presented here, a caveat with this approach is that, network representation differs slightly based on 
the cut-off used with these scoring schemes. With that said, this is generally the case with many analyses 
and statistical tests which rely on arbitrary cut off values, and in this analysis, cut off value does not change 
the number or nature of biological processes involved, rather the way they are represented in a network. 

GO terms of positively related mRNAs with “Antisense” 
Three clusters of functionally similar GO terms can be identified in this network (Figure 4a). The first 

cluster comprised of biological processes linked to angiogenesis, blood vessel, tissue morphogenesis as 
well as vasculature development, all known to be critical for cancer growth (Figure 4b). For instance, it is 
well established that angiogenesis is one of the hallmarks of cancer [3]; Tumor cells recruit new blood 
vessels to allow for nutrients and oxygen delivery, as well to be able to metastasize to other tissues [75,76], 
and this also involves the development of new blood vessels and tissues. This is of importance as it implies 
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that Antisense might be involved with pivotal mechanisms of tumorigenesis. Simultaneously, the second 
cluster encompassed GO terms of cell motility and migration, actin filament-based processes along with 
movement of cell (Figure 4c). These processes are also linked to those seen in the first cluster; taking cell 
motility for example, this is essential in allowing tumor cells to enter the vasculature, transport through 
blood vessels and invade other sites [77]. Moreover, networks of actin protein filaments form actin 
cytoskeleton, involved primarily in cell migration and motility in cancer, leading to metastasis [78,79]. 
Finally, the third cluster involved extracellular matrix and structure organisation together with biological 
and cell adhesion, processes also associated with cancer progression (Figure 4d). Indeed, there has been a 
focus on understanding the dysregulation of the extracellular matrix in complex diseases such as cancer. 
Being the major component of the tumor ’microenvironment’, it has been suggested to modulate cell 
behaviour and influence adhesion and migration of cells [80,81]. Collectively, the GO terms presented in 
this network appear to be closely related, describing vital processes for the proliferation and progression 
of malignancies. The question remains though, whether Antisense is exerting a regulatory role in this 
network or is simply a by-pass product. Considering that accumulating evidence revealed many cellular 
functions to be regulated by lncRNAs [82], further investigation is required to understand the potential 
role of Antisense. As not only it will aid in understanding cancer pathogenesis, but could also be a 
promising target to enhance the efficacy of current therapeutic approaches, such as anti-angiogenic drugs 
[83]. 

GO terms of negatively related mRNAs with “Antisense” 
The smaller list of negatively correlated mRNAs with Antisense enriched important functions 

relating to ncRNA metabolic processes, particularly rRNA, ribosome biogenesis and ubiquitination (Figure 
5). Increased ribosomal biogenesis has been associated with tumor proliferation, but mounting evidence 
suggests that impaired ribosomal activity also drives tumorigenesis [84,85]. Ribosome biogenesis is an 
important regulator of cellular activities, including cell growth and cell cycle progression [86,87]; an 
increase in rRNA processing is observed during G1 of interphase, in preparation for protein translation, 
whilst during mitosis, downregulation of ribosomal activity is needed to signal the ending of cell cycle. 
Uncontrolled cell proliferation, a common feature in cancer, is a consequence of impaired ribosomal 
activity. Furthermore, it is now believed that perturbation of ribosomal biogenesis is sufficient to lead to 
malignant transformation [88]. In summary, imbalance and perturbation of ribosomal biogenesis is 
predicted to be linked with malignancies. 

Another process found in this network is ubiquitination (also known as ubiquitylation), a post-
translational mechanism in which proteins are tagged by the conjugation of ubiquitin, for modification. 
Ubiquitin is a small regulatory protein that is highly conserved in eukaryotes, most commonly found to 
initiate proteins degradation, apart from also altering protein-protein interactions and modulating cellular 
processes such as cell cycle, apoptosis, cell signaling and DNA repair [89,90]. It has been shown that 
cytoplasmic lncRNAs interfere with protein expression by either obstructing or promoting ubiquitination 
[91]. With a balanced ribosomal genesis for instance, tumor suppressor protein p53 is usually post-
translationally downregulated through ubiquitination. However, studies have revealed that disruption of 
ribosomal biogenesis primarily causes activation of p53, and consequently disrupts its degradation through 
ubiquitination [84]. Hence, it comes as no surprise that these processes are interconnected, and their 
perturbation is associated with carcinogenesis. lncRNA Antisense, identified in this study, has been shown 
to be associated with a range of important biochemical processes, explicitly ubiquitination. Currently novel 
strategies are being developed to target certain pathways in which ubiquitin is primarily involved, 
resulting in potentiation of drug efficacy and overcoming multi drug resistance [92]. 

GO terms of positively related mRNAs with “Divergent” 
Finally, the network of similar GO terms of mRNAs positively related with Divergent displayed 

processes, enriched in more than one cancer type, relating to mRNA processing, in particular splicing 
pathways in addition to cell cycle regulation, specifically mitosis (Figure 6). Accounting primarily for 
protein diversity, splicing is a fundamental step of mRNA processing where the same coding gene can 
have different, even at times, opposing functional transcripts called isoforms. It has been revealed that 
aberrant splicing is linked with cancer, yielding cancer specific isoforms favourable for tumor growth 
[93,94]. In addition, defective splicing also perturbs the cell cycle, which is also enriched in this network. 
Previous studies have shown a strong connection between several lncRNAs and cell division. For instance, 
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oncogenic role has been suggested to lncRNA EPIC1 as induced cell cycle arrest was detected upon its 
depletion [95]. Taken together, Divergent seem to be directly associated with pivotal processes, involved 
in cancer growth and development. Consistent with literature, lncRNAs have been suggested to influence 
splicing in diseases such as cancer [96]. Moreover, new mechanism of cell death modulation has also been 
linked to lncRNA through interaction with protein factors, leading to apoptosis resistance [97]. However, 
the downfall of these findings, is that the underlying mechanisms still remain largely unknown. 
Nonetheless, Divergent has been presented in this study to be consistently downregulated across tumors; 
investigating its possible role in splicing events and cell growth, may be of benefit. 

GO terms shared across networks 
We reported four processes to be shared by both lncRNAs (Figure 8). Interestingly, these processes 

were found in the network of negatively correlated mRNAs with Antisense, reported to be upregulated in 
cancers, and that of positively correlated mRNAs with Divergent, found to be downregulated in cancers. 
Taken together, it appears that although these two lncRNAs are interacting with different sets of mRNAs 
across different cancers, and possibly through different mechanisms with one being upregulated and the 
other shown to be downregulated; they are both enriching substantially similar processes, found to be 
fundamental in cancer proliferation and progression. Further research is required to identify whether 
consistently dysregulated lncRNAs are involved as causal agents of these processes, or simply a 
consequence of malignant tumor formation. 

Future direction 
The foundational processes identified in this study, such as angiogenesis, underly all tumors 

regardless of tissue type. Understanding the role of lncRNAs in enriching these perturbations is thus very 
important and can be advantageous, particularly when malignant cells spread to other tissues, leading to 
current treatment strategies in becoming somewhat ineffective. A possible future direction would be to use 
other computational approaches and databases to decipher putative functions of lncRNAs, as well as using 
other data sources. For instance, taking an integrative approach considering transcriptomic and 
epigenomic data (e.g., methylation profile [98]), or genomic changes such as copy number alterations 
(CNAs) [99]. In addition, using UCSC genome browser [100], we could also examine the genomic location 
of lncRNAs along with co-expressed coding genes in order to explore cis and trans-relationships, which 
can be an initial step in discovering potential regulatory roles. Moreover, it would be feasible to investigate 
if those identified in this study are also dysregulated in other types of cancer. Furthermore, we have 
focused in the present study on commonly dysregulated lncRNAs across cancers. The complimentary, 
future approach could be to explore lncRNAs that are specific to each cancer type/subtype, with the aim of 
investigating the cancer specific functions that have been carried out by different lncRNAs, which can also 
be of benefit.  

Conclusion 
Once seen as transcriptional by-products, lncRNAs are now emerging as key players in cellular 

function, regulating a wide range of biological processes, and involved in their disruption. LncRNA 
analysis is a rapidly developing field in cancer pathogenesis, with many lncRNAs found to be deregulated 
in tumors. Cancer is complex in nature; Despite tremendous efforts and progress in treatment strategies, 
poor prognosis continues to be an issue particularly when cancer has advanced or metastasized. Therefore, 
identifying novel biomarkers and treatment strategies is of focus, to improve early diagnosis and the 
prognosis of cancer patients. 

Our study provides evidence that lncRNAs may be contributing to hallmarks of cancer, regardless of 
cancer type. It was observed that consistently deregulated lncRNAs across cancers are interacting with a 
wide range of protein coding genes, mostly shown to be specific to tissue type, but enriching substantially 
similar biological processes implicated in carcinogenesis. These results are promising, suggesting that 
lncRNAs can serve as potential therapeutic targets to be applied in multiple cancer subtypes. Future 
treatment strategies may potentially include non-coding genes in addition to specific protein targets. 

Although a lot of progress has been made, only a handful of lncRNAs have had functional 
characterisation roles. The rapidly growing catalogue of cancer associated lncRNAs, led by advance of 
sequencing methodologies and computational tools, has posed a challenge to experimental validation. 
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Thereby, new in silico approaches have emerged to aid in inferring functional roles for uncharacterised 
lncRNAs. LncRNAs have brought a promising new era to cancer biology, especially in terms of diagnosis 
and therapy. 
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Tables and Figures 

Table 1. log2(Fold change) and FDR values of three lncRNAs, consistently dysregulated across all cancers. 

log2 FC FDR log2 FC FDR log2 FC FDR

BRCA 3.45 4.61E-100 3.48 4.01E-105 -1.91 4.39E-06

HNSC 1.69 3.47E-04 2.51 4.69E-17 -3.21 5.20E-05

LIHC 1.64 6.88E-03 1.61 9.34E-03 -4.15 6.81E-04

LUAD 1.91 3.57E-09 2.46 3.09E-22 -3.11 4.32E-07

LUSC 2.41 6.87E-07 2.28 1.15E-05 -4.11 6.89E-03

PRAD 2.41 6.22E-29 1.40 2.37E-03 -2.16 3.85E-06

STAD 2.40 3.50E-09 1.64 7.28E-03 -3.64 1.94E-03

THCA 1.40 5.77E-05 1.33 5.22E-04 -1.69 7.50E-06

Cancer 
ENSG00000235904

Antisense Novel Divergent

ENSG00000261472 ENSG00000272455
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Figure 1. Overview of analyses performed in this study. The arrows show where data from an analysis has 
been used in the ensuing analysis 
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Figure 2. Bar plots showing the number of mRNAs related to the three lncRNAs, per cancer type. Red rep-resents 
Antisense, purple represents Novel and blue represents Divergent. a: number of positively correlated mRNAs. b: 
number of negatively correlated mRNAs. 
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Figure 3. Venn diagram showing the overlap between lists of positively and 
negatively correlated mRNAs with lncRNAs: Antisense, Novel and Divergent, across 
different cancer types: Breast (BRCA), Thyroid (THCA), Stomach (STAD), Prostate 
(PRAD), Lung (LUAD, LUSC) and Liver (LIHC). 
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Figure 4. Functional similarity of GO terms associated with mRNAs of positive correlation with lncRNA 
Antisense. Network visualisation of functional similarity of GO terms enriched by positively correlated 
mRNAs with lncRNA “Antisense”, across cancers (when applicable, RSS ≥ 0.05). (a) Three clusters can be 
visually identified. (b) Close up of cluster 1. (c) Close up of cluster 2 (d) Close up of cluster 3. (b), (c) and 
(d): Each node indicates a GO term and the edges (lines in between) represent a functional similarity, 
representing relationships, such as “is a” or “part of”. The colour(s) of nodes represent the cancer type(s) 
in which GO term was found to be enriched, green for breast cancer (BRCA), orange for liver cancer (LIHC), 
blue for prostate cancer (PRAD) and purple for stomach cancer (STAD). 
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Figure 5. Functional similarity of GO terms associated with mRNAs of negative correlation with lncRNA 
Antisense. Network visualisation of functional similarity of GO terms enriched by negatively correlated 
mRNAs with lncRNA “Antisense”, across cancers (when applicable, RSS ≥ 0.05). The colour(s) of nodes 
represent the cancer type(s) in which GO term was found to be enriched, orange for liver cancer (LIHC) and 
purple for stomach cancer (STAD). 
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Figure 6. Functional similarity of GO terms associated with mRNAs of positive correlation with 
lncRNA Divergent. Network visualisation of functional similarity of GO terms enriched by negatively 
correlated mRNAs with lncRNA “Antisense”, across cancers (when applicable, RSS ≥ 0.05). The 
colour(s) of nodes represent the cancer type(s) in which GO term was found to be enriched, orange for 
liver cancer (LIHC), blue for prostate cancer (PRAD), purple for stomach cancer (STAD) and yellow for 
thyroid cancer (THCA).  
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Figure 7. Summary of Semantic similarity scores of GO terms enriched by both lncRNAs “Antisense” and 
“Divergent”. Heatmap representing semantic similarity scores of GO terms enriched by all sets of mRNAs 
(combined), positively and negatively correlated (when applicable) with lncRNAs Antisense and Divergent. 
Blue indicates low similarity and red indicates high similarity. Three blocks can be seen. Three clusters can 
be identified in the first block, named Antisense Network 1. Shared GO terms between second block 
(Antisense Network 2) and third block (Divergent Network 3) are highlighted in pink. 
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Figure 8. Comparison of Antisense and Divergent GO terms similarity networks. Similarity networks among 
GO terms enriched by mRNAs related negatively to Antisense (left) and mRNAs related positively to Divergent 
(right). Shared GO terms in both networks are encircled in red.  
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