1 Survey of nationwide public perceptions regarding acceptance of wastewater used for 2 community health monitoring in the United States

- Short title: Nationwide public perceptions regarding acceptance of wastewater for health
 monitoring
- 5
- 6 A. Scott LaJoie^a, Rochelle H. Holm^{b*}, Lauren B. Anderson^b, Heather D. Ness^a and Ted Smith^b
- 7
- ^aDepartment of Health Promotion and Behavioral Sciences, School of Public Health and
- 9 Information Sciences, University of Louisville, 485 E. Gray St., Louisville, KY 40202, United States
- ¹⁰ ^bChristina Lee Brown Envirome Institute, School of Medicine, University of Louisville, 302 E.
- 11 Muhammad Ali Blvd., Louisville, KY 40202, United States
- 12
- 13 *Corresponding author: Rochelle H. Holm (rochelle.holm@lousiville.edu)
- 14

15 Abstract

During the coronavirus disease 2019 (COVID-19) pandemic researchers looked for evidence of 16 17 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in feces dissolved in wastewater samples to assess levels of infection across communities. This activity is known 18 19 colloquially as sewer monitoring and called wastewater-based epidemiology in academic settings. When used for public health surveillance in the United States, wastewater monitoring 20 21 is not regulated, although general ethical principles have been described. Prior to this study, no 22 nationwide data existed regarding the public's perceptions of wastewater being used for 23 community health monitoring. Using an online survey distributed to a representative sample of 24 adults in the Unites States (N=3,083), we investigated the public's perceptions regarding what is 25 monitored, where monitoring occurs, and privacy concerns related to wastewater monitoring 26 as a public health surveillance tool. Further, the Privacy Attitudes Questionnaire assessed respondents' general privacy boundaries. The results suggest that respondents supported using 27 wastewater for health monitoring, but within some bounds. Participants were most likely to 28 29 support or strongly support monitoring for disease (95%), environmental toxins (94%), and 30 terroristic threats (90%, e.g., anthrax). Two-thirds of respondents endorsed no prohibition to 31 locations being monitored while the most common category of location respondents wanted to 32 be prohibited from monitoring was personal residencies. Additionally, the findings suggest that those younger in age and living in an urban area were more supportive of wastewater 33

- 34 monitoring, compared to older, suburban dwellers.
- 35
- 36 Keywords: community health; environmental monitoring; Privacy Attitudes Questionnaire;
- 37 public opinion; sewer; wastewater-based epidemiology

38 **1. Introduction**

Wastewater monitoring for public health surveillance is a tool that detects biological and 39 40 chemical targets in sewage from residential or institutional settings prior to treatment and 41 release into the environment. Typically, this involves collecting samples from the existing piped 42 wastewater infrastructure (sewers) and has been deployed for a range of public health inquiries including tracking of pathogens [1], illicit drugs [2,3], dietary patterns [4], and biological agents 43 as weapons [5]. During the coronavirus disease 2019 (COVID-19) pandemic researchers looked 44 45 for evidence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in feces 46 dissolved in wastewater samples to assess levels of infection across communities [6-8]. Sewer monitoring to assess the incidence, distribution, and possible control of diseases is often called 47 wastewater-based epidemiology (WBE). During the COVID-19 pandemic, much discussion has 48 49 occurred about sewer monitoring potentially serving as the foundation for innovative and cost-50 effective methods for public health action and policy broadly. However, surveillance activities can evoke privacy concerns and possible stigmatization of institutional settings or communities 51 52 where concerning levels of health risks are identified. Current WBE methods do not involve the 53 study of human DNA markers that may be present in the sewage; therefore, the public debate 54 around discarded DNA does not currently apply here [9].

55

In the United States, WBE is not regulated regarding privacy concerns, though globally general
ethical principles have been described based on the premise that samples are typically
collected with permission from a utility operating through publicly owned infrastructure [10-

14]. Pertinently, the premise of WBE is that informed and voluntary consent to participate in wastewater monitoring is not needed from individuals contributing feces or urine to the wastewater sample [10-14]. Most wastewater utilities in the United States are governed by public utility commissions which are charged with serving the public interest. Yet, to date, there have been no national assessments of WBE when used for public health surveillance to determine public acceptance or concern.

65

Technologies that use impersonal data for a service purpose such as civil status (birth, death, 66 67 and marriage), housing, elections, or work, have been shown to less likely raise privacy concerns [15]. In contrast, technologies that use personal data for surveillance purposes such as 68 police data or images captured by closed-circuit television cameras are more likely to raise 69 70 privacy concerns [15]. In this regard, there are three recurring dimensions: 71 sensitivity/personalness of the data, purpose (service versus surveillance) of the data collection, and the collector/user of the data [15]. Each of these three dimensions can be extended to the 72 application of wastewater monitoring. For instance, legislation opposing COVID-19 WBE include 73 North Dakota's House Bill 1348, which was aimed at "prohibiting the testing of wastewater for 74 genetic material or evidence of disease; and to provide a penalty," did not pass in February 75 2021 [16]. Media reporting around this proposed legislation focused on the surveillance 76 77 purposes per privacy concerns of building-level surveillance, stating that the practice could 78 violate college student's privacy rights [17]. During the COVID-19 pandemic, the shifting policies 79 of social restrictions determined by community infection levels created circumstances that

80 made credible concerns about WBE data use as partial evidence for changing societal conduct
81 such as community, school, or industry lockdown conditions.

83	Although WBE has been well established to assess public health [1-5], the COVID-19 pandemic
84	magnified the field and may have increased public awareness accordingly. Using a survey
85	distributed to a representative sample of adults in the Unites States, we investigated the
86	awareness, acceptance, and privacy concerns related to wastewater monitoring as a public
87	health surveillance tool. The aim of this study was to assess: (1) acceptance and awareness of
88	wastewater monitoring; (2) knowledge and perceptions of privacy issues; and (3) factors that
89	influence an individual's level of awareness and acceptance of wastewater monitoring. The
90	results will be used to develop insights regarding the acceptability of monitoring and inform
91	policies regarding future applications of wastewater monitoring at both national and local
92	levels.

93 **2. Methods and Materials**

94	An online survey was distributed to a representative sample of adults in the Unites States in
95	January and February 2022. Survey respondents were 18 years and older, residents of the
96	United States, and registered with the Qualtrics XM (Provo, UT) participant panel. Additional
97	inclusion criteria included the ability to read and understand the English language and self-
98	reported to live in an area considered urban or suburban. Potential participants were contacted
99	by email invitation. Invitations were sent randomly to a pool of participants who met the
100	study's inclusion criteria and who had signed up previously to receive study invitations from
101	Qualtrics.
102	
103	Study participants were directed to a secure website reviewed by an institutional review board
104	that complied with the Health Insurance Portability and Accountability Act of 1996 (HIPAA),
105	where they were shown a preamble informed consent. Completion of the survey, which
106	included no identifiable or protected information, was considered assent to participate.
107	
108	2.1. Data collection instrument
109	The 80-item survey included three components: (1) questions to assess knowledge, awareness,
110	and acceptance of wastewater monitoring; (2) questions covering demographics (gender
111	identity, race, ethnicity, age, income, education level, geography); and (3) questions on privacy

112 concerns using the Privacy Attitudes Questionnaire (PAQ) [18]. The PAQ was used as way to

structure privacy as a psychometric construct and considers privacy being limited in both the
physical and digital public environment.

115

- 116 Within the survey, several items were written to theoretically cluster into subscales. Reliability
- analysis provides evidence the survey was interpreted and used as intended. Subscales
- included: knowledge of public health activities (n=6, α =0.86), support for sewage monitoring of
- activities (n=10, α =0.87), support for monitoring of locations (n=7, α =0.84), opposition of
- monitoring of types of locations (n=6, α =0.84), and the Privacy Attitude Questionnaire (n=37,
- 121 α =0.60). According to its developers, the PAQ produces results in four domains. In this study,
- 122 the reliability estimates of these four domains were: *exposure* (n=9, α =0.54), *monitored* (n=9,
- 123 α =0.39), personal information (n=10, α =0.70), and protection (n=8, α =0.69).

124

Additional items assessed *knowledge* (n=3), *self vs. other orientation* (n=6), and *confidence and willingness to share personal information* (n=6). Responses to three subscales showed reliability estimates that were less acceptable (α s less than 0.5). Demographics (n=8) were collected to estimate whether the results could be generalized to the United States population.

129

Survey items consisted of Likert-type scales (arranged in matrices), rank-ordering, select-one,
and choose-all that apply.

133 2.2. Data management and analysis

134 Online surveys using participant panels pose a risk of false responding (e.g., providing random 135 errors to earn an incentive). To counter this risk, the survey was administered via the company 136 Qualtrics XM to participants who are regularly screened for fidelity. Qualtrics XM distributes the 137 survey invitations randomly to its pool of participants who meet inclusion criteria, performs an initial scrubbing of the data, and compensates the participants whose data is deemed 138 acceptable by standards set by Qualtrics XM. These standards include satisfying a CAPTCHA test 139 140 to access the survey, time spent to complete the survey, missing data analysis, and additional 141 proprietary algorithms. Data not meeting Qualtrics XM standards is excluded. The present data 142 collection resulted in 386 (11%) of responses being rejected. Two items were embedded in the 143 survey as attention checks; 100% of respondents included in the analysis answered both attention checks correctly. 144

145

Given the nature of categorical data, analyses were mostly restricted to descriptive measures and non-parametric tests, including frequency counts, cross-tabulations, chi-square, or Fisher exact tests. Pseudo-continuous variables were created where appropriate (i.e., subscales using the same measure type and having a Chronbach Alpha greater than 0.6). The resulting sample size included 3,083 respondents from across the United States (Figure 1) with an estimated margin of error of +/- 2%.

152

- 153 The researchers considered an alpha of <0.05 statistically significant. The data analysis for this
- 154 study was generated using IBM Statistical Package for the Social Sciences (SPSS) software
- 155 (version 28; Chicago, IL) [19].

156157 Fig 1. Location of respondents.

- 158
- 159 2.3. Ethics
- 160 The University of Louisville Institutional Review Board approved this project as Human Subjects
- 161 Research (IRB number: 21.0877).
- 162 **3. Results**

- 163 We obtained complete responses from 3,083 people. Respondents were mostly female (69%),
- white (84%), non-Hispanic (95%) and older (66% of respondents were older than 54 years).
- 165 Income distribution skewed towards higher income brackets, with roughly 25% having incomes
- 166 between \$20,000 and \$40,000; 28% between \$40,000 and \$70,000; and 32% having incomes
- 167 greater than \$70,000. The sample was largely well educated, with many (79%) having some
- 168 college or beyond. Most respondents self-reported living in a suburban area (70%) compared to
- urban area (30%). See Table 1 for a full description of the sample.
- 170
- 171

172 **Table 1. Demographic characteristics of respondents.**

	Ν	Percent
Gender		
Female	2122	68.8%
Male	946	30.7%
Non-binary/third gender	11	0.4%
Prefer not to say	4	0.1%
Age		
18-24	80	2.6%
25-34	234	7.6%
35-44	365	11.8%
45-54	375	12.2%
55-64	663	21.5%
65-74	1014	32.9%
75-84	323	10.5%
85 or older	29	0.9%
Education		
Less than high school	74	2.4%
High School graduate	566	18.4%
Some college	810	26.3%
2-year degree	392	12.7%

	Ν	Percent
4-year degree	791	25.7%
Professional degree	402	13.0%
Doctorate	48	1.6%
Income		
Less than \$10,000	164	5.3%
\$10,000-\$19,999	277	9.0%
\$20,000-\$29,999	401	13.0%
\$30,000-\$39,999	379	12.3%
\$40,000-\$49,999	338	11.0%
\$50,000-\$59,999	300	9.7%
\$60,000-\$69,999	236	7.7%
\$70,000-\$79,999	213	6.9%
\$80,000-\$89,999	150	4.9%
\$90,000-\$99,999	142	4.6%
\$100,000-\$149,999	307	10.0%
More than \$150,000	176	5.7%
How would you describe where you live?		
Mostly urban	926	30.0%
Mostly suburban	2157	70.0%
Race		
White	2584	83.8%
Black	254	8.2%
American Indian/Alaska Native	16	0.5%
Asian	71	2.3%
Native Hawaiian and Pacific Islander	6	0.2%
Other	69	2.2%
Multiple Races	83	2.7%
Hispanic		
Yes	171	5.5%
Νο	2912	94.5%
White or Minority		
Minority	499	16.2%
White	2584	83.8%

174 3.1. Descriptive Findings

Three items assessed rudimentary knowledge of wastewater monitoring of SARS-CoV-2, the 175 176 virus which causes COVID-19. Participants were asked whether COVID-19 could be detected in sewage. The correct answer (true) was selected by 1,304 (42%), while 290 (9%) chose 177 178 incorrectly (false), and 1489 (48%) indicated they did not know. The next item asked which if any statement was false. There were five statements plus a "None are False" statement. The 179 correct false answer, monitoring sewage can determine which person or persons in a 180 181 household has COVID-19, was most commonly chosen (n=1,473, 48%), with 1,060 (34%) 182 incorrectly saying none of the statements are false. Next, participants were asked to identify 183 the fastest way to detect COVID-19 in a community. Response options included items such as 184 test everyone, survey people, and count visits to the emergency department. The correct answer, "measure the level of the virus in the sewer water," was chosen by 1,174 (38%). A 185 186 summary knowledge score was created, with respondents earning one point for each correct 187 answer. Possible knowledge scores ranged between 0 and 3. The distribution of respondents' knowledge scores was: 0 (871, 28%), 1 (996, 32%), 2 (693, 23%), or 3 (523, 17%). The mean 188 (standard deviation) was 1.28 (1.05). 189

190

Respondents were asked to rate their level of awareness of six functions of the health
department on a scale of 0 (no awareness) to 4 (full awareness). Participants were mostly
aware of restaurant inspections (96%), hotel and motel inspections (83%), and drinking water
(74%) and pool (73%) water quality testing, but less aware that health departments monitor air
quality (55%) or wastewater (53%). The mean level of awareness across the six functions was
2.8.

When asked how strongly they would support or oppose wastewater monitoring among ten 197 198 indicators of human activity or health, respondents strongly opposed, opposed, or were indifferent to monitoring of lifestyle behaviors (69%; e.g., smoking, use of birth control), diets 199 200 (68%), and indicators of mental illness (58%; e.g., stress hormones). Monitoring of illegal or 201 prescription drugs, alcohol, and gun residue was supported by half to two-thirds of respondents. Finally, participants were most likely to support or strongly support monitoring 202 203 for disease (95%), environmental toxins (94%), and terroristic threats (90%, e.g., anthrax). 204 Overall, the mean level of support for these various indicators, on a 1 to 5 scale where five is 205 strongly support, was 3.7.

206

In two blocks of items, respondents were asked if they would *want* or would *prohibit* 207 208 monitoring specific geographic scales (ex: neighborhood or city scales) and specific types of 209 locations. These items were presented as a check-all that apply. Nearly 90% of respondents agreed they wanted at least some areas monitored. Specifically, 76% wanted the entire city 210 211 monitored. If not the entire city, respondents wanted schools (29%), neighborhoods (26%), and prisons (23%) monitored. Less support was evident for certain areas of the city (22%), 212 213 businesses (20%), or houses (17%). There were specifically named locations which some respondents thought should be prohibited from monitoring: individual households (27%), 214 215 houses of worship and/or religious organizations (13%), and apartment buildings (11%). 216 Approximately 7-8% wanted to prohibit truck stops and rest areas, school campuses (K-12 and 217 colleges), and nursing homes or assisted living facilities from monitoring. Overall, 67% of 218 respondents would not prohibit monitoring of any of these sites.

219	Wastewater monitoring has the potential to gather data which some people may prefer to keep
220	private. Respondents were asked if they had confidence 'city officials' could maintain the
221	privacy of three types of personal information (health/medical, lifestyle/behaviors, financial)
222	(no confidence to complete confidence, 0 to 4). Eighty-six percent were confident or very
223	confident the city would keep these types of information confidential. Lifestyle and behavioral
224	information were the area in which the highest percentage of respondents were unsure or
225	lacked confidence (18%), followed by financial information (17%), and health/medical
226	information (16%). When asked whether they would be willing to give up privacy (none to all,
227	on a scale of 0 to 4) to ensure people in the community could live safe and healthy lives, 78% of
228	respondents reported being willing to give up most or all of the three information types, with
229	willingness to give up financial information being least frequently endorsed (45%).

230

The Privacy Attitude Questionnaire (PAQ) (Figure 2) included further general privacy boundaries for items such as "I would like a high fence in my backyard" and "Insurance companies should not have access to people's health records." The 37-item measure, with Likert scales (1-5, 5=strongly agree), clusters into four factors. Aggregate mean (standard deviation) scores of the four scales were: *exposure*=2.73 (0.55), *monitored*=3.34 (0.48), *protection*=3.92 (0.58), and *personal information*=2.36 (0.58). Our sampled population had a greater concern about sharing their personal information compared to the other three factors.

- 239 Fig 2. Responses from Privacy Attitudes Questionnaire. A lower score indicates a higher level
- 240 of privacy concern within each factor; error bars represent standard error.
- 241

Table 2. Awareness and support (N=3,083) by age, race, income, education, gender, and location.

			٨٥٥		P			Income			Education		Ger	nder	loc	tio n		
			760		10		less than	\$40k to	\$80k or	High	Ludeation	Graduate	dei		Suburba	101		
	Survey question	18-44	45-65	65+	White	Minority	\$40k	\$80k	more	School	College	School	Ma le	Female	n	Urban	To ta l	To ta l
		(N=679)	(N=1038	(N=1366)	(N=2584)	(N=499)	(N=1171)	(N=2125)	(N=2122)	(N=640)	(N=1993)	(N=450)	(N=946	(N=2122)	(N=926)	(N=2157)	(N=3083)	Percent
Awareness		286	488	776	1282	268	567	541	44.2	240	1049	261	691	1394	470	1080		
	Air Pollution Monitoring	(42.1%)	(47.0%)	(56.8%)	(49.6%)	(53.7%)	(46.4%)	(49.8%)	(57.0%)	(37.5%)	(52.6%)	(58.0%)	(73.1%)	(65.7%)	(50.8%)	(50.1%)	1539	50.20%
	<u> </u>	404	693	1000	1776	321	569	743	785	382	1378	337	522	980	330	596		
	Drinking Water Testing	(59.5%)	(66.8%)	(73.2%)	(68.7%)	(64.3%)	(73.4%)	(68.4%)	(64.3%)	(59.7%)	(69.1%)	(74.9%)	(55.2%)	(46.2%)	(35.6%)	(64.4%)	2085	68%
		289	489	734	1261	251	556	548	408	270	997	245	522	980	1067	445		
	Sewer Monitoring	(42.6%)	(47.1%)	(53.7%)	(48.8%)	(50.3%)	(45.5%)	(50.4%)	(52.6%)	(42.2%)	(50.0%)	(54.4%	(55.2%)	(46.2%)	(49.5%)	(48.1%)	1512	49%
		555	908	1212	2269	406	1040	945	690	535	1743	397	8 13	1847	786	1889		
	Restaurant Inspections	(20.7%)	(33.9%	(45.3%)	(84.8%)	15.2%	(38.9%)	(35.3%	(25.8%	(20.0%)	(65.2%)	(14.8%	(30.6%	(69.4%	(29.4%)	(70.6%	2675	86.8%
		502	783	1072	2001	356	923	837	597	477	1523	357	710	1633	1675	682		
	Hotel and Motel Inspections	(21.3%)	(33.2%)	(45.5%)	(84.9%)	(15.1%)	(39.2%)	(35.5%)	(25.3%)	(20.2%)	(64.6%)	(15.1%)	(30.3%	(69.7%)	(71.1%)	(28.9%)	2357	76.5%
		409	668	981	1750	308	777	729	552	391	1348	319	638	1408	1456	602		
	Public Pool Inspections	(19.9%)	(32.5%)	(47.7%)	(85.0%)	(15.0%)	(37.8%)	(35.4%)	(26.8%)	(19.1%)	(65.5%)	(15.5%)	(31.2%)	(68.8%)	(70.7%)	(29.2%	2058	66.8%
Supportor		374	683	1008	1767	298	766	769	530	407	1351	307	624	1435	1489	576		
opposition	Illegal drugs	(18.1%)	(33.1%)	(48.8%)	(85.6%)	(14.4%)	(37.1%)	(37.2%)	(25.7%)	(19.7%)	(65.4%)	(14.9%)	(30.3%)	(69.7%)	(72.1%)	(27.9%)	2065	67%
		407	637	954	1663	335	778	730	490	405	1319	274	592	1399	1401	597		
	Perscription drugs	(20.4%)	(31.9%)	(47.7%)	(83.2%	(16.8%)	(38.9%)	(36.5%)	(24.5%)	(20.3%)	(66.0%)	(13.7%)	(29.7%)	(70.3%)	(70.1%)	(29.9%)	1998	65%
		298	458	683	1202	237	559	538	342	300	946	193	182	1054	422	10 17		
	Alcohol	(43.9%)	(44.1%)	(50.%)	(46.5%)	(47.5%)	(45.8%)	(49.5%)	(44.1%)	(46.9%)	(47.5%)	(42.9%)	(40.4%)	(49.7%)	(45.6%)	(47.1%)	14 36	46.8%
		545	902	1258	2293	412	1042	966	697	518	1784	403	831	1861	787	1918		07.004
	Terroistic threats (e.g., Anthrax)	(80.3%)	(86.9%)	(92.1%)	(88.7%)	(82.6%)	(85.3%)	(88.9%)	(89.9%)	(80.9%)	(89.5%)	(89.6%)	(87.9%)	(87.7%)	(85.0%)	(88.9%)	2692	87.8%
		5/2	946	1301	2392	429	1090	999	/32	546	1852	423	863	1944	822	1999	20.07	
	Environmental toxins (e.g., industrial chemicals	(84.2%)	(91.3%)	(95.2%)	(92.6%)	(85.0%)	(89.3%)	(91.9%)	(94.5%)	(85.3%)	(92.9%)	(94.0%)	(91.3%)	(91.6%)	(88.8%)	(92.7%)	2807	91.5%
		582	952	1300	2404	430	1099	1000	/35	555	1857	422	857	1953	830	2004	20.20	01.0%
	Deadly diseases (e.g., Ebola, Tuberculos is	(85.7%)	(91.7%)	(95.2%)	(93.0%)	(86.2%)	(90.0%)	(92.0%)	(94.8%)	(80.7%)	(95.2%)	(93.8%)	(91.7%)	(92%)	(89.6%)	(92.9%)	2820	91.9%
	Cup and due (a. a., bullet and and any annual at	397 (E0 E0/1	50Z	625	14/9	305	/14	(E0.00/)	431	502	1148	204	497	12/9	549	1230	1776	57.00/
	dun residue (e.g., dunet casings, gun powder)	247	(34.1%)	195	1001	766	(36.3%) E 11	(20.0%)	204	210	700	167	201	00.3%	(39.376)	956	1//0	37.9%
	Mental illness (e.g. stress he mones)	(51.1%)	(40.9%)	(36.2%)	(38 7%)	(53.3%)	(41.9%)	(4.2.5%)	(37.9%)	(48.4%)	(39.6%)	(37.1%)	(40.3%)	(4.1.5%)	(44.4%)	(39.7%)	1261	41.1%
	Lifestyle behaviors (e.g., stress no find nest	781	311	347	725	214	303	3/3	203	2.20	590	17/	761	677	375	61/	039	30.6%
	Enestyle benaviors (e.g., snio king, birth control)	201	300	357	737	234	417	3/1	205	739	607	173	264	696	34.9	615	530	50.078
	Healthy eating	(43 7%)	(29.8%)	(26.1%)	(28.3%)	(46.3%)	(34.2%)	(31.4%)	(26.5%)	(37.2%)	(30.2%)	(27.3%)	(27.9%)	(32.3%)	(37.6%)	(28.5%)	960	31.3%
Location	nearing caring	513	773	1062	1954	394	950 (77.8	825	573	505	1506	337	703	1633	733	1615	500	51.570
support	Want monitored: Entire city	(75.6%)	(74.5%)	(77.7%)	(75.6%)	(79.0%)	%	(75.9%)	(73.9%)	(78.9%)	(75.6%)	(74.9%)	(69.9%)	(77.0%)	(79.2%)	(74.9%)	2336	76.2%
		166	202	248	483	133	245	214	157	119	393	104	184	429	184	432		
	Want monitored: Areas of city	(24.4%)	(19.5%)	(18.2%)	(18.7%)	(26.87%)	(20.1%)	(19.7%)	(20.3%)	(18.6%)	(19.7%)	(23.1%)	(19.5%)	(20.2%)	(19.9%)	(20.0%)	613	20.0%
		183	242	295	569	151	316	239	165	163	449	108	209	508	232	488		
	Want monitored: Neighborhoods	(27.0%)	(23.3%)	(21.6%)	(22.0%)	(30.3%)	(25.9%)	(22.0%)	(21.3%)	(25.5%)	(22.5%)	(24.0%)	(22.1%)	(23.9%)	(25.1%)	(22.6%)	717	23.4%
		143	182	2 16	4 10	131	232	193	116	1 18	355	68	146	393	173	368		
	Want monitored: Businesses	(21.1%)	(17.5%)	(15.8%)	(15.9%)	(26.3	(19.0%)	(17.8%	(15.0%	(18.4%)	(17.8%)	(15.1%)	(15.4%)	(18.5%)	(18.7%)	(17.1%)	539	17.6%
		166	206	255	483	144	279	212	136 (17.5	137	402	88	185	440	202	425		
	Want monitored: Prisons	(24.4%)	(19.8%)	(18.7%)	(18.7%)	(28.9%)	(22.9%)	(19.2%)	%	(21.4%)	(20.2%)	(13.6%)	(19.6%)	(20.7%)	(21.8%)	(19.7%)	625	20.4%
		208	265	312	617	168	342	263	180	186	500	99	213	569	250	535		
	Want monitored: Schools	(30.6%)	(25.5%)	(22.8%)	(23.9%)	(33.7%)	(28.0%)	(24.%)	(23.2%)	(29.1%)	(25.1%)	(22.0%)	(22.5%)	(26.8%)	(27.0%)	(24.8%)	782	25.5%
		132	169	168	349	120	2 16	154	99	129	290	50	118	349	161	308		
	Want monitored: Houses	(19.4%)	(16.3%)	(12.3%)	(13.5%)	(24.0%)	(17.7%)	(14.2%	(12.8%	(20.2%)	(14.6%)	(11.1%)	(12.5%)	(16.4%)	(17.4%)	(14.3%)	467	15.2%
		431(63.5	699	948	1726	352	860	735	483	463	1337	278	607	1460	1418	660		
	"I would support monitoring of all these places"	%	(67.3%)	(69.4%)	(66.8%)	(70.5%)	(70.4%)	(67.6%)	(62.3%)	(72.3%)	(67.1%)	(61.8%)	(64.2%)	(68.6%)	(65.7%)	(71.3%)	2078	67.4%
		85	137	172	338	56	147	149	98	72	252	70	145	247	110	284		
	Want prohibited: Religious organizations	(12.5%)	(13.2%)	(12.6%)	(13.1%)	(11.2%)	(12.0%)	(13.7%)	(12.6%)	(11.3%)	(12.6%)	(15.6%)	(15.3%)	(11.6%)	(11.9%)	(13.2%)	392	12.8%
		/			190		05 /3 00/				144		63 (6 3 0()	159	C C	161		7 . 201
	Want prohibited: K-12 schools, colleges, and universities	65 (9.6%)	82 (7.9%	78 (5.7%)	(7.4%)	35 (7.0%)	85 (7.0%)	82 (7.5%)	58 (7.5%)	43 (6.7%)	(7.2%)	38 (8.4%)	63 (6.7%)	(7.5%)	64 (6.9%	(7.5%)	222	7.2%
	Manual much likely and Microsoft and Kananana and Sanah Hari (* 1084)	CC 10 701	04 10 101	70 15 000	199	37 (5 494)	07 16 701	00 /0 20/1	EE (7. 19/1	16 17 201	14/ (/.4	22 /2 20/1	70 /7 494	154	ED (6 494)	16/	224	7 30/
	want prohibited: Nursing nomes, assisted living facilities	66 (9.7%)	84 (8.1%	76 (5.6%)	(7.7%)	27 (5.4%)	82 (6.7%)	89 (8.2%)	55 (7.1%)	46 (7.2%)	%	33 (7.3%)	70 (7.4%)	(7.3%)	59 (6.4%)	(7.7%)	224	7.5%
	Want prohibited: Individual houses	(30 202	(78 10/	(74 7%)	(27 70/)	(74.0%)	(74 402)	(26 50/-	(32 10/	(77 70/)	(27 / 0/)	(37 / 0/ 1	(79.0%)	(76.20/)	(73 10/1	(78 90/1	821	27 10/
	want promoted: individual nouses	(30.2%)	(20.1%)	(24./70	201	(24.0%)	(24.470	(20.3%)	(32.1%)	(22.270	100	(32.476	(23.0%)	152	(23.1%)	120.070	1 C0	27.1%
	Want prohibited: Rest areas and truck stops	54 (8 0%)	78 (7 5%	99 (7 2%)	(7.8%)	30 (6 0%)	85 (7.0%)	81 (7 5%)	65 (8 4%)	39 (6.1%)	(7.8%)	37 (8 2%)	76 (8 0%)	(7.2%)	63 (6.8%)	(7.8%)	229	7 5%
	want promoted, Restareas and trucks tops	93	130	119	293	50 (0.0%)	135	171	86	33 (0.170	230	54	117	228	03 (0.0%)	253	223	1.370
	Want prohibited: Apartment buildings	(13, 7%)	(12.5%)	(8.7%)	(11 3%)	49 (9.8%)	(11.1%)	(11 1%)	(11.1%)	58 (9.1%)	(11.5%)	(12.0%)	(119%)	(10.7%)	89 (9 6%)	(11.7%)	340	11 1%
Lo catio n	in a second s	69	131	126	271	55	122	122	82	66	213	47	96	226	250			
opposition	"I would not support any monitoring of sewage water"	(10 2%)	(12.6%)	(9.2%)	(10.5%)	(110%)	(10.0%)	(11.2%)	(10.6%)	(10.3%)	(10.7%)	(10.4%)	(10.2%)	(10.7%)	(11.6%)	76 (8 2%)	326	10.6%
			1	1 1 1 1 1 1 1	,	1-2.6.10	1	,		(1 2 2 2 2 2 2 2 2 2	(==+++++)			1 1			

245 3.2. Inferential Findings

246	To understand whether differences existed in awareness, knowledge, and preferences for
247	monitoring, several comparisons were made with the demographic variables (gender, race, age
248	cohort, education level, income bracket, and urban/rural residency) as dependent variables.
249	Univariate analyses of variance and t-tests were used as appropriate. Scheffe's test was done to
250	determine if any post-hoc comparisons were significant.
251	

252 <u>Knowledge</u>

- 253 The knowledge score (mean, ranged 0 to 3) was tested for differences associated with the
- demographic variables. Statistical differences were found for race (*p*<0.001), age group
- (p=0.001), schooling (p=0.001), and income bracket (p=0.009); there were no differences by
- gender (*p*=0.71) or residency (*p*=0.38). Measures of central tendency by demographics (mean,
- standard deviation) were: race [white (1.33, 1.06), minority (1.02, 0.96)], age cohorts [youngest]
- 258 (1.10, 1.01), middle (1.23, 1.06), oldest (1.40, 1.05)], education [High School (0.95, 0.98), college
- 259 (1.31, 1.05), graduate school (1.61, 1.04)], income bracket [lowest (1.14, 1.04), middle (1.33,
- 1.04), highest (1.44, 1.05)], gender [males (1.34, 1.04), female (1.26, 1.06)], residency [(urban
- 261 (1.18, 1.05), suburban (1.33, 1.05)].

262

264 <u>Awareness</u>

265	Univariate analysis of variance was used to explore the main effects of the demographic
266	variables on the average level of awareness of six public health surveillance activities. Higher
267	means equal higher levels of awareness of the activities. The main effects of gender (<i>F</i> (1,
268	3,067)=4.13, <i>p</i> =0.047), age cohort (<i>F</i> (2, 3,067)=11.14, <i>p</i> <0.001), and education (<i>F</i> (2,
269	3,067)=10.97, p<0.001) were significant, while the main effects of residency, income bracket, or
270	education were not (<i>ps</i> >=0.07). Specifically, males reported higher awareness (<i>M</i> =2.89,
271	SD=0.91) than females (M=2.75, SD=0.95). The youngest cohort (18-44 years, n=679) had the
272	lowest awareness (<i>M</i> =2.64, <i>SD</i> =0.97), followed by the middle cohort (45-64 years, <i>n</i> =1038;
273	<i>M</i> =2.77, <i>SD</i> =0.93), with the oldest cohort (65-85+ years, <i>n</i> =1366; <i>M</i> =2.90, <i>SD</i> =0.92) being most
274	aware. Post-hoc comparisons of age cohorts were significantly different. Those with the lowest
275	level of education completed (high school or less, <i>n</i> =640) had the lowest awareness (<i>M</i> =2.60,
276	SD=0.99) compared to those with at least some college (n=1993; M=2.83, SD=0.93) or graduate
277	school (n=450; M=2.93, SD=0.88). Those with college and graduate school education were not
278	different in level of awareness.

279

Considering the awareness of monitoring of wastewater, a similar pattern of differences was
observed. Respondents who are female, older, wealthier, and more educated were more aware
of wastewater monitoring. There were no differences by race or residency.

283

284

285 <u>Support for Monitoring of Ten Activities</u>

286	Respondents indicated their strength of support for the monitoring of ten activities: use of
287	illegal and prescription drugs or alcohol, eating habits, lifestyle behaviors, gun residue, toxins,
288	terroristic threats, and diseases. The response scale ranged from 1 (strongly oppose) to 5
289	(strongly support); higher means indicate greater support for monitoring. An aggregate
290	measure of support was created by averaging the ten potentially monitorable activities.
291	
292	A univariate ANOVA with mean strength of support as the dependent variable and the
293	demographic variables as independent variables was conducted. Average level of support
294	differed significantly by gender (F(2, 3,066)=19.81, p<0.001; males : M=3.65 SD=0.75; females :
295	M=3.76 SD=0.75) and age cohort (F(2, 3,066)=6.40, p=0.002; youngest: M=3.69 SD=0.79;
296	middle: <i>M</i> =3.70 <i>SD</i> =0.77; oldest: males: <i>M</i> =3.77 <i>SD</i> =0.71), but not income, residency, or
297	education. The pairwise differences between age cohorts were non-significant (18-44 years,
298	M=3.69; 45-64 years, M=3.71; 65-85+ years, M=3.76).
299	
300	Support for Monitoring Specific Locations
301	Respondents indicated which locations they would want to be monitored out of seven options

302 (e.g., the parts of the city, certain neighborhoods, prisons). One option was to <u>not want</u> any

303 location monitored; another option was to <u>want the entire city</u> monitored. For those who

304 choose neither of these two options, the most commonly chosen location for monitoring was

305	schools (26%) and the least common location was houses (15%). Comparisons by demographics
306	were made for the two options (no locations, all locations), as nearly 90% of the sample
307	selected one or the other. Overall, 76% of the sample endorsed the desire for the entire city to
308	be monitored. There were no differences between men and women, whites and minorities, age
309	cohorts, income, or education levels. However, those living in urban areas endorsed monitoring
310	the entire city at a higher percentage than those living in suburban areas (79% vs. 74%,
311	respectively; Fishers Exact test=0.006).

313	On the other hand, more people living in the suburbs (n=250, 11.6%) would not support
314	monitoring of any of the locations compared to people living in urban areas (n=76, 8.2%;
315	Fisher's exact test=0.005). Age cohort was associated with the percent of people not supporting
316	monitoring of any of the locations (Chi-square (df=2)=7.35, p=0.025). The middle-aged cohort
317	(n=131, 12.6%) was less supportive than the young age cohort (n=69, 10.2%) and the older age
318	cohort (n=126, 9.2%) of monitoring any locations. Respondents (men: n=96, 10.2% and women:
319	226, 10.7%; Fisher's exact test=0.37) did not differ on not supporting monitoring of any of the
320	locations. White and minority respondents (white: n=271, 10.5% and minorities: 55, 11%;
321	Fisher's exact test=0.38) did not differ on not supporting monitoring of any of the locations.
322	There was no association of amount of education and the percentage of people not supporting
323	any of the locations (Chi-square (df=2)=0.08, p=0.96); level of no support ranged from high
324	school (n=66, 10.3%), graduate school (n=47, 10.4%) to college (n=213, 10.7%). There was no
325	association of income and the percentage of people not supporting any of the locations (Chi-

- square (df=2)=0.92, p=0.63); level of no support ranged from lowest (n=122, 10%), highest
- 327 (n=82, 10.6%) to middle (n=122, 11.2%).
- 328

329 Prohibiting Monitoring of Certain Locations

Respondents indicated which, if any, of the seven types of locations they would prohibit

331 monitoring (e.g., houses of worship, elderly care facilities, truck and rest stops), with an option

to support monitoring (i.e., prohibit none) of all categories. Most respondents (67%) endorsed

no prohibition to locations being monitored. For those who did not chose this option, the most

334 common category of location respondents wanted to be prohibited from monitoring was

personal residencies (27%) and the least common category to be prohibited was educational

settings (15%). Comparisons by demographics were made for the option, prohibit none. There

337 was no association of race to choosing to prohibit none (Fisher's Exact test=0.11)

338

339 Gender was associated with choosing to prohibit none. Male respondents (36%) were more likely than female respondents (31%) to choose to prohibit none (Fischer Exact test=0.007). Age 340 **cohort** was associated with choosing to prohibit none (Chi square (df=2)=7.25, p=0.03); the 341 youngest cohort was less likely (25%) to prohibit none compared to the middle cohort (33%) 342 343 and the older cohort (31%). Education level was associated with choosing to prohibit none (Chi square (df=2)=13.68, p=0.001; those with high school education (28%) were less likely to 344 prohibit none than those with at least some college (33%) or graduate school (38%). Income 345 **bracket** was associated with choosing to prohibit none (Chi square (df=2)=14.23, p<0.001); 346

347	those in the lowest income bracket were less likely to prohibit none (30%), compared to the
348	middle-income bracket (32%) and highest income bracket (38%). Residency was associated
349	with choosing to prohibit none. Suburban dwelling respondents (34%) were more likely than
350	urban dwelling respondents (29%) to choose to prohibit none (Fischer Exact test=0.007).
351	However, respondents living in urban areas endorsed monitoring the entire city at a higher
352	percentage than those living in suburban areas (79% vs. 74%, respectively; Fishers Exact
353	test=0.006).
354	

355 <u>Privacy Attitude Questionnaire</u>

356 To explore whether demographics predicted variance in the PAQ subscales (exposure,

357 monitoring, personal information, and protection), four stepwise linear regression models were

358 built with demographic variables as predictors. A lower score indicates a higher level of privacy

359 concern within each factor. Note, rather than binning the demographic variables, the full range

360 of options for each variable was used. The PAQ can thus assess respondents' privacy

361 boundaries within public services, such as a municipal sewer system, or of wider community

362 monitoring.

364	A significant regression equation was found (<i>F</i> (3, 3078)=9.26, <i>p</i> <0.001), with an <i>R</i> ² =0.04 for the
365	PAQ factor of exposure. Education level, income, race, and residency were significant
366	predictors. Respondents' predicted <i>exposure</i> score was equal to 26.85 – Age Range (0.60) +
367	Education (0.30) – Race (0.24) + Household Income (0.08). Age Range was measured as 1=under

368	18, through 9=85 or older (each range was 10 years, except 2 which was 18-24 years).
369	Education was measured as 1=less than high school, 2=high school graduate, 3=some college,
370	4=2-year degree, 5=4-year degree, 6=professional degree, 7=doctorate. Race was measured as
371	1=White, 2=Black/African American, 3=American Indian / Alaskan Native, 4=Asian, 5=Native
372	Hawaiian/ Pacific Islander, 6=other, 7=Multiple Races. Household income was measured as
373	1=less than \$10,000 through 12=more than \$150,000, with each income range equal to
374	\$10,000.
375	
376	A significant regression equation was found (F(2, 3080)=13.38, p<0.001), with an R ² =0.009 for
377	the PAQ factor of protection. Education level and race were significant predictors of protection.
378	Respondents' predicted <i>protection</i> score was equal to 30.99 –Education (0.16) + Race (0.28).
379	
380	A significant regression equation was found ($F(4, 3078)=15.66$, $p<0.001$), with an $R^2=0.02$ for

381 the PAQ factor of personal information. Education level and race were significant predictors of

382 personal information. Respondents predicted *personal information* score was equal to 24.38 +

Education (0.18) - Race (0.32) + Household Income (0.09) – Gender (0.92). Gender was

measured as 1=Male, 2=Female, 3=Other. The option "I'd prefer to no answer" was coded as
missing and excluded.

387	A significant regression equation was found (F(4, 3078)=15.40, p<0.001), with an R ² =0.02 for
388	the PAQ factor of monitored. Education level, gender, age range, and household income were
389	significant predictors of monitored. Respondents predicted monitored score was equal to 29.38
390	- Education (0.58) + Gender (0.75) + Age Range (0.12) – Household Income (0.05).
391	
392	Predicting Support for Monitoring of 10 Activities
393	A linear regression equation was constructed using a stepwise approach. The predictor
394	variables were entered into the model as follows: mean score of awareness of public health
395	activities, the four PAQ mean subscale scores (exposure, monitored, privacy, and personal
396	information), and the six demographic variables: gender (1=males, 2=females), age group
397	(1=youngest, 2=middle, 3=oldest), race (0=minority, 1=white), income (1=lowest, 2= middle,
398	3=highest), residency (1=urban, 2=suburban), and education (1=high school, 2=college,
399	3=graduate school).
400	
401	A significant regression equation was found (<i>F</i> (11, 3055)=32.09, <i>p</i> <0.001), with an <i>R</i> ² =0.32 for

- strength of support for monitoring the 10 activities. Awareness, monitored, protection,
- 403 personal information, gender, and age cohort remained as significant predictors (*p*s<0.05);
- 404 exposure, race, education, income bracket, and residency were excluded (*ps*>0.05).

- 405 Respondents predicted Strength of Support score was equal to 1.37 Awareness (0.09) +
- 406 Monitored (0.35) + Protection (0.13) + Personal Information (0.11) + Gender (0.11) + Age
- 407 Cohort (0.04).

409 **4. Discussion**

410 In this study we used a national public opinion survey to understand the public's perceptions 411 regarding what, where, and privacy concerns in supporting various public health wastewater 412 surveillance activities. We found the prevalence of awareness of wastewater monitoring across 413 the United States was low, but even lower than awareness of restaurant inspections, hotel and 414 motel inspections, and drinking water and public pool water quality testing. Respondents more 415 strongly supported sewer monitoring for terroristic threats, toxins, and disease and indicated 416 the least support for lifestyle behaviors, healthy eating, and mental illness monitoring. In regard 417 to the scale of surveillance, more respondents supported surveillance at a city level over households or business level scales. Our results are consistent with the guidelines by Hall et al. 418 [9] and Scassa, Robinson, and Mosoff [13] which suggest that community wastewater 419 420 monitoring is generally acceptable, but when monitoring is conducted at smaller scales such as 421 workers, prisoners, and students, it may elicit more concerns. Our national survey results also parallel an earlier study which was focused on views within only Kentucky which showed more 422 public support for wastewater measurements in the largest areas (>50,000 households) [20]. 423

424

Croft et al. [3] studied both illicit and prescribed neuropsychiatric drugs in wastewater, uniquely
spanning choice activities and mental health. Assessing mental health through sewer
monitoring, using stress hormones as a quantitative measure, offers an opportunity to highlight
the needs and bring more advocacy to fence-line, low-income, or other communities that
struggle with environmental justice. However, these privacy concerns of individuals versus a

community should be balanced with the real and valid concerns that sewer monitoring could be 430 431 used as a tool for surveilling and administering punishment or stigmatization upon a community. For example, identifying evidence of illicit drug use within sewers could resulting in 432 433 negative outcomes for neighborhoods. Alternatively, when sewer monitoring results are made publicly available, it allows individuals and groups, such as those with pre-existing conditions or 434 those who are immunocompromised, to have additional knowledge to assess risk before 435 deciding about participation in public activities. Pertinently, because WBE is currently 436 437 unregulated, and as the complexities of North Dakota's proposed legislation of House Bill 1348 [16] shows, who the public could approach about privacy concerns for wastewater surveillance 438 in their city or county remains ill-defined. 439

440

441 The limitations of sewer monitoring's application in regard to privacy for public health should 442 be acknowledged; WBE is best established when utilizing existing piped wastewater infrastructure. This type of infrastructure covers approximately 85% of the United States 443 population [21] in mostly urban areas, thus allowing a degree of anonymity with a homogenous 444 wastewater sample from many individuals. This is where our survey results show the largest 445 public support. Yet, the remaining 15% of the United States population [21], dominantly rural 446 areas containing more septic tanks or straight pipes or outlier high-income households with 447 large land holdings away from urban centers, would have less individual household privacy in 448 449 WBE approaches and our survey respondents more often thought this should be prohibited 450 from monitoring.

451 Although our national survey found high levels of respondent agreement in acceptance for at 452 least some community areas being monitored for wastewater, our work can also guide targeted education programming where public acceptance or concern is comparatively lower. In 453 wastewater reuse, negative public opinion has been found to be driven by pathogen disgust 454 455 [22]. Yet, wastewater contains more than harmless discarded genetics, and increased use of wastewater monitoring appears to be a part of the future of public health and pandemic 456 457 preparedness. As the field of WBE continues to build capacity, and with no clear governance on 458 this work, sewer utility providers, public health, environmental health, and the public need to 459 ensure unified support while balancing the need to prevent unethical wastewater monitoring. 460 The results of our study show that even though awareness of wastewater monitoring was low, the guard rails of what was and was not acceptable to monitor were clear and could guide 461 462 initial policy regulation.

463

464 **5.** Limitations

This study did not include a random sample. Our respondents tended to be older women and may represent a participant self-selection bias toward interest in public health surveys and access to internet, in itself an indicator of wealth and access to information. Finally, the results are focused on the United States and further research is needed to gather public perceptions regarding acceptance of wastewater used for community health monitoring globally.

470

6. Conclusion

473	Using an online survey distributed to a representative sample of adults in the Unites States, we
474	investigated the public's perceptions regarding what is monitored, where monitoring occurs,
475	and privacy concerns related to wastewater monitoring as a public health surveillance tool. The
476	results suggest that the majority of respondents supported WBE when it is used for public
477	health monitoring, but within some bounds. Being younger in age and urban dwelling were
478	associated with support of wastewater monitoring, compared to older, suburban dwellers. The
479	most important finding of this work may be the absence of a large nationwide concern
480	regarding wastewater being a privacy violation when forming future policy regulation of
481	wastewater monitoring as a public health surveillance tool; and in areas where public
482	acceptance or concern is comparatively lower our results suggest guided targeted education
483	programming.

486 Funding

487	This work was supported by a grant from The Rockefeller Foundation, as well as grants from the
488	James Graham Brown Foundation and the Owsley Brown II Family Foundation. The funders had
489	no role in the study design, data collection and analysis, decision to publish, or preparation of
490	the manuscript.
491	
492	Authors' contributions
493	Conceptualization: ASL and TS; Methodology: TS; Formal analysis: ASL; Writing-original draft
494	preparation: RHH; Writing-review and editing: ASL, RHH, LBA, HDN, TS; Supervision: TS; Project
495	administration: TS. All authors have read and agreed to the published version of the
496	manuscript.
497	
498	Disclosure
499	The authors declare no competing financial interests.

501 References

502	1.	Bisseux M, Debroas D, Mirand A, Archimbaud C, Peigue-Lafeuille H, Bailly JL, Henquell C.
503		Monitoring of enterovirus diversity in wastewater by ultra-deep sequencing: An
504		effective complementary tool for clinical enterovirus surveillance. Water Research. 2020
505		Feb 1;169:115246. doi: 10.1016/j.watres.2019.115246
506	2.	Banta-Green CJ, Brewer AJ, Ort C, Helsel DR, Williams JR, Field JA. Using wastewater-
507		based epidemiology to estimate drug consumption—Statistical analyses and data
508		presentation. Science of the Total Environment. 2016 Oct 15;568:856-63. doi:
509		10.1016/j.scitotenv.2016.06.052
510	3.	Croft TL, Huffines RA, Pathak M, Subedi B. Prevalence of illicit and prescribed
511		neuropsychiatric drugs in three communities in Kentucky using wastewater-based
512		epidemiology and Monte Carlo simulation for the estimation of associated
513		uncertainties. Journal of hazardous materials. 2020 Feb 15;384:121306. doi:
514		10.1016/j.jhazmat.2019.121306
515	4.	Choi PM, Tscharke B, Samanipour S, Hall WD, Gartner CE, Mueller JF, Thomas KV,
516		O'Brien JW. Social, demographic, and economic correlates of food and chemical
517		consumption measured by wastewater-based epidemiology. Proceedings of the
518		National Academy of Sciences. 2019 Oct 22;116(43):21864-73. doi:
519		10.1073/pnas.1910242116
520	5.	Sinclair R, Boone SA, Greenberg D, Keim P, Gerba CP. Persistence of category A select
521		agents in the environment. Applied and Environmental Microbiology. 2008 Feb
522		1;74(3):555-63. doi: 10.1128/AEM.02167-07

523	6.	Wu F, Zhang J, Xiao A, Gu X, Lee WL, Armas F, Kauffman K, Hanage W, Matus M, Ghaeli
524		N, Endo N. SARS-CoV-2 titers in wastewater are higher than expected from clinically
525		confirmed cases. Msystems. 2020 Jul 21;5(4):e00614-20. doi: 10.1128/mSystems.00614-
526		20
527	7.	Yeager R, Holm RH, Saurabh K, Fuqua JL, Talley D, Bhatnagar A, Smith T. Wastewater
528		sample site selection to estimate geographically resolved community prevalence of
529		COVID-19: A sampling protocol perspective. Geohealth. 2021 Jul;5(7):e2021GH000420.
530		doi: 10.1029/2021GH000420
531	8.	Zhang Y, Cen M, Hu M, Du L, Hu W, Kim JJ, Dai N. Prevalence and persistent shedding of
532		fecal SARS-CoV-2 RNA in patients with COVID-19 infection: A systematic review and
533		meta-analysis. Clinical and translational gastroenterology. 2021 Apr;12(4). doi:
534		10.14309/ctg.00000000000343
535	9.	Joh EE. Reclaiming abandoned DNA: The Fourth Amendment and genetic privacy. Nw.
536		UL Rev. 2006;100:857.
537	10	. Hall W, Prichard J, Kirkbride P, Bruno R, Thai PK, Gartner C, Lai FY, Ort C, Mueller JF. An
538		analysis of ethical issues in using wastewater analysis to monitor illicit drug use.
539		Addiction. 2012 Oct;107(10):1767-73. doi: 10.1111/j.1360-0443.2012.03887.x
540	11	. Gable L, Ram N, Ram JL. Legal and ethical implications of wastewater monitoring of
541		SARS-CoV-2 for COVID-19 surveillance. Journal of Law and the Biosciences. 2020
542		Jan;7(1):lsaa039. doi: 10.1093/jlb/lsaa039
543	12	. Coffman MM, Guest JS, Wolfe MK, Naughton CC, Boehm AB, Vela JD, Carrera JS.
544		Preventing Scientific and Ethical Misuse of Wastewater Surveillance Data.

			<u></u>	0004 4	AF FF/47	
545	Environmental	science	& technology.	2021 Aug	25:55(1/):114/3-5. doi:

- 546 10.1021/acs.est.1c04325
- 547 13. Hrudey SE, Silva DS, Shelley J, Pons W, Isaac-Renton J, Chik AH, Conant B. Ethics
- 548 guidance for environmental scientists engaged in surveillance of wastewater for SARS-
- 549 CoV-2. Environmental science & technology. 2021 Jun 8;55(13):8484-91. doi:
- 550 **10.1021/acs.est.1c00308**
- 551 14. Scassa T, Robinson P, Mosoff R. The Datafication of Wastewater: Legal, Ethical and Civic
- 552 Considerations. Technology and Regulation. 2022 Feb 11;2022:23-35. doi:
- 553 10.26116/techreg.2022.003
- 15. Van Zoonen L. Privacy concerns in smart cities. Government Information Quarterly. 2016
- 555 Jul 1;33(3):472-80. doi: 10.1016/j.giq.2016.06.004
- 16. North Dakota. Bill Actions for HB 1348. [cited 2022 March 2]. Available from:
- 557 https://www.ndlegis.gov/assembly/67-2021/bill-actions/ba1348.html.
- 558 17. AP News. North Dakota bill would ban wastewater testing for COVID-19. [cited 2022]
- 559 March 2]. Available from: https://apnews.com/article/environment-north-dakota-
- 560 coronavirus-pandemic-wastewater-7f30745720e552eeef91eb5573eca3fc
- 561 18. Chignell MH, Quan-Haase A, Gwizdka J. The privacy attitudes questionnaire (paq): initial
- 562 development and validation. In Proceedings of the human factors and ergonomics
- society annual meeting 2003 Oct (Vol. 47, No. 11, pp. 1326-1330). Sage CA: Los Angeles,
- 564 CA: SAGE Publications. doi: 10.1177/154193120304701102
- 19. IBM Corp. Released 2021. IBM SPSS Statistics for Windows, Version 28.0. Armonk, NY:

566 IBM Corp.

- 567 20. Holm RH, Brick JM, Amraotkar AR, Hart JL, Mukherjee A, Zeigler J, Bushau-Sprinkle AM,
- 568 Anderson LB, Walker KL, Talley D, Keith R. et al. Public awareness and support for use of
- 569 wastewater for SARS-CoV-2 monitoring: A community survey in Louisville, Kentucky.
- 570 medRxiv. 2021. doi: 10.1101/2021.10.19.21264954
- 571 21. World Health Organization and United Nations Children's Fund (UNICEF). Progress on
- 572 household drinking water, sanitation and hygiene 2000-2020: Five years into the SDGs.
- 573 Geneva. [cited 2022 March 13]. Available from:
- 574 https://data.unicef.org/resources/progress-on-household-drinking-water-sanitation-
- 575 <u>and-hygiene-2000-2020/</u>
- 576 22. Wester J, Timpano KR, Çek D, Lieberman D, Fieldstone SC, Broad K. Psychological and
- 577 social factors associated with wastewater reuse emotional discomfort. Journal of
- 578 Environmental Psychology. 2015 Jun 1;42:16-23. doi: 10.1016/j.jenvp.2015.01.003