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Abstract

Mathematical modelling is important for better understanding of disease dynamics and developing strategies
to manage rapidly spreading infectious diseases. In this work, we consider a mathematical model of COVID-
19 transmission with double-dose vaccination strategy to control the disease. For the analytical analysis
purpose we divided the model into two, model with vaccination and without vaccination. Analytical and
numerical approach is employed to investigate the results. In the analytical study of the model we have
shown the local and global stability of disease-free equilibrium, existence of the endemic equilibrium and
its local stability, positivity of the solution, invariant region of the solution, transcritical bifurcation of
equilibrium and sensitivity analysis of the model is conducted. From these analyses, for the full model
(model with vaccination) we found that the disease-free equilibrium is globally asymptotically stable for
Rv < 1 and is unstable for Rv > 1. A locally stable endemic equilibrium exists for Rv > 1, which shows
the persistence of the disease if the reproduction parameter is greater than unity. The model is fitted to
cumulative daily infected cases and vaccinated individuals data of Ethiopia from May 01, 2021 to January
31, 2022. The unknown parameters are estimated using the least square method with the MATLAB built-
in function ’lsqcurvefit’. The basic reproduction number, R0 and controlled reproduction number Rv are
calculated to be R0 = 1.17 and Rv = 1.15 respectively. Finally, we performed different simulations using
MATLAB. From the simulation results, we found that it is important to reduce the transmission rate,
infectivity factor of asymptomatic cases and, increase the vaccination coverage and quarantine rate to
control the disease transmission.

Keywords: COVID-19, Vaccination, Control Reproduction number, Sensitivity analysis, Endemic
equilibrium, Parameter estimation.

1. Introduction

Coronavirus (COVID-19) is an infectious disease caused by a novel coronavirus, which is a respiratory illness
that can spread in a population in several different ways. A person can be infected when droplets containing
the virus are inhaled or come directly into contact with the eyes, nose or mouth. The novel coronavirus has
been spreading worldwide starting from the first identification in December 2019. The world health
organization (WHO) declared COVID-19 as pandemic on March 12, 2020. From the first day of the
outbreak to February 21, 2023, more than 757.2 million confirmed cases and more than 6.8 million
confirmed deaths are registered worldwide [32]. The same report shows 499833 confirmed cases and 7, 572
confirmed deaths in the same period of time in Ethiopia.

The world is struggling to control the pandemic by imposing different restrictions based on country-specific
strategies. Besides the restrictions, nowadays different countries are delivering vaccines to their people. As
of 21 February 2023 , 11 vaccines were granted for emergency use by WHO [31]. These are Novavax,
COVOVAX, Moderna, Pfizer/BioNTech, Janssen (Johnson & Johnson), AstraZeneca, Vaxzevria
(Oxford/AstraZeneca) , Covishield (Oxford/AstraZeneca formulation), Covaxin, Sinopharm and Sinovac.
Country approvals of this vaccine varies. For example, Pfizer/BioNTech and Oxford/AstraZeneca are
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approved by 149 countries, Janssen (Johnson & Johnson) is approved by 113, and Moderna is approved by
88 countries worldwide [31]. Until February 18, 2023, about 13.2 billion COVID-19 vaccine doses are
administered globally. The portion 69.6% of the world population have received at least one dose of
COVID-19 vaccine and this coverage represents developed counties due to scarcity of the vaccine in
low-income countries. Only 27.6% of people in low-income countries have received at least one dose [26]. Up
to 21 January 2023, a total of 53, 514, 115 vaccine doses have been administered in Ethiopia [32].

Studies involving mathematical models of infectious disease are helping the public health authorities by
giving them an in-depth information through analysis of dynamics of the disease to make an informed
decisions and policy making. Oftentimes, deterministic models based on classical derivatives are used to
study the disease transmission dynamics. These studies are also powerful tools for predicting the future
aspects of a disease. As far as COVID-19 is concerned, currently there are several such researches which
have been conducted and are helping the struggle towards containing the spread.

Before vaccines are produced, mathematical models for COVID-19 focused on assessing the impacts of
non-pharmaceutical interventions(NPIs) like social distancing, wearing masks, personal hygiene, partial or
full lockdown and the like as control strategies. For the details on this we mention [25, 1, 29, 3, 22, 13, 4]
and the references therein. Mathematical model of SARS-CoV-2 transmission with optimal control is
studied in [25] using the data from USA and they found that a major factor that differentiates strategies
that prioritize lives saved versus reduced time under control is how quickly control is relaxed once social
distancing restrictions expire. They also highlighted that the scope of controlling the COVID-19 until
vaccines are available depends on epidemiological parameters. The study in [29], which studies the
transmission of COVID-19 in crowded settlements revealed that level of compliance to standard operating
procedures (SOPs) (such as use of masks, physical distancing measures and effective contact tracing)
increases, then the disease prevalence peaks are greatly reduced and delayed. Authors in [3] studied a model
of the transmission dynamics of corona virus disease in India focusing on basic non-pharmaceutical
interventions. Their results showed that the implementation of an almost perfect isolation in India and
33.33% increment in contact-tracing on June 26, 2020 may reduce the number of cumulative confirmed cases
of COVID-19 by around 53.8% at the end of July 2020. In [1], modifiying the Kermack–McKendrick SEIR
model the authors studied the population-level impact of implementing behavioural change control measures
, the time horizon necessary to reduce the effective contact rate, and the proportion of people under sanitary
emergency measures in controlling COVID-19 in Mexico. Simulation results of this paper indicated that the
most likely dates for maximum incidence happen under a scenario of high Sanitary Emergency Measures
(SEM) compliance and low SEM abandonment rate. Even if the quality of the face mask is frequently
questioned, wearing a face mask is one of the non-pharmaceutical measures. The study in [13] suggests that
broad adaption of even the relatively ineffective face masks may significantly reduce the transmission and
hospitalization peak and death. For combating COVID-19, the timing of relaxing or lifting of
non-pharmaceutical measures is essential. From this point of view, the authors in [22] showed the crucial
importance of relaxation or lifting of strict social distancing measures in determining the future aspect of
COVID-19 pandemic.In particular one of their results show shows that early termination of the strict
social-distancing measures could trigger a devastating second wave with burden similar to those projected
before the onset of the strict social-distancing measures were implemented. In [4], they evaluate and
compare the effectiveness of the four types of NPIs of COVID-19, namely: the implementation of a
mandatory mask, quarantine or isolation, distancing and traffic restriction in 190 countries between 23
January and 13 April 2020. In their study, they indicated that NPIs could significantly hold the COVID-19
pandemic. Social distancing and the implementation of two or more NPIs should be the priority strategies
for holding COVID-19.

Forecasting the COVID-19 pandemic is crucial for health care planning and controlling the disease. In this
respect, the authors in [16] proposed a COVID-19 model with contact tracing and hospitalization strategies
and performed short-term and long-term predictions for daily and cumulative confirmed cases of COVID-19
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outbreaks for five provinces of India. In the short-term predictions, some states show exponential growth
and others show decay of daily new cases. Long term predictions for India show to exhibit oscillatory
dynamics. A COVID-19 model in [27] predicts the dynamics of COVID-19 in 17 provinces of India and
overall India. One of the results in this study shows that combining the restrictive social distancing and
contact tracing will make the elimination of COVID-19 pandemic possible.

Currently, vaccines are available as one of the main control strategies. Epidemiological modelers started to
incorporate this additional intervention to see the dynamic properties of the disease and sort out some
important policy directions for the public health authorities. In this regard, there are a number of studies,
from which [10, 21, 6, 15] can be mentioned. A mathematical model of COVID-19 with comorbidity was
formulated to study the transmission dynamics and an optimal control-based framework to mitigate the
disease transmission in [10]. In this study, the authors found that disease persists with the increase in
exposed individuals having comorbidity in society and an optimal strategy with combined measures provides
effective protection of the population with minimum social and economic costs. Even during vaccination,
non-pharmaceutical interventions are essential: In this regard the study in [21] showed that relaxing
restrictions would cause benefits from vaccination to be lost by increasing case numbers and hence
vaccination alone is insufficient to contain the outbreak. Another problem in attaining herd immunity in the
population is vaccine hesitancy in the event that vaccination is not mandatory, in which case people are the
last to decide either to get vaccinated or otherwise. A behavioural modelling approach was used to assess
the impact of hesitancy and refusal of vaccine on the dynamics of the COVID-19 [6]. In this paper, the
authors showed hesitancy and refusal of vaccination is better contained in case of large information coverage
and small memory characteristics. In the study [15] the author analyzed the onset of COVID-19 spread in
countries such as China, Italy, Spain, the United States, the United Kingdom, Japan, France, and Germany
based on publicly available statistical data aiming to establish the laws of the spread of COVID-19 and to
use them to develop a mathematical model to predict changes and make informed control policy decisions.
In the study specific values for SARS-CoV-2 transmissibility and COVID-19 duration were estimated for
different countries. It was found that in China, the viral transmissibility was3.12 before quarantine measures
were implemented and 0.36 after these measures were lifted. For the other countries, the viral
transmissibility was 2.28 − 2.76 initially, and it then decreased to 0.87 − 1.29 as a result of quarantine
measures. Therefore, it can be expected that the spread of SARS-CoV-2 will be suppressed if 56%− 64% of
the total population becomes vaccinated or survives COVID-19.

Even with these immunizations, the virus continues to spread in many countries, with some vaccinated
people becoming infected, necessitating the delivery of booster shots. Recently, authors in [24, 2] have built
mathematical models devoted to studying the impact of double dosage vaccination. The authors of [24]
looked at a COVID-19 model with a double-dose vaccination strategy to reduce the illness outbreak in
Bangladish. According to the findings, a full-dose vaccination campaign has the ability to eradicate the
virus from the community. A similar study [2] was undertaken for the case in Ghana, and it revealed that
implementing double-dose vaccination and quarantine will help reduce the spread of COVID-19. We will
consider a similar model with double-dose vaccination in the the case of Ethiopia.

A few epidemiological modeling studies of COVID-19 based on Ethiopian data have been undertaken, and
we will highlight some of them here. In [20], the authors considered a mathematical model for the
transmission dynamics of COVID-19 by incorporating self-protection behavioral changes in the population.
Based on the available data from Ethiopia and other countries, they estimated the unknown parameter
values using a combination of least squares and Bayesian estimation methods. They found that the sensitive
parameters for the spread of the virus vary from country to country and control of the effective transmission
rate (recommended human behavioral change towards self-protective measures) is essential to stop the
spread of the virus. A mathematical model of COVID-19 in the case of Ethiopia is also considered in
[17].Indeed in this study they found that the spread of COVID-19 can be managed by minimizing the
contact rate of infected and increasing the quarantine of exposed individuals. There is also another
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COVID-19 mathematical modelling for optimal control and assessing the impact of nonpharmaceutical
interventions on the dynamics of COVID- 19 which are specific to Ethiopian data [11, 14]. Even with
vaccines in place as an intervention for the COVID-19 pandemic, countries are still struggling to control the
disease. Better understanding of disease dynamics and forecasting will be paramount for developing better
pandemic management strategies. We also believe that scientific studies on COVID-19 transmission in
Ethiopia are limited and that, as far as we reviewed, no mathematical modeling studies have been conducted
in light of the current situation (including double-dose vaccination). As a result, we consider a mathematical
model of COVID-19 transmission dynamics with double-dose vaccination in our study.

The paper is organized as follows: In Section (2), we describe the model and formulate the pertinent differential
equation. In Section (3), we carry out mathematical analysis of the model. Section (4) is devoted to numerical
simulation and discussion. In Section (5), we present prediction of the cumulative vaccine administered with
respect to the first dose vaccination rate. Finally, in Section (6) the conclusion is presented.

2. Model description and formulation

In this study, we proposed a model where the total population is divided into nine compartments. Namely
Susceptible, are uninfected people with the disease but have a chance to be infected; Vaccinated with first
dose, but still have the chance to be infected; vaccinated with second dose, individuals who completed the two
doses within the specified time; Exposed, Infected but not yet infectious; Asymptomatic infectious, people
who are infected but does not show symptoms but have the chance to transmit the disease; Symptomatic
infectious, are those who are infected and show symptoms; Quarantine, are individuals who are tested positive
so that isolated from the population; Hospitalized, are those who are in critical health and joined hospitals
for treatment; and Recovered, Recovered from the disease; denoted by S, V1, V2, E, Ia, Is, Q, H and R
respectively. We assumed that individuals in Q and H compartments are isolated from the population and
hence they will have negligible role in transmitting the disease. Therefore, only individuals in Ia and Is are
capable of transmitting the disease. Vaccines available for COVID-19 do not totally prevent infection. Thus
individuals in S, V1 and V2 compartments can get infected with the force of infection h = β τIa+Is

N−(Q+H) . Such

a force of infection is used in most COVID-19 models [17, 11, 5], where β is the transmission rate, τ is the
infectivity factor of asymptomatic individuals and N is the total population. Due to the vaccine, individuals
in V1 and V2 classes are relatively less infected than the fully susceptible ones and they will get infected with
reduced vulnerability of (1− η1) and (1− η2) respectively. The quantities η1 and η2 measure the effectiveness
of the first dose and the second dose vaccine respectively. Majority of the vaccines approved by WHO are
given in two doses with an average recommended time interval between the two doses. We considered this
scenario in our model. Susceptible individuals get vaccination (the first dose) at the rate of p1 and those
who got the first dose will get the second dose after an average 1/α period of time with the rate of p2. In
this study we did not fix a particular vaccine type therefore the value of 1/α represents the average time
needed to take the second dose. From the population, ρ proportion of exposed individuals will move to the
asymptomatic class and the rest, (1− ρ) proportion will move to the symptomatic class after they finish the
incubation period of 1

e day, where e is the infection rate. Mostly the symptoms of COVID-19 are similar
to other respiratory diseases like common cold and flue, so all symptomatic individuals are not quarantined.
Those only tested and confirmed can go to quarantine. Symptomatic individuals get tested and quarantined
at the rate of δ. Those quarantined may develop serious illness, in this case they go to hospital at the rate
of qh. Individuals in Ia, Is, Q and H will recover from the disease at the rate of ra, rs, rq and rh respectively
and they are presumed to be immunized for the rest of their lives once they have recovered. Asymptomatic
individuals are with less pain and assumed does not show symptoms and will not die due to the disease. As a
consequence, individuals in Is, Q and H classes die due to the disease at the rate of d (assumed to be equal).
People in all compartments will die naturally at the rate of µ and the quantity π is the recruitment rate to
the susceptible compartment. The total population size at time t is denoted by N(t) where,

N(t) = S(t) + V1(t) + V2(t) + E(t) + Ia(t) + Is(t) +Q(t) +H(t) +R(t). (1)
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The model flow diagram is shown in Figure 1.
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Figure 1: Disease transmission diagram: green compartment indicates non-infected, the red compartment is infected
and infectious and the yellow compartment shows infected but assumed to be not infectious(Q and H), on incubation
period (H).

From the schematic diagram Figure(1) the following system of differential equations is obtained

dS
dt = π −

(
p1 + µ+ h

)
S

dV1
dt = p1S −

(
αp2 + µ+ (1− η1)h

)
V1

dV2
dt = αp2V1 −

(
µ+ (1− η2)h

)
V2

dE
dt =

(
S + (1− η1)V1 + (1− η2)V2

)
h− (µ+ e)E

dIa
dt = ρeE − (µ+ ra)Ia
dIs
dt = (1− ρ)eE − (rs + µ+ d+ δ)Is
dQ
dt = δIs − (µ+ d+ qh + rq)Q
dH
dt = qhQ− (µ+ d+ rh)H
dR
dt = raIa + rsIs + rqQ+ rhH − µR,

(2)

with initial conditions

S(0) ≥ 0, V1(0) ≥ 0, V2(0) ≥ 0, E(0) ≥ 0, Ia(0) ≥ 0, Is(0) ≥ 0, Q(0) ≥ 0, H(0) ≥ 0 and R(0) ≥ 0.

3. Model analysis

In this section, positivity of solution, the invariant region, production number, stability analysis of disease-free
and endemic equilibrium point, bifurcation and sensitivity analysis are discussed.
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3.1 Positivity and boundedness of the solutions

Since each component of the given model system considers a human population, it is necessary to show that
all variables S(t), V1(t), V2(t), E(t), Ia(t), Is(t), Q(t), H(t) and R(t) are positive for all t > 0.

Theorem 3.1.1. If S(0) ≥ 0, V1(0) ≥ 0, V2(0) ≥ 0, E(0) ≥ 0, Ia(0) ≥ 0, Is(0) ≥ 0, Q(0) ≥ 0, H(0) ≥ 0 and
R(0) ≥ 0, then the solution set {S(t), V1(t), V2(t), E(t), Ia(t), Is(t), Q(t), H(t), R(t)} of the model (2) consists
of positive members for all t > 0.

Proof. From the first equation of the system (2), we have

dS

dt
= π − (p1 + µ+ h)S.

This leads to,

dS

dt
≥ −(p1 + µ+ h)S.

And hence,

dS

S
≥ −(p1 + µ+ h)dt.

Finally upon integration, we obtain,

S(t) ≥ S(0) exp

(
−
∫ t

0
(p1 + µ+ h)du

)
≥ 0.

Thus, S(t) ≥ 0.

Similarly, it can be shown that the other equations of system (2) are positive for all t > 0. Hence, the state
variables of the system are all positive for all t > 0.

Theorem 3.1.2. The feasible solution set {S, V1, V2, E, Ia, Is, Q,H,R} of the model (2) with the given initial
condition remains bounded in the region Ω = {(S, V1, V2, E, Ia, Is, Q,H,R) ∈ R9

+ : 0 ≤ N ≤ π
µ}.

Proof. Differentiating N in equation (1) with respect to t we obtain;

dN

dt
=

dS

dt
+

dV1

dt
+

dV2

dt
+

dE

dt
+

dIa
dt

+
dIs
dt

+
dQ

dt
+

dH

dt
+

dR

dt
. (3)

Using system (2) and evaluating at (3) gives us;

dN

dt
= π − µN − d(Is +Q)−H(µ+ d).

Since the state variables of system Is, Q and H are positive for all t ≥ 0 we have

dN

dt
≤ π − µN, (4)

in which N is asymptotically bounded

i.e. 0 ≤ N ≤ π

µ
.

This completes the proof.

6

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 27, 2023. ; https://doi.org/10.1101/2022.03.22.22272758doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.22.22272758
http://creativecommons.org/licenses/by-nc-nd/4.0/


3.2 Reproduction number, existence and stability analysis of equilibria

3.2.1 Disease-free equilibrium point

In this subsection, we determine the equilibrium point at which there is no disease in the population (i.e.
Ia = Is = Q = H = E = R = 0) by setting the right hand side of system (2) to zero. We get:

Edfe = (S∗, V ∗
1 , V

∗
2 , E

∗, I∗a , I
∗
s , Q

∗, H∗, R∗) ,

=

(
π

p1 + µ
,

p1π

(p1 + µ)(µ+ αp2)
,

παp1p2
µ(p1 + µ)(µ+ αp2)

, 0, 0, 0, 0, 0, 0

)
.

(5)

Remark 1. In (5), when there is no vaccination, i.e., p1 = 0, the disease-free equilibrium will be reduced to
a fully susceptible disease-free state given by

E0 = (S∗, V ∗
1 , V

∗
2 , E

∗, I∗a , I
∗
s , Q

∗, H∗, R∗) ,

=

(
π

µ
, 0, 0, 0, 0, 0, 0, 0, 0

)
.

(6)

If p1 = 1 we get a disease-free equilibrium in which every susceptible individual is vaccinated with the first
dose, which can be expressed as

E01 = (S∗, V ∗
1 , V

∗
2 , E

∗, I∗a , I
∗
s , Q

∗, H∗, R∗) ,

=

(
π

1 + µ
,

π

(1 + µ)(µ+ α)
,

πα

µ(1 + µ)(µ+ α)
, 0, 0, 0, 0, 0, 0

)
.

(7)

3.2.2 Reproduction number

The basic reproduction number (R0) is the average number of secondary cases produced by one primary
infection during the infectious period in a fully susceptible population and the control reproduction number
(in our case denoted by Rv) is used to represent the same quantity for a system incorporating control (or
intervention) strategies [30]. We will use the next generation matrix method [12] to find the basic and
control reproduction number.

Let the matrix for new infection appearance at the infected compartment be given by F ,

F =


E
Ia
Is
Q
H



(
S + (1− η1)V1 + (1− η2)V2

)
h

0
0
0
0

 , (8)

and the matrix of other transactions at each of the infected compartments can be represented by V, and is
given by

V =


E
Ia
Is
Q
H

 =


(µ+ e)E

(µ+ ra)Ia − ρeE
(rs + µ+ d+ δ)Is − (1− ρ)eE

(µ+ d+ rh + ra)Q− δIs
(µ+ d+ rh)H − qhQ

 . (9)

Now finding the Jacobian of F and V, we get the matrices F (only the first row, nonzero row) and V written
as;

F =
[
0 (S + (1− η1)V1 + (1− η2)V2)

∂h
∂Ia

(S + (1− η1)V1 + (1− η2)V2)
∂h
∂Is

0 0
]
, (10)

7

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 27, 2023. ; https://doi.org/10.1101/2022.03.22.22272758doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.22.22272758
http://creativecommons.org/licenses/by-nc-nd/4.0/


where,

∂h

∂Ia
=

βτ(N − (Q+H))− β(τIa + Is)

(N − (Q+H))2
, (11)

∂h

∂Is
=

β(N − (Q+H))− β(τIa + Is)

(N − (Q+H))2
, (12)

and

V =


(µ+ e) 0 0 0 0
−ρe (µ+ ra) 0 0 0

−(1− ρ)e 0 (rs + µ+ d+ δ) 0 0
0 0 −δ (µ+ d+ rh + ra) 0
0 0 0 −qh (µ+ d+ rh)

 . (13)

The control reproduction number is given by Rv = ν(F (Edfe) × V −1). Where ν is the spectral radius of the
matrix F (Edfe)× V −1. Thus Rv, can be written as:

Rv =
(µ(µ+ αp2) + (1− η1)p1µ+ (1− η2)αp1p2)

(µ+ e)(µ+ p1)(µ+ αp2)

(
ρeβτ

µ+ ra
+

(1− ρ)eβ

rs + µ+ d+ δ

)
. (14)

The basic reproduction number, R0 is obtained by setting p1 = p2 = 0 in (14) and is given by:

R0 =
ρeβτ

(µ+ e)(µ+ ra)
+

(1− ρ)eβ

(µ+ e)(µ+ rs + d+ δ)
. (15)

We can rewrite equation (14) in terms of R0 as;

Rv =

(
µ(µ+ αp2) + (1− η1)p1µ+ (1− η2)αp1p2

(p1 + µ)(µ+ αp2)

)
R0. (16)

In system (2), the solution for the state variables Q,H and R can easily be found from other variables in
the system and they do not affect them. Therefore in the following subsections we restrict our mathematical
analysis to the following system of equations.

dS
dt = π −

(
p1 + µ+ h

)
S

dV1
dt = p1S −

(
αp2 + µ+ (1− η1)h

)
V1

dV2
dt = αp2V1 −

(
µ+ (1− η2)h

)
V2

dE
dt =

(
S + (1− η1)V1 + (1− η2)V2

)
h− (µ+ e)E

dIa
dt = ρeE − (µ+ ra)Ia
dIs
dt = (1− ρ)eE − (rs + µ+ d+ δ)Is,

(17)

3.3 Model without vaccination

In this subsection we will study the reduced model system (17) when there is no vaccination (p1 = 0 = p2).
which will further be reduced to a system represented in the following equation,

dS
dt = π −

(
µ+ h

)
S

dE
dt = hS − (µ+ e)E
dIa
dt = ρeE − (µ+ ra)Ia
dIs
dt = (1− ρ)eE − (rs + µ+ d+ δ)Is,

(18)

For the model (18) the reproduction number can be found by replacing p1 = 0 = p2, which is the basic
reproduction number of the full model, and it is as given equation (15) and the disease free equilibrium is as
written in (6). Consequently, we have the following result
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Theorem 3.3.1. The disease free equilibrium E0 is locally asymptotically stable if R0 < 1
and unstable if R0 > 1.

Proof. The Jacobian matrix of the system (18) is given by:

J =



−(µ+ h) 0 −H11 −H22

h −(µ+ e) H11 H22

0 ρe −(µ+ ra) 0

0 (1− ρ)e 0 −(rs + µ+ d+ δ)


, (19)

where

H11 =
∂h

∂Ia
S, H22 =

∂h

∂Is
S,

and ∂h
∂Ia

and ∂h
∂Is

are as in equations (11) and (12) respectively.

The Jacobian matrix (19) evaluated at the disease-free equilibrium (E0) is given by:

J(E0) =


−µ 0 −βτ −β
0 −(µ+ e) βτ β
0 ρe −(µ+ ra) 0
0 (1− ρ)e 0 −(rs + µ+ d+ δ)

 . (20)

The characteristic equation of the matrix (20) is given by

(µ+ λ)
(
−λ3 −B11λ

2 +B22λ+B33

)
= 0, (21)

where

B11 =rs + 3µ+ d+ δ + ra + e,

B22 =(1− ρ)eβ − (rs + µ+ d+ δ)(2µ+ ra + e) + ρeβτ − (µ+ e)(µ+ ra),

B33 =β(1− ρ)e(µ+ ra)− (rs + µ+ d+ δ)((µ+ e)(µ+ ra)− ρeβ).

From (21) we have the roots given by λ1 = −µ and −λ3 − B11λ
2 + B22λ + B33 = 0. By Descartes’ rule of

sign, the roots of the later equation will be negative if B22 < 0 and B33 < 0.

Suppose R0 < 1. This implies that

βτρe(µ+ rs + d+ δ) + (1− ρ)eβ(µ+ ra) < (µ+ e)(µ+ ra)(µ+ rs + d+ δ).

Therefore,
βτρe(µ+ rs + d+ δ) < (µ+ e)(µ+ ra)(µ+ rs + d+ δ),

and
(1− ρ)eβ(µ+ ra) < (µ+ e)(µ+ ra)(µ+ rs + d+ δ),

which are equivalently written as

βρτe− (µ+ e)(µ+ ra) < 0,
(1− ρ)eβ − (µ+ e)(2µ+ ra + e) < 0.

(22)

From the inequalities in (22), it can be concluded that B22 < 0 if R0 < 1. Similarly it can be shown that
B3 < 0 whenever R0 < 1. Therefore, the disease-free equilibrium E0 is locally asymptotically stable if R0 < 1.
For R0 > 1, B22 will be positive. And hence we will have at least one positive eigenvalue. Thus, E0 will be
locally unstable.
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3.3.1 Global stability of disease-free equilibrium

For we seek to investigate the global stability of disease-free equilibrium, we use the technique implemented
by Castillo-Chavez et al. [8]. To implement the technique we write our model system in the form:

dU

dt
= F (U,Z),

dZ

dt
= G(U,Z),

G(U, 0) = 0,

where U represents an uninfected compartment and Z represents infected compartment. Thus, the disease-
free equilibrium point of the model can be represented by U∗ = (U0, 0). Thus, for R0 < 1, for which the
disease-free equilibrium point is locally asymptotically stable the following two conditions are sufficient to
guarantee the global stability of disease-free equilibrium point (U0, 0).

(H1) For
du

dt
= F (U, 0), U0 is globally asymptotically stable.

(H2) G(U,Z) = AZ − G̃(U,Z), where G̃(U,Z) ≥ 0 for all (U,Z) ∈ Ω

where A = DIG(U0, 0) is a M-matrix (the off-diagonal elements of A are nonnegative) and Ω is the region
where the model makes biological sense.

Theorem 3.3.2. The disease-free equilibrium point E0 is globally asymptotically stable provided that R0 < 1.

Proof. For the system (18) we have E0 = (U0, 0), U = S ∈ R1
+ and Z = (E, Ia, Is) ∈ R3

+. For condition (H1),
F (U,Z) can be written as

F (U,Z) = π −
(
µ+ h

)
S

Hence,
F (U, 0) = π − µS

It is obvious that U0 = (πµ , 0) is globally asymptotically stable for F (U, 0).

For condition (H2), from the system (18) we can get G(U,Z),

G(U,Z) =

 (
hS − (µ+ e)E

ρeE − (µ+ ra)Ia
(1− ρ)eE − (rs + µ+ d+ δ)Is

 ,

and the M-matrix is calculated as

A =

−(µ+ e) βτ β
eρ −(µ+ ra) 0

(1− ρ)e 0 −(rs + µ+ d+ δ)

 .

Thus we have,

G̃(U,Z) = AZ −G(U,Z),

=

G̃1(U,Z)

G̃2(U,Z)

G̃3(U,Z)

 =

β(τIa + Is)
[
1− S

S+E+Ia+Is

]
0
0

 ,

which leads to G̃(U,Z) ≥ 0 for all (U,Z) ∈ Ω. Hence both the conditions (H1) and (H2) are satisfied.
Therefore, by Castillo-Chavez et al. [8] the disease-free equilibrium point is globally asymptotically stable for
R0 < 1.
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The endemic equilibrium of the model with no vaccination (18) is calculated as

Ee0 = (Se0, Ee0, Ie0a , Ie0s ), (23)

and the components are given by,

Se0 =
π

µ+ he0
, Ee0 =

πhe0

(µ+ he0)(µ+ e)
,Ie0a =

ρeπhe0

(µ+ he0)(µ+ e)(µ+ ra)
, Ie0s =

(1− ρ)eπhe0

(µ+ he0)(µ+ e)(µ+ rs + d+ δ)
,

where

he0 =
(µ+ e)(R0 − 1)

∆(µ+ e) + 1
, (24)

and

∆ =
ρe

(µ+ ra)(µ+ e)
+

(1− ρ)e

(µ+ rs + d+ δ)(µ+ e)
.

From equation (24) he0 > 0 if and only if R0 > 1, therefore we have the following result.

Lemma 3.3.1. The system (18) have a unique endemic equilibrium if R0 > 1 and have no endemic equilibrium
for R0 < 1.

The characteristic equation of the Jacobian matrix (19) evaluated at the endemic equilibrium (24) is
obtained as

λ4 +M1λ
3 +M2λ

2 +M3λ+M4 = 0, (25)

where

M1 = 2µ+ e+ ra + rs + 3µ+ d+ δ + he0

M2 = (µ+ e)(µ+ ra) + (rs + 2µ+ d+ δ + he0)(2µ+ e+ ra) + (µ+ he0)(rs + µ+ d+ δ)− ρeHe0
11 − (1− ρ)eHe0

22

M3 = (rs + 2µ+ d+ δ + he0)(µ+ e)(µ+ ra) + (µ+ he0)(rs + µ+ d+ δ)(2µ+ e+ ra)

− ρeHe0
11(µ+ he0)− (1− ρ)eHe0

22(2µ+ he0 + ra)

M4 = (µ+ he0)(rs + µ+ d+ δ)(µ+ e)(µ+ ra)− ρeHe0
11(µ+ he0)(rs + µ+ d+ δ)− (µ+ he0)(1− ρ)eHe0

22(µ+ ra),

and He0
11 and He0

22 are values of H11 and H22 evaluated at the endemic equilibrium respectively. Since M1 > 0
by Descartes rule of sign the characteristic equation (25) will have negative roots if M2 > 0,M3 > 0 and
M4 > 0. Therefore we have the following result.

Theorem 3.3.3. The endemic equilibrium (23) is locally asymptotically stable if R0 > 1. and M2 > 0,M3 > 0
and M4 > 0.

3.4 Model with Vaccination

In this subsection will consider the system with vaccination (17) and present its mathematical analysis.

3.4.1 Local stability of disease-free equilibrium

Theorem 3.4.1. The disease-free equilibrium, Edfe is locally asymptotically stable if Rv < 1 and unstable if
Rv > 1.
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Proof. The Jacobian matrix of the system (17) is given by:

J =



−(p1 + µ+ h) 0 0 0 − ∂h
∂Ia

S − ∂h
∂Is

S

p1 −(µ+ αp2 + (1− η1)h) 0 0 −(1− η1)V1
∂h
∂Ia

−(1− η1)V1
∂h
∂Is

0 αp2 −(µ+ (1− η2)h) 0 −(1− η2)V2
∂h
∂Ia

−(1− η2)V2
∂h
∂Is

h (1− η1)h (1− η2)h −(µ+ e) H1 H2

0 0 0 ρe −(µ+ ra) 0

0 0 0 (1− ρ)e 0 −(rs + µ+ d+ δ)



, (26)

where
H1 =

∂h
∂Ia

× (S + (1− η1)V1 + (1− η2)V2),

H2 =
∂h
∂Is

× (S + (1− η1)V1 + (1− η2)V2),

and ∂h
∂Ia

and ∂h
∂Is

are as in equations (11) and (12).

The Jacobian matrix (26) evaluated at the disease-free equilibrium Edfe is given by:

J(Edfe) =



−(µ+ p1) 0 0 0 ∂h
∂Ia

(Edfe)S
∗ ∂h

∂Is
(Edfe)S

∗

p1 −(µ+ αp2) 0 0 −(1− η1)
∂h
∂Ia

(Edfe)V
∗
1 −(1− η1)

∂h
∂Is

(Edfe)V
∗
1

0 αp2 −µ 0 −(1− η2)
∂h
∂Ia

(Edfe)V
∗
2 −(1− η2)

∂h
∂Is

(Edfe)V
∗
2

0 0 0 −(µ+ e) H∗
1 H∗

2

0 0 0 ρe −(µ+ ra) 0
0 0 0 (1− ρ)e 0 −(rs + µ+ d+ δ)


, (27)

where
∂h
∂Ia

(Edfe) =
βτµ(p1+µ)(µ+αp2)

µπ(µ+αp2)+p1πµ+παp1p2
,

∂h
∂Is

(Edfe) =
βµ(p1+µ)(µ+αp2)

µπ(µ+αp2)+p1πµ+παp1p2
,

H∗
1 = βτ µ(µ+αp2)+µ(1−η1)p1+(1−η2)p1p2α

(p1+µ)(µ+αp2)
,

H∗
2 = β µ(µ+αp2)+µ(1−η1)p1+(1−η2)p1p2α

(p1+µ)(µ+αp2)
,

and its characteristic equation is:

((µ+ λ)(µ+ p1 + λ)(µ+ αp2 + λ))
(
−λ3 −B1λ

2 +B2λ+B3

)
= 0, (28)

where

B1 =rs + 3µ+ d+ δ + ra + e,

B2 =(1− ρ)eH∗
2 − (rs + µ+ d+ δ)(2µ+ ra + e) + ρeH∗

1 − (µ+ e)(µ+ ra),

B3 =(1− ρ)e(µ+ ra)H
∗
2 − (rs + µ+ d+ δ)((µ+ e)(µ+ ra)− ρeH∗

1 ).

From (28) we have the roots given by λ1 = −µ, λ2 = −(µ + αp2), λ3 = −(µ + p1) and
−λ3 − B1λ

2 + B2λ + B3 = 0. By Descartes’ rule of sign, the roots of the later equation will be negative if
B2 < 0 and B3 < 0.

Let us write the equation for Rv in (14) in terms of H∗
1 and H∗

2 as:

Rv =
ρe

(µ+ ra)(µ+ e)
H∗

1 +
(1− ρ)e

(µ+ rs + d+ δ)(µ+ e)
H∗

2 .

12

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 27, 2023. ; https://doi.org/10.1101/2022.03.22.22272758doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.22.22272758
http://creativecommons.org/licenses/by-nc-nd/4.0/


Suppose Rv < 1. This implies that

ρe(µ+ rs + d+ δ)H∗
1 + (1− ρ)e(µ+ ra)H

∗
2 < (µ+ e)(µ+ ra)(µ+ rs + d+ δ).

Therefore,
ρe(µ+ rs + d+ δ)H∗

1 < (µ+ e)(µ+ ra)(µ+ rs + d+ δ),

and

(1− ρ)e(µ+ ra)H
∗
2 < (µ+ e)(µ+ ra)(µ+ rs + d+ δ) < (µ+ rs + d+ δ)(µ+ ra)(2µ+ ra + e),

which are equivalently written as

ρeH∗
1 − (µ+ e)(µ+ ra) < 0,

(1− ρ)eH∗
2 − (µ+ e)(2µ+ ra + e) < 0.

(29)

From the inequalities in (29), we summarize that B2 < 0 if Rv < 1. And it can also be shown that B3 < 0
whenever Rv < 1. Therefore, the disease-free equilibrium Edfe is locally asymptotically stable if Rv < 1. For
Rv > 1, B2 will be greater than zero. And hence we will have at least one positive eigenvalue. Thus, Edfe will
be unstable.

3.4.2 Global stability of disease-free equilibrium point

We use the method implemented in section 3.3.1 to show the global stability. Let X = (S, V1, V2)
T ∈ R3

+ be
represent uninfected individual and Y = (E, Ia, Is)

T ∈ R3
+ be represent infected compartments.

Theorem 3.4.2. The point Edfe = (X∗, 0) is globally asymptotically stable provided that Rv < 1 and
S+(1−η1)V1+(1−η2)V2

N−(Q+H) ≤ S∗+(1−η1)V ∗
1 +(1−η2)V ∗

2
N∗ .

Proof. For condition (H1) from the system (17) we can get F (X,Y ), i.e.

F (X,Y ) =

 π −
(
p1 + µ+ h

)
S

p1S −
(
αp2 + µ+ (1− η1)h

)
V1

αp2V1 −
(
µ+ (1− η2)h

)
V2

 .

Hence,

F (X, 0) =

 π − (p1 + µ)S
p1S − (αp2 + µ)V1

αp2V1 − µV2

 .

It is obvious that X∗ = ( π
p1+µ ,

p1π
(p1+µ)(µ+αp2)

, παp1p2
µ(p1+µ)(µ+αp2)

, 0) is globally asymptotically stable for F (X, 0) as

X → X∗ when t → ∞.

For condition (H2), from the system (17) we can get G(X,Y ),

G(X,Y ) =

(S + (1− η1)V1 + (1− η2)V2

)
h− (µ+ e)E

ρeE − (µ+ ra)Ia
(1− ρ)eE − (rs + µ+ d+ δ)Is

 ,

and

A =

−(µ+ e)
(
S∗ + (1− η1)V

∗
1 + (1− η2)V

∗
2

) βτ
N∗

(
S∗ + (1− η1)V

∗
1 + (1− η2)V

∗
2

) β
N∗

eρ −(µ+ ra) 0
(1− ρ)e 0 −(rs + µ+ d+ δ)

 ,

where,
N∗ = S∗ + V ∗

1 + V ∗
2 .
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We have,

G̃(X,Y ) = AY −G(X,Y ),

=

G̃1(X,Y )

G̃2(X,Y )

G̃3(X,Y )

 =

β(τIa + Is)
[
S∗+(1−η1)V ∗

1 +(1−η2)V ∗
2

N∗ −
(S+(1−η1)V1+(1−η2)V2

N−(Q+H)

)]
0
0

 ,

thus,

G̃(X,Y ) ≥ 0 if
S + (1− η1)V1 + (1− η2)V2

N − (Q+H)
≤ S∗ + (1− η1)V

∗
1 + (1− η2)V

∗
2

N∗ . (30)

Therefore, the disease-free equilibrium point is globally asymptotically stable for Rv < 1 and the condition
given in equation 30 is satisfied.

3.4.3 Existence of endemic equilibrium

By equating the system (2) to zero, we get the endemic equilibrium in terms of the force of infection h and
we denote it by,

Eend =
(
Se, V e

1 , V
e
2 , E

e, Iea, I
e
s , Q

e, He, Re
)
.

The components of Eend are given as follows:

Se =
π

p1 + µ+ he
,

V e
1 =

p1π

(p1 + µ+ he)(αp2 + µ+ (1− η1)he)
,

V e
2 =

p1p2απ

(p1 + µ+ he)(αp2 + µ+ (1− η1)he)(µ+ (1− η2)he)
,

Ee =
heπ

[
(µ+ (1− η2)h

e)(αp2 + µ+ (1− η1)h
e) + p1(1− η1)(µ+ (1− η2)h

e) + αp1p2(1− η2)
]

(µ+ e)(p1 + µ+ he)(αp2 + µ+ (1− η1)he)(µ+ (1− η2)he)
,

Iea =
ρeheπ

[
(µ+ (1− η2)h

e)(αp2 + µ+ (1− η1)h
e) + p1(1− η1)(µ+ (1− η2)h

e) + αp1p2(1− η2)
]

(µ+ ra)(µ+ e)(p1 + µ+ he)(αp2 + µ+ (1− η1)he)(µ+ (1− η2)he)
,

Ies =
(1− ρ)eheπ

[
(µ+ (1− η2)h

e)(αp2 + µ+ (1− η1)h
e) + p1(1− η1)(µ+ (1− η2)h

e) + αp1p2(1− η2)
]

(rs + µ+ d+ δ)(µ+ e)(p1 + µ+ he)(αp2 + µ+ (1− η1)he)(µ+ (1− η2)he)
,

Qe =
δ

µ+ d+ qh + rq
× Ies ,

He =
qh

µ+ d+ rh
×Qe,

Re =
raI

e
a + rsI

e
s + rqQ

e + rhH
e

µ
,

where he is the positive root of the equation

g(he) = A(he)3 +B(he)2 + Che +D = 0, (31)

obtained from

he =
β(τIea + Ies )

(Se + V e
1 + V e

2 + Ee + Iea + Ies +Re)
,
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and the coefficients in equation (31) are given by:

A = (1− η1)(1− η2),

B =
J1 +

(
µ(µ+ αp2)(p1 + µ)(1− η1)(1− η2)

)
(1−Rv)

µ(µ+ αp2) + (1− η1)p1µ+ (1− η2)αp1p2
,

C =
J2 +

(
(p1 + µ)

(
µ2(1− η1)(µ+ αp2) + µ(1− η2)(µ+ αp2)

2
)
+ p1µ(1− η1)(αp2 + µ)(p1 + µ)(1− η2)

)
(1−Rv)

µ(µ+ αp2) + (1− η1)p1µ+ (1− η2)αp1p2
,

D = µ(p1 + µ)(αp2 + µ)(1−Rv),

where,

J1 = µ(µ+ αp2)(µ(1− η1) + (µ+ αp2)(1− η2)) + p1µ(1− η1)
2(µ+ (p1 + µ)(1− η2) + (αp2 + µ))

+ αp1p2(1− η2)(µ(1− η1) + (p1 + µ)(1− η1)(1− η2) + (αp2 + µ)(1− η2)),

J2 = µ2(αp2 + µ)2 + p1µ
2(1− η1)((p1 + µ)(1− η1) + (αp2 + µ))

+ µαp1p2(1− η2)((1− η1)(p1 + µ) + (αp2 + µ) + (αp2 + µ)(p1 + µ)(1− η1)).

It can easily be seen that A > 0. If Rv > 1 then D < 0 , therefore h(0) < 0. Additionally lim
he→∞

g(he) > 0.

Therefore, from the continuity of g, there exists at least one positive he∗ such that g(he∗) = 0 and hence
there will be at least one endemic equilibrium of the model system (2). On the other hand, if Rv < 1, then
B > 0, C > 0 and D > 0 then by Descartes’ rule of sign, (31) has no positive real root, which proves that
there is no endemic equilibrium point when Rv < 1. From the above discussion, we can state the following
theorem.

Theorem 3.4.3. If Rv > 1, there exists at least one endemic equilibrium point for the model system (2) and
there is no endemic equilibrium point for the model system (2) when Rv < 1.

3.5 Bifurcation analysis

We will use the approach in [7] to determine the occurrence of a trasncritical bifurcation at Rv = 1. The
method relies on the general center manifold theory, where the normal form representing the dynamics of the
system on the central manifold is given by:

u̇ = au2 + bβu,

with

a =
n∑

k,i,j=1

νkωiωj
∂2fk

∂xi∂xj
(Edfe, β

∗), (32)

and

b =

n∑
k,i=1

νkωi
∂2fk
∂xi∂β

(Edfe, β
∗). (33)

Here β has been chosen as a bifurcation parameter and β∗ is its critical value, f represents the right–hand side
of the system (17), x represents the state variable vector, x = (x1, x2, x3, x4, x5, x6) = (S, V1, V2, E, Ia, Is), ν
and ω are the left and right eigenvectors corresponding to the zero eigenvalue of the Jacobian matrix at the
disease-free equilibrium and the critical value, i.e., at Edfe and β = β∗. When Rv = 1, which is equivalent to
β = β∗, with

β∗ =
(µ+ e)(µ+ p1)(µ+ αp2)

µ(µ+ αp2) + (1− η1)p1µ+ (1− η2)αp1p2
× C,

where,

C =
(µ+ ra)(rs + µ+ d+ δ)

ρeτ(rs + µ+ d+ δ) + (1− ρ)e(µ+ ra)
.
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Thus, according to Theorem 4.1[7], the disease-free equilibrium is locally asymptotically stable if β < β∗,
and it is unstable when β > β∗. The direction of the bifurcation occurring at β = β∗ can be derived from
the sign of the coefficients (32) and (33). More precisely, if a > 0 (resp. a < 0) and b > 0, then at β = β∗

there is a backward (resp. forward) bifurcation.

By evaluating the Jacobian matrix of system (17) at Edfe and β = β∗, we get

J(Edfe, β
∗) =



−(µ+ p1) 0 0 0 K1 K4

p1 −(µ+ αp2) 0 0 K2 K5

0 αp2 −µ 0 K3 K6

0 0 0 −(µ+ e) H∗
1 H∗

2

0 0 0 ρe −(µ+ ra) 0
0 0 0 (1− ρ)e 0 −(rs + µ+ d+ δ)

 ,

where
K1 = S∗ ∂h

∂Ia
(Edfe, β∗),

K2 = −(1− η1)V
∗
1

∂h
∂Ia

(Edfe, β∗),
K3 = −(1− η2)V

∗
2

∂h
∂Ia

(Edfe, β∗),
K4 = S∗ ∂h

∂Is
(Edfe, β∗),

K5 = −(1− η1)V
∗
1

∂h
∂Is

(Edfe, β∗),
K6 = −(1− η2)V

∗
2

∂h
∂Is

(Edfe, β∗),
H∗

1 = β∗τ µ(µ+αp2)+µ(1−η1)p1+(1−η2)p1p2α
(p1+µ)(µ+αp2)

,

H∗
2 = β∗ µ(µ+αp2)+µ(1−η1)p1+(1−η2)p1p2α

(p1+µ)(µ+αp2)
.

We observed that one of the eigenvalues of J(Edfe, β
∗) is 0 and the remaining are negative. Hence, when

β = β∗ (when Rv = 1), the disease-free equilibrium is nonhyperbolic.

After some calculations we get:

ν = (0, 0, 0, ν4,
ν4H

∗
1

µ+ ra
,

ν4H
∗
2

rs + µ+ d+ δ
) and ω = (ω1, ω2, ω3, 1,

eρ

µ+ ra
,

e(1− ρ)

rs + µ+ d+ δ
)T ,

where
ν4 =

(µ+ra)2(rs+µ+d+δ)2

(µ+ra)2(rs+µ+d+δ)2+H∗
1 eρ(rs+µ+d+δ)2+H∗

2 e(1−ρ)(µ+ra)2
,

ω1 =
K1eρ(rs+µ+d+δ)+K4e(1−ρ)(µ+ra)

(µ+p1)(µ+ra)(rs+µ+d+δ) < 0,

ω2 =
p1ω1(µ+ra)(rs+µ+d+δ)+K2eρ(rs+µ+d+δ)+K5e(1−ρ)(µ+ra)

(µ+αp2)(µ+ra)(rs+µ+d+δ) < 0,

ω3 =
p2αω2µ(µ+ra)(rs+µ+d+δ)+K3eρ(rs+µ+d+δ)+K6e(1−ρ)(µ+ra)

µ(µ+ra)(rs+µ+d+δ) < 0,

are a left and right eigenvector associated with the zero eigenvalue, respectively, such that ν · ω = 1. By
considering only the nonzero components of the eigenvectors and computing the corresponding second
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derivatives of f we can explicitly compute the coefficients a and b as:

a =
6∑

k,i,j=1

νkωiωj
∂2fk

∂xi∂xj
(Edfe, β

∗),

= 2[ν4ω1(ω5
∂2f4
∂S∂Ia

(Edfe, β
∗) + ω6

∂2f4
∂S∂Is

(Edfe, β
∗)) + ν4ω2(ω5

∂2f4
∂V1∂Ia

(Edfe, β
∗) + ω6

∂2f4
∂V1∂Is

(Edfe, β
∗)),

+ ν4ω3(ω5
∂2f4

∂V2∂Ia
(Edfe, β

∗) + ω6
∂2f4

∂V2∂Ia
(Edfe, β

∗))]

,

=
2β∗

(µ+ ra)(rs + µ+ d+ δ)

[
eω1(τρ(rs + µ+ d+ δ) + (1− ρ)(µ+ ra))

+ eω2(ρτ(1− η1)(rs + µ+ d+ δ) + (1− ρ)(1− η1)(µ+ ra))

+ eω3(ρτ(1− η2)(rs + µ+ d+ δ) + (1− ρ)(1− η2)(µ+ ra))
]
.

Since ω1, ω2 and ω3 are negative, it follows that a < 0 and

b =
6∑

k,i=1

νkωi
∂2fk
∂xi∂β

(Edfe, β
∗),

= ν4

[
ω2

∂2f4
∂V1∂β

(Edfe, β
∗) + ω2

∂2f4
∂V2∂β

(Edfe, β
∗) + ω2

∂2f4
∂Ia∂β

(Edfe, β
∗) + ω2

∂2f4
∂Is∂β

(Edfe, β
∗)
]
,

= ν4

[ eρτ

µ+ ra
(S∗ + (1− η1)V

∗
1 + (1− η2)V

∗
2 ) +

e(1− ρ)

rs + µ+ d+ δ
(S∗ + (1− η2)V

∗
1 + (1− η2)V

∗
2 )

]
,

= ν4(S
∗ + (1− η1)V

∗
1 + (1− η2)V

∗
2 )

[ eρτ

µ+ ra
+

e(1− ρ)

rs + µ+ d+ δ

]
> 0.

From the fact that a < 0 and b > 0, by the result of Castillo-Chavez and Song [7], as Rv passes through 1 a
locally stable endemic equilibrium appears with the unstable disease free equilibrium. Therefore, model (17)
exhibits a forward bifurcation at Rv = 1(see Figure 6). We summarize the above discussion with the following
theorem.

Theorem 3.5.1. The endemic equilibrium point, Eend of the model system (17) is locally asymptotically stable
for Rv > 1 and the system exhibits a forward(or transcritical) bifurcation at Rv = 1.

Remark 2. From the bifurcation analysis and Theorem 3.4.1 for the full model (model with ) we note that
when R0 = 1, we have Rv < 1 in such case the disease free equilibrium is at least locally asymptotically stable.

3.6 Sensitivity analysis

In what follows, we investigate the sensitivity analysis for the control reproduction number Rv to identify
the parameters that have a high impact on disease expansion in the community. The sensitivity index with
respect to a parameter Xi is given by a normalized forward sensitivity index [9],

ΓRv
Xi

= ∂Rv
∂Xi

× Xi
Rv

,
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where, Xi represent the basic parameters. Hence,

ΓRv
e =

∂Rv

∂e
× e

Rv
=

µ

µ+ e
> 0,

ΓRv
η1 =

∂Rv

∂η1
× η

Rv
= − p1µ

(µ+ e)(µ+ p1)(µ+ αp2)

(
ρeβτ

µ+ ra
+

(1− ρ)eβ

rs + µ+ d+ δ

)
× η

Rv
< 0,

ΓRv
η2 =

∂Rv

∂η2
× η2

Rv
= − αp1p2

(µ+ e)(µ+ p1)(µ+ αp2)

(
ρeβτ

µ+ ra
+

(1− ρ)eβ

rs + µ+ d+ δ

)
× η2

Rv
< 0,

ΓRv
p1 =

∂Rv

∂p1
× p1

Rv
= − (µ2η1 + αηp2η2)

(µ+ e)(µ+ p1)2(µ+ αp2)

(
ρeβτ

µ+ ra
+

(1− ρ)eβ

rs + µ+ d+ δ

)
× p1

Rv
< 0,

ΓRv
p2 =

∂Rv

∂p2
× p2

Rv
= − α2p2(1− µ)

(µ+ e)(µ+ p1)(µ+ αp2)2

(
ρeβτ

µ+ ra
+

(1− ρ)eβ

rs + µ+ d+ δ

)
× p2

Rv
< 0,

ΓRv
α =

∂Rv

∂α
× α

Rv
=

µp1p2(η1 − η2)

(µ+ e)(µ+ p1)(µ+ αp2)2

(
ρeβτ

µ+ ra
+

(1− ρ)eβ

rs + µ+ d+ δ

)
× α

Rv
< 0,

ΓRv
β =

∂Rv

∂β
× β

Rv
= 1 > 0,

ΓRv
τ =

∂Rv

∂τ
× α

Rv
=

(µ(µ+ αp2) + µp1(1− η1) + αp1p2) (ρeβ)

(µ+ e)(µ+ p1)(µ+ αp2)(µ+ ra)
× τ

Rv
> 0,

ΓRv
ra =

∂Rv

∂ra
× ra

Rv
= −(µ(µ+ αp2) + µp1(1− η1) + αp1p2) (ρeβτ)

(µ+ e)(µ+ p1)(µ+ αp2)(µ+ ra)2
× ra

Rv
< 0,

ΓRv
rs =

∂Rv

∂rs
× rs

Rv
= −(µ(µ+ αp2) + µp1(1− η1) + αp1p2) ((1− ρ)eβ)

(µ+ e)(µ+ p1)(µ+ αp2)(rs + µ+ d+ δ)2
× rs

Rv
< 0,

ΓRv
δ =

∂Rv

∂δ
× δ

Rv
= −(µ(µ+ αp2) + µp1(1− η1) + αp1p2) ((1− ρ)eβ)

(µ+ e)(µ+ p1)(µ+ αp2)(rs + µ+ d+ δ)2
× δ

Rv
< 0,

ΓRv
d =

∂Rv

∂d
× d

Rv
= −(µ(µ+ αp2) + µp1(1− η1) + αp1p2) ((1− ρ)eβ)

(µ+ e)(µ+ p1)(µ+ αp2)(rs + µ+ d+ δ)2
× d

Rv
< 0.

We summarize the sensitivity analysis indices of the reproduction number with respect to some parameters
in Table 1.

parameter index

e +ve
β +ve
τ +ve
η1 -ve
η2 -ve
p1 -ve
p2 -ve
α -ve
ra -ve
rs -ve
δ -ve
d -ve

Table 1: Sensitivity index table

From Table1 the sensitivity indices with negative signs indicate that the value of Rv decreases when the
parameter values are increased and the value of Rv increases when the parameter values are decreased, while
sensitivity indices with positive signs indicate that the value of Rv increases when the parameter values are
increased and the value of Rv decreases when the parameter values are decreased.
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3.7 The role of vaccination

If there is no vaccination (i.e. p1 = p2 = 0), then Rv = R0. In such case disease elimination is possible if
R0 < 1. and the disease will be endemic if R0 > 1. (Theorem 3.3.1). Suppose R0 > 1 and according to
theorem 3.4.1, disease elimination is possible if Rv < 1.
From

Rv < 1 ⇐⇒ R0 <
(p1 + µ)(µ+ αp2)

µ(µ+ αp2) + (1− η1)p1µ+ (1− η2)αp1p2
> 1,

we get
p1
(
R0(µ+ αp2)− (µ(R0η1 + 1) + (R0η2 + 1)αp2)

)
< µ(µ+ αp2)(1−R0), (34)

Since the right hand side of the inequality (34) is negative we must have

R0(µ+ αp2) < µ(R0η1 + 1) + (R0η2 + 1)αp2.

Therefore, Rv < 1 if and only if p1 > p∗1. Where

p∗1 =
µ(µ+ αp2)(R0 − 1)

µ(R0η1 + 1) + (R0η2 + 1)αp2 −R0(µ+ αp2)
. (35)

We call p∗1 as a critical first dose vaccination rate.

0 1 2 3 4 5 6 7

10-5

0.4

0.6

0.8

1

1.2

Figure 2: The role of the vaccination rate p1 on the control reproduction number Rv and the basic reproduction
number R0. The red broken line is used to mark the horizontal line at 1. p∗1 is calculated using the parameter values in
the Table 2.

Using the parameter values in the Table 2 the critical first dose vaccination can be calculated as p∗1 =
7.3946 × 10−6. As it can be seen from the Figure 2, the control reproduction number will be less than one
if p1 > p∗1. From epidemiological point of view to control the disease it is critical to increase the vaccination
rate above p∗1.

4. Numerical simulation and discussion

To justify the analytical results and explore additional important properties of the model, we fitted the model
to real COVID-19 data of Ethiopia to fix the unknown parameters of the model and carried out numerical
simulations using the MATLAB solver ODE45. In this section, we used the full model (2).

4.1 Parameter estimation

In this subsection, we will find the best values of unknown parameters in our model, with the so-called model
fitting process. Here we shortly present how the fitting process works using the least square method. The
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system of equations (2) can generally be written as

dX

dt
= F (t,X, θ), X(0) = X0, (36)

where X = (x1, x2, · · · , xJ) represents the state vector of the system with dX
dt = [dx1

dt ,
dx2
dt , · · · ,

dxJ
dt ], J is

number of compartments in the population, X0 is a vector of initial values, θ = (θ1, θ2 · · · , θp) are unknown
parameters of the system and t is the independent variable (time in our case) [19].

In order to estimate the unknown parameters θ, the state variable X(t) is observed at N time instants
{t1, t2, · · · , tN} so that we have

Y (ti) = X(ti) + Ei, i = 1, 2, 3, · · · , N, (37)

where Y (ti) is the observed values of the state variables at time instant ti and {Ei}Ni=1 are the difference
between the observed value yi and the corresponding fitted value xi (i.e. Ei = yi − xi).The objective is to
determine appropriate parameter values so that the sum of the squared errors between the outputs of the
estimated model (X(t)) and the observed data (Y (t)) are minimized.

The best fit was achieved by searching for the set of parameters θ̂ = (θ̂1, θ̂2, · · · θ̂p) which satisfies the
objective function

θ̂ = min
θ

N∑
i=1

(yi − xi)
2. (38)

To find the best fit parameters for our model which satisfies the equation (38), we used the nonlinear curve
fitting method with the help of ’lsqcurvefit’, MATLAB built in function. Lsqcurvefit is an optimization
toolbox which solves nonlinear data-fitting problems in the least-squares sense. In our case the number of
parameters, p, to be estimated is 16. We fitted our model to the real data of COVID-19 daily cumulative
confirmed cases and vaccinated population of Ethiopia from May 01, 2021 to January 31, 2022, which is
available online by Our World in Data [23]. Two of the parameter values are estimated from literature:
according to the data by Worldometer, the Ethiopian average life expectancy at birth for the year 2021 and
the approximate total population is 67.8 and 114963588 respectively [34]. Therefore, the natural death rate
of individuals per day is calculated as the reciprocal of the life expectancy at birth times days in a year,
given by µ = 1

67.8×365 . We approximated the recruitment rate from π
µ = N(0) (Initial population). Hence we

found π = µ×N(0) = 4646 individuals per day [18, 17]. In the estimation process of the rest parameters the
following initial conditions are used: from the data in Our World in Data we have
Is(0) = 620, V1(0) = 20385, R(0) = 946 and D(0) = 21. Where t = 0 corresponds to May 01, 2021. We
assumed 80% of COVID-19 infected individuals become asymptomatic. Therefore we estimated
Ia(0) = 620/0.8 = 775. We also assumed E(0) = 1400, which is approximately equal to the sum of the
symptomatic and asymptomatic cases, and V1(0) = Q(0) = H(0) = 0. Hence, the initial susceptible
population is taken as S(0) = N(0)− (V1(0) + V2(0) + E(0) + Ia(0) + Is(0) +Q(0) +H(0) +R(0)).

The best fit to the daily cumulative COVID-19 confirmed cases and vaccination through our model is shown
in Figure 3 and it can be observed that the estimated parameters for the cumulative daily cases is well fitted
as compared the observed data. The estimated and calculated parameter values are given in Table 2. Using
these parameters, we calculated R0 = 1.17 and Rv = 1.15. The estimated value of the basic reproduction
number is greater than 1 which is similar as the study for Ethiopia in [17] in which they estimated
R0 = 1.0029. In the same study the estimated transmission rate is β = 0.88 which is greater than our case,
which is can be expected due to in our case we have vaccination as a control strategy. Thus, Apart from the
uncertainty in the parameter values due to the model’s complexity, the estimated parameters can represent
the situation in Ethiopia at the time the data is collected.
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Figure 3: The fitted data to the reported cumulative cases (panel (a)) and cumulative vaccinated(panel (b)) using the
model (2) for Ethiopia from May 01, 2021 to January 31, 2022.

Parameter Description Value Sources

π Recruitment rate 4646 day−1 Calculated
Sec.4.1

µ Natural death rate 1
67.8×365 day−1 Calculated

Sec.4.1

p1 First dose Vaccination rate 8.157× 10−7 day−1 Fitted

p2 Second dose Vaccination rate 0.974 day−1 Fitted

β Transmission rate 0.513 day−1 Fitted

τ Infectivity factor for asymptomatic individuals 0.116 Fitted

η1 Efficacy of first dose vaccine 0.8 Fitted

η2 Efficacy of second dose vaccine 0.95 Fitted

α Inverse of average time needed to take the
second dose

0.14 day−1 Fitted

ρ fraction of infections that become asymptomatic 0.112 Fitted

e Infection rate after incubation period 0.2071 day−1 Fitted

rs Recovery rate for individuals with symptom 1.89× 10−7 day−1 Fitted

ra Recovery rate for asymptomatic individuals 0.0148 day−1 Fitted

rq Recovery rate for quarantined individuals 0.0356 day−1 Fitted

rh Recovery rate for individuals in hospital 0.213 day−1 Fitted

δ Quarantine rate 0.453 day−1 Fitted

d Disease induced death rate 0.177 day−1 Fitted

qh Hospitalization rate from quarantine 0.999 day−1 Fitted

Table 2: Parameter description and their baseline values used in the model (2).

4.2 Long-term dynamics of the model

Figure 4, panels (a) and (b) (for time interval [9000, 30000]) shows the local stability of the endemic
equilibrium
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Eend = [3.77 × 10−7, 225, 6.91 × 105, 1.49 × 104, 2.334 × 104, 4.36 × 103, 1.632 × 103, 4.181 × 103, 3.201 × 107]
for Rv = 2.98 > 1. Panels (c) and (d) portrays the stability of the disease free
equilibrium,Edfe = [1.127 × 108, 673.9, 2.2741 × 106, 0, 0, 0, 0, 0, 0], for Rv = 0.556 < 1. These results support
our analytical results in section 3 of Theorem 3.4.2 and 3.5.1. For better use of spacing and view we didn’t
include the plot for E compartment, but the dynamics of this state variable converges to its equilibrium
point. The convergence to the endemic equilibrium is through damped oscillation, which shows the disease
may re-emerge. Such long-term oscillatory dynamics are consistent with the findings of an Indian study [16],
suggesting that COVID-19 could become a seasonal disease.

When Rv = 1 an exchange of stability ( forward bifurcation) arises, This property is shown in Figure 6.
Which shows the disease persists in the population if the reproduction parameter excedes the threshold
value.
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Figure 4: Local stability of the endemic equilibrium for Rv = 2.98 > 1( infected compartments, panels (a), and
non infected compartments, panel (b)) and local stability of the disease free equilibrium for Rv = 0.556 < 1 (infected
compartments, panel (c), and non infected compartments, panel (d).) τ1 = 0.6 and p1 = 5 × 10−5 is used for panels
(a)&(b) and (c)&(d) respectively and other parameter values are given in Table 2.
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4.3 Variation of Rv and R0 with respect to some important parameters

An important parameter in modeling infectious disease transmission is the reproduction parameter which
measures the potential spread of an infectious disease in a community, in our case we have a control
reproduction parameter, Rv. In particular, if Rv < 1 the disease dies out and if Rv > 1 the disease persists
in the population. Therefore, reducing such parameter below the critical value Rv = 1 is important. In our
model, reducing the transmission rate β and infectivity factor of asymptomatic individuals, τ will help
reduce Rv from unity, Figure 5 panels (a) and (b). It is worth noting that the influence of the second dose
vaccination rate on varying the control reproduction number is minimal. Keeping parameters other than the
transmission rate β constant as in the Table 2, Rv < 1 if β < 0.4464 (See Figure 5 panel (a) or (c)). If
τ < 0.0764, then Rv < 1 fixing other parameters constant, Figure 5 panel (b).
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Figure 5: Variation of Rv with respect to : the transmission rate β ,panel (a) and infectivity factor of asymptomatic
individuals τ , panel (b). Panel (c) shows the zoom plot of panel (a). The red doted line is used to mark the line at one.
Other parameter values are given in Table 2.

Figure 6: Transcritical bifurcation of model (2) when Rv = 1.

4.4 The impact of transmission rate

In this and subsequent subsections, we say infectious population to refer to the sum of the population in
symptomatic and asymptomatic classes per time (Ia(t) + Is(t)). This is due to the fact that in our model
we assumed people in these two compartments are potential transmitters of the disease. Unless explicitly
mentioned, when we say vaccinated individuals, it refers to the total number of individuals vaccinated either
with the first dose or the second dose per unit time (V1(t)+V2(t)). Figure 7 shows the role of the transmission
rate β on the dynamics of the infectious, vaccinated, and hospitalized classes. A decrease in the transmission
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rate results in a prevalence decrease. When the transmission rate is equal to 0.55 days−1 the prevalence reaches
a high peak of 1424101, but by decreasing it to β = 0.49 days−1 (below the fitted value) the infectious peak
can be decreased to 410094 Figure 7 panel (a). This shows that if we can further decrease the transmission
rate, it is possible to achieve an infectious number of insignificant value and eradication of the disease. When
the transmission rate is small, a small number of people will be infected, which means the number of people
in the susceptible class will be large, hence the number of vaccinated people will rise, Figure 7, panel(b). The
burden of hospitalization can be decreased by decreasing the transmission rate. As it can be seen in Figure
7, panel(c), when the infectious population is high, correspondingly we have a large number of individuals in
the hospital and vice versa.
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Figure 7: The effect of transmission rate β. Panel (a): infectious population Ia(t) + Is(t), panel (b): Vaccinated
population, V1(t) + V2(t), and panel (c) hospitalized individuals. Other parameter values are given in the Table 2.

4.5 The impact of first dose vaccination rate

Figure 8 shows the role of the first dose vaccination rate on the dynamics of infectious, vaccinated and
hospitalized population. Increasing this vaccination rate results in a decrease of infectious and hospitalized
population Figure 8 panels (a)&(c). For example when p1 = 8.16 × 10−7 day−1 the infectious population
reaches a high peak of value 759544 and hospitalized peak of 118624 individuals. If we are able to increase
the rate to p1 = 8.16 × 10−5 day−1 the above peaks will decrease to 171226 and 26151 of infectious and
hospitalized individuals respectively. Such a decrease in prevalence is achieved with high proportion of
vaccinated individuals in the population Figure 8 panel (b). Simulation results shows that the role of the
second dose vaccination rate, p2 and time delay between the two doses, α doesn’t have significant impact on
the dynamics. From the formulation of the model, every one who got the first dose and not infected is
assumed to get the second dose and therefore will be transferred to V2 class after an average time of 1/α
hence the role of the vaccination is visible when p1 varies. If health officials attempt to encourage people to
get the second dose of the vaccination, the prevalence will drop dramatically.
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Figure 8: The impact of the first dose vaccination rate p1: on the dynamics of infectious population,panel (a),
vaccinated population, panel (b), and hospitalized population, panel (c). Other parameter values are given in the Table
2.

4.6 The impact of the infectivity factor of asymptomatic individuals

According to the study [28], asymptomatic cases of COVID-19 are a potential source of substantial spread
of the disease within the community and one of the results found was people with asymptomatic COVID-19
are infectious but might be less infectious than symptomatic cases. Since the majority of COVID-19 infected
individuals become asymptomatic, even if they are less infectious than the symptomatic individuals, their
role in spreading the disease might be significant. Figure 9 proves this hypothesis. As the infectivity factor
increases, we observed a rise of the infectious population to a relatively high pick (2799983 infectious for
τ = 0.2) Figure 9, panel (a), which is not observed in the impact of other parameters, like β. Decreasing
the infectivity factor decreases the infectious population significantly. As observed in other plots here also
the increase of infectious population will result in increase in the number of hospitalized individuals and
vice versa Figure 9 panel (c). The increase in the infectivity factor τ makes more people to be infected
from vaccinated compartments which results in a decrease in the number of vaccinated individuals, Figure 9
panel (b). Therefore the number of vaccinated individuals is inversely proportional to the infectivity factor.
Detection of Asymptomatic individuals (for example: by contact tracing) and isolating them may reduce their
infectiousness.
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Figure 9: The impact of the infectivity coefficient of asymptomatic population, τ1 on the dynamics of infectious
population,panel (a), total vaccinated population, panel (b), and hospitalized population, panel (c). Other parameter
values are as in the Table (2).
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5. Prediction of cumulative vaccine dose administered with respect to
the first dose vaccination rate.

Most of COVID-19 vaccines approved by WHO are being offered in two doses and a booster. In Ethiopia
Sinopharm, AstraZeneca, Johnson and Johnson/Janssen, and Pfizer-BioNTech vaccines are being used. From
these vaccines except Johnson&Johnson/Janssen all are being given in two doses. The total number of
COVID-19 vaccine dose administered from May 01, 2021 to January 31, 222 (276 days) is 9517539. Using
the fitted parameters, our model estimates this number by 9152542 vaccine doses (See, the highlighted row
third column of Table 3). If the first dose vaccine administration rate remains the same for the next two
years, (i.e after 1006 days) 66483093 number of vaccine doses will be administered. According to World
Population Review projection, Ethiopian population in 2024 will be 126.8 million [33]. Since a person can
get vaccinated with two doses, we can approximate the number of people vaccinated with at least one dose
by 1

2 × number of vaccine dose administered. This means 33241546 number of people (Approximately 26%
of the total population (in 2024)) will get at least one dose of COVID-19 vaccination. Increasing p1 to
3.16 × 10−6 days−1 it can be achieved, after two years, 199688874 number of administered vaccine doses.
Which is equivalent to 99844437 number of people (approximately 79% of the total population in the year
2024 ) can get at least first dose (see fourth row of Table 3). It needs a lot to work on increasing the vaccination
rate beyond the critical value p∗1 = 7.3946× 10−6 so that Rv < 1.

p1 Rv Vaccine dose administered
in [0, 276] days (Interval of
fitting time)

Predicted after two years
([0, 1006] days interval)

8.157× 10−7 day−1 1.15 9152542 66483093

9.16× 10−7 day−1 1.147 9588497 72169187

1.16× 10−6 day−1 1.141 10652193 86042042

3.16× 10−6 day−1 1.09 19369216 199688874

Table 3: Values of: Control reproduction number (second column), cumulative vaccine administered at the end of the
parameter fitting time (third column) and Predicted number of cumulative vaccine to be administered (fourth column).
For different values of p1. Other parameter values are given in Table 2. The light Cyan shaded row is for the base line
p1 value.

6. Conclusion

In this study, we used a compartmental model for COVID-19 transmission with vaccination. We divided the
vaccinated portion of the population into two: Vaccinated with the first dose and fully vaccinated (those
who got the two doses). Using the next generation matrix, we found a reproduction number which exists
when vaccination is in place. We called this parameter the control reproduction number and denoted it by
Rv. We calculated the disease-free and endemic equilibrium of model (2) and showed that the disease-free
equilibrium Edfe is globally asymptotically stable if the control reproduction number Rv < 1 and unstable if
Rv > 1. We performed a center manifold analysis based on the method mentioned in Castillo-Chavez and
Song[7] and found that the model exhibits a forward bifurcation at Rv = 1, which ensures the nonexistence
of the endemic equilibrium below the critical value, Rv = 1 and the unique endemic equilibrium which exists
for Rv > 1 is locally asymptotically stable. From epidemiological point of view this implies that the disease
dies out if the control reproduction number is below the threshold quantity and it persists in the population
if greater. This informs public health policy makers to work on reducing the control reproduction number so
as to make it less than unity. We performed a sensitivity analysis from which we observed that the model is
sensitive to p1, p2, δ with negative sign and β, τ with positive sign. This shows that increasing the
vaccination and quarantine rate and decreasing the transmission rate and infectivity factor of asymptomatic
individuals will reduce the disease burden.
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We performed model fitting to the Ethiopian real COVID-19 data for the period from May 1, 2021 to
January 31, 2022 to estimate the unknown parameters in the model. In the numerical simulation section, we
validate our analytical analysis regarding the stability of the disease-free and endemic equilibrium with
respect to the parameter Rv. We also examined the role of some important parameters on the dynamics of
the disease and arrived at the following points: Reducing the transmission rate and the infectivity factor of
asymptomatic individuals will greatly help in reducing the infection burden. Increasing the first dose
vaccination rate has a high impact in reducing the infection. Furthermore, simulation results show that the
second dose vaccination rate has no significant effect on the dynamics of the infectious population.

In addition to this, we also predicted the cumulative vaccine dose administered by changing the first dose
vaccination rate. In this prediction, if we increase p1 to a value 3.16× 10−7 day−1 after two years, the total
vaccine dose administered will reach 1996888974, which will cover approximately 79% of the total
population. Therefore, from the numerical simulation and analytical analysis, we summarize that it will be
essential to reduce the transmission rate, infectivity factor of asymptomatic cases and increase the
vaccination rate beyond the critical value P ∗

1 = 7.3946 × 10−6, quarantine rate to control the disease. As a
future work, we will point out that this model can be extended by including additional interventions (for
example, non-pharmaceutical interventions), by considering the behavioural aspect and via optimal control
problem. We would also want to point out that the model can be studied further using fractional order
derivatives and the findings obtained can be compared.
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