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Abstract 12 

Antecedent: The diagnosis of schizophrenia could be enhanced with objective neurophysiological 13 

biomarkers, such as the event related potential features in conjunction with machine learning 14 

procedures. A previous work extracted features from event related responses to three oddball 15 

paradigms (auditory and visual P300, and mismatch negativity) for the discrimination of schizophrenic 16 

patients. They used several classifiers: Naïve Bayes, Support Vector Machine, Decision Tree, 17 

Adaboost and Random Forest. The best accuracy was obtained with Random Forest (84.7%). 18 

Objective: The aim of this study was to examine the efficacy of Multiple Kernel Learning classifiers 19 

and Boruta feature selection method exploring different features for single-subject classification 20 

between schizophrenia patients and healthy controls. 21 

Methods: A cohort of 54 schizophrenic subjects and 54 healthy control subjects were studied. Three 22 

sets of features related to the event related potentials signal were calculated: Peak related features, Peak 23 

to Peak related features and Signal related features. The Boruta feature selection algorithm was used 24 

to evaluate its impact on classification accuracy. A Multiple Kernel Learning algorithm was applied to 25 

address schizophrenia detection. 26 

Results: We obtained a classification accuracy of 83% using Multiple Kernel Learning classifier with 27 

the whole dataset. This result in accuracy triangulates previous work and shows that the differences 28 

between schizophrenic patients and controls are robust even when different classifiers are used. 29 

Appling the Boruta feature selection algorithm a classification accuracy of 86% was yielded. The 30 

variables that contributed most to the classification were mainly related to the latency and amplitude 31 

of the auditory P300.  32 
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Conclusion: This study showed that Multiple Kernel Learning can be useful in distinguishing between 33 

schizophrenic patients and controls. Moreover, the combination with the Boruta algorithm provides an 34 

improvement in classification accuracy and computational cost.  35 

 36 

1 Introduction 37 

Schizophrenia is a severe and persistent debilitating psychiatric disorder with prevalence of 1% of the 38 

world population (McGrath et al., 2004). Although psychotic symptoms such as hallucinations and 39 

delusions are frequently present, impaired information processing is probably the most common 40 

symptom (Javitt et al., 1993). This deficit is reflected mainly in deficits in attention and working 41 

memory tasks when compared with healthy controls (Li et al., 2018). The diagnosis of schizophrenia 42 

is made by psychiatrists by ascertaining the presence of predefined symptoms (or their precursors) 43 

with personal interviews. However, in some cases this diagnosis is unclear, or patients are 44 

misdiagnosed with Schizophrenia (Coulter et al., 2019). Thus, finding biomarkers for the prediction 45 

of individuals with schizophrenia would be desirable in order to choose the optimal treatment 46 

(pharmacologic or non-pharmacologic). Analysis of EEG recording during information processing 47 

tasks could provide objective complimentary measures to support the subjective human-based 48 

decision process (Sabeti et al., 2009; Koukkou et al., 2018) . 49 

EEG is a non-invasive and low-cost technique used to measure electrical brain activity along multiple 50 

scalp locations. EEG signals have been widely adopted to study mental disorders, such as dementia, 51 

epileptic seizures, cognitive dysfunction, among others, as well as schizophrenia (Loo et al., 2016; 52 

Olbrich et al., 2016; Horvath et al., 2018). EEG reflects the spontaneous activity of myriad brain 53 

parcels, but also can include responses to afferent stimuli (Cong et al., 2015). Event related potentials 54 

(ERPs) are electrical responses that are time-locked to a specific stimulus or event, and can be used 55 

to assess brain dynamics during information processing in specific tasks (Woodman, 2010). When a 56 

subject is presented with a series of standard stimuli, interspersed with infrequent deviant stimuli, the 57 

Mismatch Negativity (MMN) (Lee et al., 2017)  and the P300 (Li et al., 2018)  components are 58 

generated. This task is known as the oddball paradigm and is used to study schizophrenia since 59 

consistent deficits in the P300 and MNN have been reported in this disease (Bramon et al., 2004; 60 

Javitt et al., 2017). Although MMN and P300 are usually produced by an infrequent unexpected 61 

event in a sequence of auditory stimuli, P300 can also be obtained with visual stimuli. The MMN  is 62 

of shorter latency and does not require attention to the stimulus (Näätänen et al., 2004), whereas the 63 

P300 is of longer latency and requires attention to the stimulus (Huang et al., 2015).  64 

Several studied have reported significant differences in the latency and amplitude of MMN and P300 65 

between controls and patients, suggesting that these features are possible markers of the prodromal 66 

phase of schizophrenia (Atkinson et al., 2012; Loo et al., 2016) as well as a potential endophenotypes 67 

for schizophrenia (Earls et al., 2016). Analysis of a large dataset of auditory P300 ERP (649 controls 68 

and 587 patients) confirmed the reliability of this reduced amplitude, with a large effect size 69 

(Turetsky et al., 2015). However, these findings of statistically significance differences in a group 70 

analysis does not imply that EEG is useful for the prediction of individual schizophrenia cases (Lo et 71 

al., 2015), which requires applying a prediction paradigm using Machine Learning. 72 

Accordingly, machine learning techniques are being applied to classify between schizophrenics (SZs) 73 

and healthy controls (HCs) using ERPs. The most common features used are based on amplitude and 74 

latency of different components (e. g. N100 and P300 (Neuhaus et al., 2013), P50 and N100 (Iyer et 75 

al., 2012; Neuhaus et al., 2014)), with several classifiers tested. Neuhaus et al. using visual and 76 
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auditory oddball paradigms and a k-nearest neighbor (KNN) classifier obtained a classification 77 

accuracy of 72.4 % (Neuhaus et al., 2013). The same author with a bigger sample size and a Naive 78 

Bayes (NB) classifier achieved a 77.7% of accuracy (Iyer et al., 2012). Laton et al. evaluated the 79 

performance of several classifiers extracting features from auditory/visual P300 and MMN (Laton et 80 

al., 2014). The results using NB and Decision Tree (without and with AdaBoost) achieved accuracies 81 

of about 80%. Recently, Barros et al. published a critical review that summarizes machine learning-82 

based classification studies to detect SZs based on EEG signals, conducted since 2016, (Barros et al., 83 

2021). These authors reported that Support Vector Machines (SVM) were the commonly used 84 

algorithms, probably due to its computational efficiency. This kernel-based learning method also 85 

achieved the best performance in most studies. Nevertheless, none of the studies focused on ERPs, 86 

have used multiple kernels, employing instead only one specific kernel function. 87 

The multiple kernel learning (MKL) method learns a weighted combination of different kernel 88 

functions and is able to benefit from information coming from multiple sources (Wani and Raza, 89 

2018). It has been used to address the problem of biomarker evaluation for schizophrenia detection, 90 

but basically applied to Magnetic Resonance Images increasing performance accuracy (Ulaş et al., 91 

2012; Castro et al., 2014; Liu et al., 2017). However, as far as we know, application of MKL to 92 

electrophysiological data has been not explored for schizophrenia, even though some authors are 93 

applying this technique to EEG signals for other purposes, mainly brain computer interfaces (Li et 94 

al., 2014; Zhang et al., 2017). Thus, MKL has not been applied in the objective diagnosis of 95 

Schizophrenia using EEG. 96 

Here, using the same dataset provided by Laton et al. (Laton et al., 2014), we extended the set of 97 

predictor variables beyond the latency and amplitude of the ERP components, by including additional 98 

morphological features (based on time)  together with some features extracted from the frequency 99 

domain. Due to the large number of features, the Boruta method was applied, which is a wrapper 100 

Random Forest (RF) based feature selection algorithm, to estimate the impact of a subset of 101 

important and relevant feature variables in the classification accuracy. The multiple kernel learning 102 

(MKL) was evaluated for the classification of SZs versus HCs. 103 

2 Materials and methods 104 

2.1 Dataset 105 

The study was carried out on data from 54 patients and 54 controls, matched for age and gender. 106 

Patients were classified by a semi-structured interview (OPCRIT v4.0) and all participants gave written 107 

informed consent. Detailed demographic data can be found in Table 1. EEGs were recorded using a 108 

64-channel and the international 10/10 system, with a sampling frequency of 256 Hz. Three paradigms 109 

auditory/visual P300 and MMN were used. Table 2 shows a brief description of paradigms.  110 

The signals were filtered using bandpass Butterworth filters with cuttoffs at 0.1 and 30 Hz. Epochs 111 

were extracted using time windows between -200 and 800 ms for the P300 paradigms, and between -112 

100 and 500 ms for the MMN. Subsequently, baseline correction, re-referencing to linked ears and 113 

artefact rejection were performed. Finally, epochs were averaged into stimulus specific responses for 114 

each individual and low-pass filter and baseline correction were re-applied. More details can be found 115 

in Laton et al (Laton et al., 2014). 116 

2.2 Feature extraction 117 
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Feature extraction has been carried out on the waveform of ERPs emerged as the averaging of the 118 

electrical responses corresponding to the set of stimuli different from the standard stimulus (Target 119 

and Distractor for P300, Duration and Deviant for MNN)). Only Fz, Cz and Pz channels were 120 

considered (see Figure 1). Thus, the number of features extracted for classification purposes was 726 121 

(282 features for each P300 paradigms and 162 for MMN paradigm). The feature values were 122 

standardized to ensure that all of them have equal weight during training of the classifiers. These 123 

standardized values were then normalized, rescaling them all to values between 0 and 1. In this 124 

binary classification problem, patients and controls were 1 and 0 respectively.  125 

The set of features can be divided into three categories: Peak related features, Peak to Peak related 126 

features and Signal related features. Details about feature definitions are presented in Annex 1. Some 127 

of these features were previously used for other authors to calculate features related to the ERP signal 128 

(Kalatzis et al., 2004; Abootalebi et al., 2009).  Four peaks for P300 paradigms (N100, P200, N200, 129 

and P300) and two peaks for MMN paradigm (N200, P300) were considered (see Figure 2). 130 

2.2.1 Peak related features 131 

Peaks were estimated using the same algorithm described in Laton et al (Laton et al., 2014). The 132 

algorithm detects the largest absolute value in an interval established around the average latency of 133 

the peak in the respective grand average. This value is considered as Amplitude of the corresponding 134 

peak, their Latency is the time where the peak appears in the respective time interval. To ensure little 135 

overlap between the intervals, the detection interval was extended to contain the latency of peak most 136 

deviated. To search the latency of the peak, the minimum value of the corresponding detection 137 

interval was changed by the latency of the previous searched peak to avoid mistakes in the order of 138 

the ERPs components. The other features were: Absolute Amplitude, Latency/Amplitude ratio, 139 

Absolute Latency/Amplitude ratio, Average Absolute Signal Slope and Slope sign alterations.  140 

2.2.2 Peak to Peak related features 141 

Three features were calculated considering the relationship between adjacent selected peaks: the 142 

absolute difference between the amplitude of the peak and the next peak in latency order; the 143 

difference in latencies of these two peaks; and the slope of the signal in this time window. 144 

2.2.3 Signal related features 145 

Features considering the area under the curve were calculated: the sum of the positive signal values 146 

(Positive Area); the sum of the negative signal values (Negative Area); the Total Area, and Absolute 147 

Total Area. Two more features related to the whole signal were calculated: the number of times that 148 

the amplitude value of the signal crosses the zero y-axis between two adjacent peaks (Zero 149 

Crossing); and the relation of the number of crosses per time interval (Zero Cross Density). 150 

Additionally, frequency domain features were extracted using a Power Spectral Density (PSD) 151 

analysis: the frequency with the largest energy content in the signal (Mode frequency) spectrum; the 152 

frequency that separates the power spectrum into two equal energy areas (Median frequency); and an 153 

estimate of the central tendency of the derivate power distributions (Mean frequency). 154 

2.3 Classifier used in the study 155 

2.3.1 MKL 156 

The use of MKL has shown that it enhances the interpretability of decision functions and can 157 

improve classification performance compared with other classifiers (Kloft et al., 2009; Varma and 158 

Babu, 2009). Similar to simple SVM applications, this method is based on kernel definitions, 159 

however, instead of one single kernel, MKL combines several kernel functions (reflecting different 160 
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kinds of information), and also automatically determines the importance of each kernel (Gönen and 161 

Alpaydin, 2011) . 162 

Given a set of data X and a feature mapping function Ф, a kernel matrix can be defined as the inner 163 

product of each pair of feature vectors: 164 

𝑲(𝒙𝒊, 𝒙𝒋) =  〈Ф(𝒙𝒊), Ф(𝒙𝒋)〉   165 

In the multiple kernel learning problem for binary classification, N data points (𝒙𝒊, 𝒚𝒊) (𝒚𝒊𝝐 ± 𝟏) are 166 

given, where 𝒙𝒊 is translated via M mappings Ф𝒎(𝒙) → 𝐑𝑫𝒎, m= 1,…,M, from the input into M 167 

feature spaces Ф𝟏(𝒙𝒊), … . , Ф𝑴(𝒙𝒊) where 𝑫𝒎 denotes the dimensionality of the 𝒎𝒕𝒉 feature space. 168 

Multiple Kernel Learning methods aim to construct an optimal kernel model where the kernel is a 169 

linear combination of fixed base kernels. Learning the kernel then consists of learning the weighting 170 

coefficients β for each base kernel, rather than optimizing the kernel parameters of a single kernel. 171 

𝑲𝒐𝒑𝒕(𝒙𝒊, 𝒙𝒋) =  ∑ 𝜷𝒎𝑲𝒎(𝒙𝒊, 𝒙𝒋)

𝑴

𝒎=𝟎

         𝜷𝒌 > 𝟎, ∑ 𝜷𝒎

𝑴

𝒎=𝟎

= 𝟏 172 

When MKL is plugged into SVM, the primal form of MKL is reformulated as the following 173 

optimization problem: 174 

𝐦𝐢𝐧
𝜷,𝒘,𝒃,𝓔

𝟏

𝟐
∑

𝟏

𝜷𝒎𝒎
‖(𝒘𝒎)‖𝓗𝒎

𝟐 + 𝑪 ∑ ℇ𝒊
𝒊

 175 

𝒔. 𝒕       𝒚𝒊 (∑ 〈(𝒘𝒎), 𝝓𝒎(𝒙𝒊)〉𝓗𝒎
𝒎

+ 𝒃) + ℇ𝒊  ≥ 𝟏 176 

ℇ𝒊  ≥ 𝟎, 𝒇𝒐𝒓 ∀𝒊 177 

∑ 𝜷𝒎 = 𝟏, 𝜷 ≥ 𝟎
𝒎

 178 

where C is a regularization parameter between training errors and an optimal separating hyperplane. 179 

For binary classification MKL problem, optimization is solved using semi-infinite programming 180 

(Sonnenburg et al., 2006). The three commonly used kernels are: linear kernel (𝑲𝑳), polynomial 181 

kernel (𝑲𝑷), and Gaussian kernel (𝑲𝑔): 182 

𝑲𝑳(𝒙𝒊, 𝒙𝒋) =  〈𝒙𝒊, 𝒙𝒋〉 183 

𝑲𝑷(𝒙𝒊, 𝒙𝒋) = (〈𝒙𝒊, 𝒙𝒋〉  + 𝟏)𝒒 184 

𝑲𝑮(𝒙𝒊, 𝒙𝒋) = 𝐞𝐱𝐩 (−
‖𝒙𝒊 −  𝒙𝒋‖

𝟐

𝒔𝟐
), 185 

where parameter q is the polynomial degree and parameter s determines the width for Gaussian 186 

distribution. 187 
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MKL provides a general framework for learning from multiple and heterogeneous data sources (de 188 

Carvalho, 2019). This machine learning algorithm works by first constructing a kernel from each of 189 

the data sources and then combining these kernels based on a certain criterion for improved 190 

classification performance. With M kernels, a given input data can be mapped into M feature spaces. 191 

Another approach is when different basis kernels are applied to the same data features to identify 192 

which kernel is best for the problem at hand. 193 

In this paper, the input data was mapped into different feature spaces trying to group variables with 194 

common aspects: type of paradigm, channels (Fz, Cz, Pz), or type of feature. For every feature space 195 

the 726 features were rearranged in three groups considering the common aspects (see Figure 3). 196 

Then, the MKL available in SHOGUN toolbox was applied (Sonnenburg et al., 2010) for every 197 

feature space. We used a non-sparse MKL with L2-norm that have more advantages over sparse 198 

integration method for thoroughly combining complementary information in heterogeneous data 199 

sources. L2-norm distributes the weights over all kernels while taking advantages of the effects of 200 

kernels in the objective optimization (Yu et al., 2010). 201 

2.4 Feature Selection 202 

Feature selection yields a subset of features from the original set of features, which are the best 203 

representatives of the data. Therefore, it allows us to reduce the number of input variables. The goal 204 

of this process is to reduce the computational cost when developing a predictive model and, in some 205 

cases, to improve the performance of the model, not always guarantee (Benouini et al., 2020).  206 

2.5 Boruta algorithm 207 

Boruta is a feature selection algorithm that uses a wrapper method based on the RF classifier to 208 

measure the importance of variables. RF makes it relatively fast due to its simple heuristic feature 209 

selection procedure (Kursa, 2017). In the Boruta algorithm, the original feature set is extended by 210 

adding shadow variables (Kursa and Rudnicki, 2010). A shadow variable is created by shuffling 211 

values of the original feature. The importance values are calculated for all the attributes by running 212 

RF classifier resulting in a Z score. The maximum Z score is calculated among those shadow 213 

variables to assign a hit for each feature that scored better than this maximum. A two-sided test of 214 

equality is performed to obtain a statistically significant division between relevant and unimportant 215 

feature variables. If a variable systematically falls below the shadow ones, its contribution to the 216 

model is doubtful and is therefore eliminated. The shadow variables are removes and the process 217 

continues until all variables are accepted, rejected or a limit number of iterations is reached. This 218 

limit corresponds to the maximal number of RF runs. 219 

The package “Boruta” in R was used (Kursa and Rudnicki, 2020). The implementation defaults to 220 

100 as the maximum number of RF runs. To get a reduced number of attributes left undecided, this 221 

value was set to 500. Nevertheless, when this value isn’t enough, another function 222 

TentativeRoughFix, contained in the package, can be used to analyses those attributes which 223 

importance is very close to the decision criteria.  224 

2.6 Nested cross validation 225 

For explore the feature selection impact, nested cross validation (NCV) was applied. The NCV is 226 

characterized by having an inner loop responsible for model selection/hyperparameter tuning and an 227 

outer loop is for error estimation. The entire data was divided randomly into k subsets or folds with 228 

stratification, the same proportion of patients and controls as in the complete dataset. The k-1 subsets 229 
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are used for feature selection and the remaining subset for testing the model after feature selection. 230 

As in k-fold cross-validation method, this process was repeated k times (outer loop), each time 231 

leaving out one of the subsets reserved for testing and the rest for feature selection using Boruta 232 

algorithm (see Figure 4).  233 

Each subset obtained after feature selection, was used for model hyperparameter tuning in the inner 234 

loop. One of the approaches commonly used in practice for the selection of hyperparameters is to try 235 

several combinations of them and evaluate their out of sample performance. The tuned parameters in 236 

the MKL classifier were: 237 

• Regularized parameter C, a tradeoff between misclassification and simplicity of the model, the 238 

candidate’s values for grid was 0.5, 1, 1.5 ,5, 10 239 

• Type of kernel (linear, RBF, and polynomial) 240 

• In case of RBF kernels the Sigma (σ) to determine the width for Gaussian distribution, 241 

exploring the following values 10, 5, 1, 0.25, 0.5, 0.75.  242 

The parameter configuration selected to train the final model was the one that reached the highest 243 

average accuracy on the inner loop. The whole dataset used for tuning parameters was then trained 244 

and tested with its corresponding test set in the outer loop. The classifiers’ performance was obtained 245 

by averaging the accuracy of the k trained models.  246 

3 Results 247 

3.1 Feature Selection 248 

The Boruta algorithms yielded an average of 32 attributes selected per k iteration with values in a 249 

range of 26 to 42 (see Figure 5A). The median computation times was around 2.6 minutes (std 0.04), 250 

with 0.005 min per RF runs. A total of 76 attributes were selected at least once. Figure 5B shows 251 

how many times these attributes were selected in the process. The distribution of variable per 252 

paradigm is also showed. The 80% of the 76 attributes selected were related to amplitude, latency, or 253 

the correlation between them. Attributes related to frequency domain was barely selected. 254 

Only seven features were identified as important every time Boruta algorithm was used. Table 3 255 

describes these features according to the paradigm, type of stimulus, channel, and type of feature. 256 

3.2  Classifier performance 257 

To compare the performance of the MKL algorithms three metrics derived from the confusion matrix 258 

were used. As the classes were balanced, accuracy (Acc) is a good measure for assessing the 259 

classification models. Accuracy is the proportion of the total number of predictions that were correct. 260 

The other two measures were sensibility (Sen) that evaluates true positive rates, and specificity (Spe) 261 

to evaluate the false positives rates. In Table 4, the performance of MKL algorithm when feature 262 

selection was applied or not is shown.  263 

3.3 Discussion 264 

Here we explored the use of MKL classification algorithm for distinguishing SZs from HCs based on 265 

ERP data. Using all features, the best classification accuracy (83%) was achieved when kernels were 266 

built by grouping features according to paradigms. Moreover, when MKL was combined with Boruta 267 

method, a classification accuracy of 86% was obtained. With this feature selection algorithm, the 268 
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large number of predictor variables was reduced significantly (96%) with a lower computation time. 269 

Therefore, training time of MKL was also reduced, its main shortcoming is known to be its high 270 

computational cost, especially when many features are used (de Carvalho, 2019). 271 

Review of the Boruta algorithm results pointed out that variables with major importance were mainly 272 

related with auditory P300 ERP paradigm. This correspond with the general finding that the P300 273 

measures obtaining from auditory stimuli are more effective in differentiating SZs from HCs than 274 

those obtaining from visual stimuli (Park et al., 2005). An interesting point to be noted is that feature 275 

selected by Boruta were mainly related with amplitude, latency, and correlation between them. These 276 

features correspond with Peak related features. To a lesser extend Peak to Peak related features was 277 

included in the selection. However, only three features of Signal related features were rarely 278 

included, thus features in frequency domain didn´t contribute to classification.  279 

Overall, these findings are in accordance with findings reported by other authors, and thus 280 

triangulates the previous results and shows that the differences between SZs and HCs are robust even 281 

when different classifiers are used. Numerous authors have been concluded that odd-ball tasks are 282 

potential biomarker for diagnosis in schizophrenia. Some of them have verified that the use of 283 

latency and amplitude produces similar results in the discrimination of SZs from HCs.  Santos-Mayo 284 

et al. used time and frequency ERP features, they explored several electrodes grouping, classifiers, 285 

feature selection algorithms and  filtering schemes (Santos-Mayo et al., 2017). They achieved 286 

accuracies above 90% but their dataset was unbalanced and small, which could limit the 287 

generalization of their findings. Shim et al. proposed to extend P300 amplitude and latency sensor-288 

level feature with cortical current density values as source-level features, due to the low spatial 289 

resolution originating from volume conduction (Shim et al., 2016). Using Fisher's scores, feature set 290 

ranged for 1 to 20 were selected for classification. They reported classification accuracies of 81% for 291 

sensor-level features, 85% for source-level features and 88% combined them, using SVM classifier. 292 

Laton et al. combined latency and amplitude features of responses to three different odd-ball tasks to 293 

apply several classification algorithms (Laton et al., 2014). They achieved a classification accuracy 294 

averaged 77% (3.5 std) and their best result, closed to 85%, corresponded to RF classifier. These 295 

authors also found a similar pattern in terms of the most relevant features, since in a ranking of the 20 296 

main variables, 14 were extracted from the P300 auditory oddball paradigm. They stated auditory 297 

P300 as the most valuable of the three ERP paradigms to the final prediction success.  298 

Compared with these previous studies, our accuracies values are in a range considered as a good 299 

accuracy, very close to the results previously reached. This result adds robustness to the previous 300 

findings remarking the possibility of accurately distinguish SZs from HCs using neurophysiological 301 

measurements. The present finding confirms that Boruta algorithm is a computationally efficient and 302 

robust algorithm that improves classification accuracy in many scenarios (Speiser et al., 2019).  303 

Although the approach used here meet our goals, the information of the spatial voltage distributions 304 

over the scalp surface was wasted. It is known that the topography across the scalp was significantly 305 

different between schizophrenia and normal control groups (Morstyn et al., 1983; Frantseva et al., 306 

2014). Some authors had investigated the topographic abnormalities of schizophrenia mainly group-307 

based researches (Basile et al., 2004). However, individual patient-level analysis using topographic 308 

features has been less explored for schizophrenia. This would be a fruitful area for further work in 309 

other to reliably classify SZs from HCs.  310 

This study suffers of small sample size as usual in psychiatric cohorts. In these cases, instead of a-311 

priori train/validate/test partitions, strategies of cross-validation allow to estimate the selected model 312 
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performance and avoid the risk of data leakage. Nevertheless, larger sets yield a more stable, reliable 313 

estimate of future performance and guarantee better generalization (Cearns et al., 2019). 314 
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7 ANNEX 472 

Annex 1: Feature definitions 473 

Peak related features 

Amplitude    𝑨𝑷𝒆𝒂𝒌= max {𝒔(𝒕), 𝑰𝟏 < 𝒕 <  𝑰𝟐} ,  Peaks P1, P3 

    𝑨𝑷𝒆𝒂𝒌= min {𝒔(𝒕), 𝑰𝟏 < 𝒕 <  𝑰𝟐}  ,  Peaks N1, N2 

[𝑰𝟏, 𝑰𝟐] Detection Interval 

Latency: 𝑳𝑷𝒆𝒂𝒌={𝒕 \ 𝒔(𝒕) =  𝑨𝑷𝒆𝒂𝒌} 

Latency/Amplitude ratio 𝑳𝑨𝑹𝑷𝒆𝒂𝒌= 𝑳𝑷𝒆𝒂𝒌/𝑨𝑷𝒆𝒂𝒌 

Absolute Amplitude 𝑨𝑨𝑷𝒆𝒂𝒌=|𝑨𝑷𝒆𝒂𝒌| 

Absolute Latency/Amplitude 

ratio 
𝑨𝑳𝑨𝑹𝑷𝒆𝒂𝒌=|𝑳𝑷𝒆𝒂𝒌/𝑨𝑷𝒆𝒂𝒌|  

Average Absolute Signal Slope 𝑨𝑨𝑺𝑺𝑷𝒆𝒂𝒌 =
𝟏

𝒏
∑

|𝒔(𝒕+𝝉)−𝒔(𝒕)|

𝝉

𝑰𝟐−𝝉
𝒕=𝑰𝟏

    

𝝉 is the signal sampling period, n the number of samples of the 

digital signal 

Slope sign alterations 

𝑺𝑺𝑨𝑷𝒆𝒂𝒌 = ∑
𝟏

𝟐
|

𝒔(𝒕 − 𝝉) − 𝒔(𝒕)

|𝒔(𝒕 − 𝝉) − 𝒔(𝒕)|
+

𝒔(𝒕 + 𝝉) − 𝒔(𝒕)

|𝒔(𝒕 + 𝝉) − 𝒔(𝒕)|
|

𝑰𝟐−𝝉

𝒕=𝑰𝟏+𝝉

 

Peak to Peak related features 

Peak to Peak 𝑷𝑷𝑷𝒆𝒂𝒌𝒔 = |𝑨𝑷𝒆𝒂𝒌 −  𝑨𝑵𝒆𝒙𝒕𝑷𝒆𝒂𝒌|  
Peak to Peak Time Window 𝑷𝑷𝑻𝑷𝒆𝒂𝒌𝒔 = 𝑳𝑵𝒆𝒙𝒕𝑷𝒆𝒂𝒌 −  𝑳𝑷𝒆𝒂𝒌 

Peak to Peak Slope 𝑷𝑷𝑺𝑷𝒆𝒂𝒌𝒔 = 𝑷𝑷𝑷𝒆𝒂𝒌𝒔/ 𝑷𝑷𝑻𝑷𝒆𝒂𝒌𝒔 

Signal related features 

Positive Area 

𝑨𝒑 = ∑
𝒔(𝒕) + |𝒔(𝒕)|

𝟐

𝟖𝟎𝟎

𝒕=−𝟐𝟎𝟎

 

Negative Area 

𝑨𝒏 = ∑
𝒔(𝒕) − |𝒔(𝒕)|

𝟐

𝟖𝟎𝟎

𝒕=−𝟐𝟎𝟎

 

Total Area 𝑨𝒑𝒏 = 𝑨𝒑 +  𝑨𝒏 

Absolute Total Area 𝑨𝑨𝒑𝒏 = |𝑨𝒑𝒏| 

Total Absolute Area 𝑨𝑨𝒑𝒏 = 𝑨𝒑 +  |𝑨𝒏| 

Zero Crossing 

𝒁𝑪𝑷𝒆𝒂𝒌𝒔 = ∑ ẟ𝒔

𝑳𝑵𝒆𝒙𝒕𝑷𝒆𝒂𝒌

𝒕=𝑳𝑷𝒆𝒂𝒌

 , 

 
ẟ𝒔 = {

𝟏     𝒔(𝒕) = 𝟎
𝟎     𝒔(𝒕) ≠ 𝟎 

 

 

Zero Cross density 
𝒁𝑪𝑫𝑷𝒆𝒂𝒌𝒔 =

𝒁𝑪𝑷𝒆𝒂𝒌𝒔

𝑷𝑷𝑻𝑷𝒆𝒂𝒌𝒔
 

Mode frequency 𝒇𝒎𝒐𝒅𝒆 = 𝒇𝒋,  𝑷𝒋 = 𝒎𝒂𝒙 (𝑷𝒊 , 𝟏 < 𝒊 < 𝑴) 𝑷𝒋 is the power 

spectral density 

of signal at a 

frequency bin j, 

M is the number 

of frequency bin 

in the spectrum 

Median frequency 

∑ 𝑷𝒋

𝒇𝒎𝒆𝒅𝒊𝒂𝒏

𝒋=𝟏

= ∑ 𝑷𝒋

𝑴

𝒋=𝒇𝒎𝒆𝒅𝒊𝒂𝒏

=
𝟏

𝟐
∑ 𝑷𝒋

𝑴

𝒋=𝟏

 

Mean frequency 
𝒇𝒎𝒆𝒂𝒏 =

∑ 𝒇𝒋𝑷𝒋
𝑴
𝒋=𝟏

∑ 𝑷𝒋
𝑴
𝒋=𝟏

⁄  
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8 Tables 474 

TABLE 1. Demographic data. 475 

 Patients Controls P (t-test) 

Number of participants 54 54  

Male 36 36  

Age (years): mean ± std 40.5 ± 10.1 37.6 ± 14.1 0.22 

Age (years): range [22.4, 60.5] [15.1, 64.4]  

Education (years): mean ± std 12.6 ± 1.80 14.8 ± 2.11 4.84 × 10−5 

Disease duration (years): mean ± std 14.8 ± 9.04 –  

Disease duration (years): range [1, 40] –  

TABLE 2. Paradigms and procedures 476 

 Auditory P300 Visual P300  

 tone figure distribution 

Target 1500 Hz 70 dB Square, side 106 pixels 10% 

Distractor 500 Hz 70 dB Circle, diameter 176 pixels 10% 

Standard 1000 Hz 70 dB Square, side 158 pixels 80% 

Inter-stimulus interval was randomized between 1 and 1.5 seconds. 400 stimuli per test. 100 

ms per stimuli. Total test time of 540 seconds. 

MMN 

 tone duration distribution 

duration deviant 1000 Hz 70 dB 250 ms 5% 

Frequency deviant 1500 Hz 70 dB 100 ms 5% 

Standard 1000 Hz 70 dB 100 ms 90% 

Inter-stimulus interval of 300 ms, 1800 tones per test. Total test time of 733 seconds 

TABLE 3. Features always selected by Boruta 477 

PARADIGM STIMULUS CHANNEL PEAK FEATURE 

P300v Target Pz P2 latency 

P300a Distractor Cz N1 absRatio 

P300a Distractor Fz P2 absRatio 

P300a Distractor Fz P2 absAmplitude 

P300a Target Cz N1 absRatio 

P300a Target Cz N2 latency 

P300a Target Cz P2 latency 
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Table 4. Performance (%) of MKL algorithm with and without Boruta feature selection 478 

MKL Kernels Without FS With FS 

Acc Sen Spe Acc Sen Spe 

Paradigm 83 80 88 86 86 87 

Channels 80 74 87 84 85 86 

Type of Features 82 78 85 86 86 86 

9 Figures 479 

FIGURE 1. Averaged evoked potential signals used for feature extraction. 480 

FIGURE 2. Principal components of P300 tasks (N100, P200, N200, P300) and MMN task (P200, 481 

P300). 482 

FIGURE 3. Grouping input data (726 features) in three possible kernel combinations according to 483 

the feature space approach. 484 

FIGURE 4. Feature selection steps applying nested cross validation. 485 

FIGURE 5. Distribution of feature selection in 10-fold-cross-validation. (A) Distribution per 486 

paradigm in the 10 subsets of features selected. (B) Frequency of selection of all the attributes that 487 

were selected in the ten Boruta applications. The bottom number means how many features were 488 

selected the number of times represented in the top number. 489 
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