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Abstract 

Objective: Evaluate and map data science methods employed to solve health conditions of women, 

examine the problems tackled and the effectiveness.  

Research Method: Text analytics, science mapping, and descriptive evaluation of data science methods 

utilized in women-related health research. 

Findings: (i). The trends in scholarships using data science methods indicate gaps between women and 

men relating to health burden and access to health. (ii). The coronavirus (SARS-CoV-2) outbreak and the 

ongoing COVID-19 pandemic tend to widen the identified health gaps, increasing the disease burden for 

women, while reducing access to health. There are noticeable additional health burdens on pregnant 

women and those with several health conditions (breast cancer, gynecologic oncology, cardiovascular 

disease, and more). (iii). Over 95% of studies using data science methods (artificial intelligence, machine 

learning, novel algorithms, predictive, big data, visual analytics, clinical decision support systems, or a 

combination of the methods) indicate significant effectiveness. (iv). Mapping of the scientific literature 

to authors, sources, and countries show an upward trend; 997 (16%), 113 (1.33%), and 57 (2.63%) per 

article, respectively. About 95% of research utilizing data science methods in women's health studies 

occurred within the last four (4) years. 

Conclusions:  The application of data science methods in tackling different health problems of women is 

effective and growing, and capable of easing the burden of health in women. The ongoing COVID-19 

pandemic tends to compound the health burden for women more than men. Policymakers must do 

more to improve access to health for women. 
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1. INTRODUCTION 

The use of information systems, computer science methods, and operations research techniques to 

improve operations performance in the healthcare sector has a long history.
1-5

 Data science (DS) 

techniques and analytical methods are also employed to mitigate health disparities across social, 

cultural, and sex classification more recently.
 6,7

 The goal is to eliminate the known gaps in healthcare 

access, reduce disease burden, and improve clinical outcomes and healthcare for all.
8,9

  

The health gaps between men and women in terms of disease burden and access to health are 

well established in the social science and healthcare literature, including the ongoing coronavirus 

disease (COVID-19).
122

 Gaps are also reported during the ongoing coronavirus disease (COVID-19) 

pandemic regarding disease burden and access to health. While the pandemic places an additional 

health burden on women than men, such as pregnant women and those with pre-existing breast cancer, 

gynecologic oncology, and other health conditions, fewer women (on average) have access to health 

compared to men. For example, in studies reported in this paper, pregnant women diagnosed with 

COVID-19 can have severe morbidities and have greater mortality risk. Simultaneously, child-care 

responsibility and economic burdens rests on working mothers during lockdowns and working from 

home rests more.
45,74,100,103,122

  

The recent advances in computer processing power and the availability of massive and complex 

data comes the use of DS tools and methods and big data analytics techniques to conduct healthcare 

and biomedical sciences research and practice.
10,11

 The ongoing advances in DS and analytics methods 

include machine learning, deep learning, artificial intelligence, which in addition to visual analytics and 

information visualization, enhances knowledge discovery, sensemaking, understanding, and offering 

solutions to complex medical and health problems.
11-15,108

 Recent studies identify healthcare research 
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and practice as one of the active fields utilizing data science technologies and methods to enhance 

clinical decision support systems and improving health outcomes.
5,10,11,60

 Therefore, this study 

undertakes an evaluation of the data science techniques and novel algorithms employed in women's 

health studies. We also map specific approaches to the type of problems solved, identify what works 

and what does not, and identify areas that require more work. 

 

2. THEORETICAL BACKGROUND 

This section examines the peculiarity of women's health and the disparity in terms of the burden and 

access to health. 

2.1 Women’s Health 

Certain diseases and conditions primarily affect women due to differences in their body anatomy and 

physiology. Some peculiar health conditions that impact women include breast health, obstetric and 

gynecological issues. Others are and biocompatibility issues related to implants used in women.
17

 

Furthermore, several factors can influence the way women respond to common diseases and medical 

products. These factors include intrinsic (age, genetics, hormones, body size, sex-specific physiology, 

pregnancy), extrinsic factors (diet, sociocultural issues, environment).  

Sex-specific biomarkers vary in females by age because of variations in hormone level, co-

morbidities, and taking multiple medications. The toxicity of some medications can increase due to 

changes in a woman's physiology during pregnancy. Also, certain medications can be contraindicated in 

women during lactation due to potential toxicity or teratogenicity to the growing fetus, limiting their 

therapy choices. Some common diseases that may affect women differently include osteoporosis, 
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autoimmune diseases, certain cancers such as breast, uterine, cervical cancers, cardiovascular diseases, 

lung diseases, neurological diseases, and certain psychiatric conditions. 

Osteoporosis is one of the common health problems experienced by older women due to their 

physiology. Women experience fluctuations in estrogen throughout life. Depletion of estrogen level 

causes osteoporosis, a risk factor for fractures, increased morbidity, and mortality. Moreover, this 

condition negatively impacts postmenopausal women's physical, emotional, and mental well-being.
18

 

Thus, it is essential to consider women's risk factors when providing care or managing cases. 

The disparity in Women’s healt is also prevalent in autoimmune diseases. Those conditions 

include autoimmune thyroid, multiple sclerosis, and rheumatological systemic autoimmune. Women 

also carry more disease burden on systemic lupus erythematosus, Sjögren's syndrome effect, and 

rheumatoid arthritis, and represent most of these cases.
8,19,45

 The reasons for this imbalance are unclear 

but attributed to genetic (X-linked) and hormonal factors. Furthermore, the women’s health imbalance 

is present in the course and prognosis of the diseases. More studies are needed to investigate if this 

imbalance is due to differences in the disease's biology, how men and women respond to therapy or the 

treatment.
8,9,19,45

 

Estrogen has anti-inflammatory effects. The fall in estrogen levels as women age predisposes 

them to arthritis. Older women are more likely to get arthritis than men of the same age. They are also 

more likely to experience worse pain from it more than men. They are also more vulnerable to 

rheumatoid arthritis, a highly debilitating form of arthritis. Furthermore, arthritis tends to affect 

women’s limb joints more than men due to pregnancy changes and female anatomy. 

In the United States, cardiovascular diseases are the leading cause of death among women. 

Most of these deaths are caused by coronary heart diseases and are usually sudden. Coronary heart 

diseases are responsible for 20% of female deaths. About 1 in 16 women aged 20 and older (6.2%) have 
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coronary heart disease, the most common heart disease.
20

 Framingham's study, pioneering research in 

the sex differences, demonstrated that women have greater primary risk factors for heart diseases than 

men.
21

 Furthermore, studies found that women are more likely to have worse outcomes from heart 

diseases. Possible factors related to worse effects in women include delays in seeking medical care or 

voluntary discharge. The reasons for these delays are unknown. More studies should be directed at 

understanding these risk factors and should be made available to the public, particularly women. 

There are sex-specific disparities in the public health burden of cancers due to variations at the 

genetic/molecular level and sex hormones such as estrogen.
22

 The genetic and hormonal differences 

influence gene expressions of certain cancers, drug metabolism, and therefore the effect of 

chemotherapy. These differences should be considered in cancer research to avoid disparity of 

chemotherapy's efficacy and toxicity between sexes. Women are more likely to experience psychiatric 

disorders, alcohol abuse, substance use disorders, conduct disorder, syndromal adulthood antisocial 

behavior without conduct disorder,
23

 tranquilizer abuse with social and specific phobias,
24

 and major 

depressive disorder and anxiety disorders compared to men.
26

 Females are more likely to experience the 

double stigma of being both alcoholic and morally degenerate. They are more likely to face societal 

stigmas at work, home, school, community. Furthermore, women with mental health disorders and drug 

addictions experience more stigma than men.
25

 The biological difference is attributed to the sex 

chromosomes. Awareness and understanding of the sexual dimorphism in neuropsychiatric disorders, 

increased risk of neurodevelopmental and psychiatric disorders in sex-linked genetic disorders can guide 

the management of these disorders.
26

 

2.2 Disparities in Women’s Access to Healthcare 

Previous studies have identified sex disparities in access to care.
7,8,27

 While health needs are significantly 

greater among older women than men of the same age, women have fewer economic resources.
27

 Even 
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after controlling for health needs, there are still sex differences in preventive care and increased 

differences in hospital services. Women are less likely to have hospital stays or outpatient services
28

 

than men with similar demographic and health profiles. Women are more likely than men to report 

insufficient money for medications, delays in care,
29

 insufficient money for health care, and insufficient 

money for mental health care. Studies show that while women often develop drug and alcohol 

addictions faster than men, they are likely to face multiple barriers to substance use treatment and are 

less likely to see treatment.
25

 They are more likely to have poorer treatment outcomes because of more 

inadequate resources. Some factors that may contribute to a delay in women seeking psychiatric care 

include hesitancy to discuss reasons they started using substances, difficulties or fears associated with 

leaving familial roles, stigma. They are five times more likely to have a history of sexual abuse. 

 

3. MATERIALS AND METHOD 

3.1 Research Objectives 

This study seeks to achieve the following four objectives: 

RO1. Identify and analyze the temporal trends of DS applications in women’s health research. 

RO2. Map specific DS techniques/algorithms to women’s health conditions addressed, evaluate the 

 effectiveness, identify what works or does not, and determine alternative methods.  

RO3. Examine the relationship between the scientific literature (SL) and usage and the citation impacts. 

 

3.2 Data Collection 

The data used in this study came from published documents selected through a literature survey 

performed on the scientific database index of the “ISI Web of Science (WoS) core collection.” The search 

covers the period 2000 and 2020, which double as the effective trending era of DS and big data 
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analytics.
11

 Our initial literature survey for this study occurred on February 22, 2021, with the final 

update on March 3, 2021. The complete search terms are as shown in Table 1. Limiting the search and 

selection of representative sample documents to the WoS was to ensure the quality of the publications 

included in this study and weeds out papers from unreliable sources.
30

 This is particularly important for 

a trending topic like DS/big data and visual analytics that attracts a diverse research interest.
11,31

 

However, all the indexed articles on the WoS core collection addressing the topic of interest had an 

equal chance of being selected according to the preferred reporting items for systematic reviews and 

meta-analyses: The PRISMA statement.
32 

Also, articles indexed on the WoS make up about 84% of the 

scholarship indexed in MEDLINE and SCOPUS.
31,33

 

Table 1 Articles’ Search, Filtering, Screening and Selection Criteria of Articles 

Activities/Focus Criteria 

Search Term TOPIC: ((((("women") OR ("woman") OR ("gender")) AND ("health*") AND 

(("data science") OR ("machine learning") OR ("Analytics") OR ("visualization") 

OR ("algorithm"))))). The search generated 3673 published documents. 

Database Source Web of Science Core Collection. 

Years of 

Publication 

Period covered/searched: 2000-2020. Articles dated 2021 were early access 

publications that occurred in 2020.  

Publication Sources All indexed sources in the Web of Science core collection that publish 

documents matching the search term. 

Screening None-medical related problems, studies on the general population; 3673 less 

3110 = 563; non-data science and big data analytics methods 563 less 363 = 200 

Articles addressing general medical issues from 200 less 50 = 150  

Selection All the unique documents filtered from the search and addressing the subject 

are included according to the criteria specified by the PRISMA statement.
32

  

 

3.3 Filtering, Screening and Selection of the Scientific Literature 

The unique 3,673 published articles retrieved from the Web of Science/Knowledge went through a 

thorough filtering and screening process based on the criteria in Table 1. Finally, the study included 150 

screened published documents. The next steps involved extracting the relevant information in textual 
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form and exported to Excel and an R-studio programming environment for science mapping, 

quantitative analysis, and descriptive narratives. 

 

 

3.4 Science Mapping and Visualization of Scientific Literature Using R-Base Open-Source Software 

The analysis involved different mapping of DS techniques to diverse women's health problems employs 

big data analytics and result visualization.
42,108

 The study also analyzed the authors, countries, and 

regions where the study originates and the researchers' international collaborations. This helps to 

establish global awareness and utilization of modern DS techniques to improve women's health 

worldwide. We utilize an open-source bibliometric analysis package (Bibliometrix) embedded in the R 

programming Studio to achieve these goals.
34

 The data used for the analysis are text files extracted from 

the 150 as explained in the above section. Further details about the open-source Bibliometrix and 

Vosviewer packages utilized for visualization are available elsewhere.
34,35

 The approach is suited to a 

new field or subject, such as contemporary DS and visual analytics.
11

 

 

4. RESULTS 

The summary of the data extracted from the published documents (Table 2) were generated using the 

R-programming Studio as described in the earlier section. The 150 papers included in the study appear 

in 113 different sources, indicating a broad range of publication outlets in diverse fields of research and 

practice. Also, 83.3% are published in journals, while 12% appear in the conference proceedings, both 

making 95.3% of the publications. The document per author (0.15) and the collaboration index (6.70) 
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indicates a high collaboration among authors, which is expected in a multidisciplinary field (health 

informatics). 

 

 

 

Table 2 Summary of the scientific literature production, authors, documents, and the citation impact 

Description Results Description Results 

Data coverage in years: 2000 to 2020; Active Period: 2006 to 2020  

Documents 150 Sources 113 

Author Appearances 1201 Total Citation 1078 

Authors/Single-authored documents 4 Average citations per documents 7.19 

Authors – all authors/co-authors 997 Documents per Author 0.15 

Authors of multi-authored documents 993 Co-Authors per Documents 7.85 

Author Keywords 493 Authors Per Document 6.52 

Collaboration Index 6.7 Keywords Plus (ID) 544 

Types of Documents: 

Articles (Journals) 83.3% 125 Papers in Conference Proceedings 

(12%) 

18 

Letters (1.3%) 2  Meeting Abstract (3.3%) 5  

 

4.1 Temporal trends of Data Science (DS) Methods Application in Women’s Health Research 

The analysis in this Section intends to achieve the first research objective (RO1) as defined in the 

previous section. 

4.1.1 Annual Scientific Literature Production (SLP) 

The SLP measures the development of a research field.36 The period 2000 to 2020 doubles as the 

emergence and growth of DS research and practice. The first article applying DS to solve Women’s 

health problems did not occur until 2006. The period 2006 to 2016 records just seven papers, while 143 

SLP occurred from 2017-2020, indicating recent heightened interest (Figure 1). Studies using DS 
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methods to solve women’s health make 26.6% during the period, while 73.4% relate to general health 

issues or problems relating to men (Table 1; Figure 1). The low document per author (0.15) – see Table 

2, indicates fewer studies using DS techniques to address women’s health problems. Figure 1 shows a 

complete trend of the SLP during the period. 

 

Figure 1: Annual scientific literature production on data science application in woman’s health 

4.1.2 Collaboration Network and Contributions of Countries and Institutions in DS in Women’s Health 

Studies  

It is essential to know the institutions and countries pioneering the studies addressed in this paper as a 

pointer to the current spread and promoting more involvement. The 997 authors/co-authors come from 

55 countries, with most of the authors domiciled in the USA (Table 2). Over 43% (65 out 150) of the SLP 

originate from research institutions in the USA, followed by India and Canada (Figure 2), both as 
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corresponding authors within the USA (MCP) and co-authors with outside country collaborators (SCP)
11

. 

Figure 2 presents the top 20 countries. 

   

Figure 2. Countries Contributions of scientific literature and Collaborations (SCP: Corresponding Authors 

within the Country; MCP: Corresponding Authors Outside Country) 

Regarding the contributing institutions, the most relevant and productive organizations 

originate from the USA (Figure 3), with the University of Washington, University of Pennsylvania, and 

Harvard Medical School, as the top three contributors. The nodes and the lines represent the 

contributions and connections, respectively.
59 

Figure 3 presents the complete lists of institutions from 

different countries. 
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Figure 3. Institutions/Organizations involved in producing the scientific literature on data science 

application in women’s health conditions. 

4.2 Science Mapping and Evaluation of Data Science Methods in Solving Women’s Health Problems 

The analysis in this Section intends to achieve the first research objective (RO2). 

4.2.1 Science Mapping of Data Science Methods and Women’s Health Research, Authors, and Sources 

Using an open-source bibliometric application embedded in R-Studio, we identify the top twenty-five 

(25) most frequent labels based on "authors' keywords" as the unit of analysis.
33,59

 The authors' 

keywords make up the central focus of any scientific literature (SL), as demonstrated by studies 

elsewhere.
31,45,59

 The result (Figure 4) shows machine learning as the most popular DS method used, 

while breast cancer, pregnancy issues, and other conditions, fall under gynecologic oncology.  
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Figure 4. Top 25 data science methods and women’s health problems mapped to the authors and 

sources. 

The efforts indicate a strategic approach in using DS to address health conditions that place the most 

health burden on women.
8,9 

On the sources, IEEE Access, Ultrasound in Obstetrics & Gynecology, JMIR 

publish most of the SLP on these subjects.  

4.2.2 Network Analysis and Visualization of DS Methods in Women's Health Studies 

The results of network analysis using VOSVIWER, an open-source science mapping application, 

demonstrate the connections between the DS techniques, the diseases examined, and the inter-

relationships among infections and illnesses. For example, "machine learning" is commonly used to 

study breast cancer and pregnancy-related problems. Similarly, the ongoing SARS-CoV-2 condition 

indicates a connection with COVID-19 and cardiovascular diseases (Figure 5). The science mapping 

utilizes the 493 synthesized authors' keywords (Table 2) as the unit of analysis and presents the 
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interconnections and interrelationship among the terms stratified into clusters and produces the 

visualization. 

 

Figure 5. Visualization of the connections and inter-relationships among data science techniques and 

women’s health conditions. 

4.2.3 An Evaluation of Data Science Methods in Solving Women Health Problems 

The 150 documents evaluated in this study employed eight (8) related data science (DS) methods 

including artificial intelligence (AI), machine learning (ML), deep learning (DL), and big data analytics 

(BDA). Others are predictive analytics (PA), novel algorithms (NA), clinical decision support systems 

(CDSS), and visual analytics (VA) (Table 3). The singular most frequently used data science method in 

solving women’s health problems is machine learning. Some studies use a combination of machine 
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learning and novel algorithms, making it the most popularly used data science technique. Table 3 

presents the complete results and descriptive analysis of the DS method and the problems tackled. 

These results echo the automatic mapping of the authors, keywords, and the sources (Figure 4/5) and 

network analysis that highlights the connections among the themes and topics using keywords as the 

unit if analysis (Figure 5). 

Table 3. Data Science methods, problems tackled, and the application domain. 

Women’s Health Problems Tackled Data Science and Analytics Techniques 

AI ML DL BDA PA NA CDSS VIS 

Breast Cancer 

Predict and detect early breast cancer with accuracy 

and efficacy; identified false positive/negative. 

  [43] [46] 
[123] 

    

Early detection of abnormalities in breasts, exam, 

and diagnosis in rural developing countries. 

 [37]       

Dec-support to clinicians (diagnosis & therapeutics).       [51] [51] 

Accurate detection/classification of malignant cells in 

breast cytology images (98.0% accurate/ effective). 

[50] [50]  [46]     

Preserve privacy of women with breast cancer.      [39]   

Estimate utility weights between elderly women with 

early-stage hormone receptor positive breast cancer. 

   [48]     

Early diagnosis: malignant neoplasms; visualization 

revealed 63% of breast cancer (80% at stages i-ii). 

       [42] 

Predict long-term effect of oestrogen use on breast 

cancer & mortality (7645 postmenopausal women). 

  [49]      

Improves breasts cancer development risk estimation  [54]       

Predict 5-year breast cancer risk for prevention.  [52]   [52]    

Quick turnaround time for immunohistochemistry 

test and precise care of 402 breast cancer patients. 

   [40]     

Created care procedure to treat genitourinary 

syndrome of menopause for breast cancer survivors. 

     [41]   

Assign event date for a second breast cancer.      [118]   

Gynecologic Oncology 

Accurate identification of causative agents of vulvo-

vaginitis to guide appropriate therapy. 

      
[75] 

  
[75] 

Identifying uterine perforations and intrauterine 

device (IUD) expulsions and ascertaining breast 

feeding status during IUD insertion, utilizing sample 

of 282,028 women with IUD insertions. 

     [78]   

Determine that lactobacillus species found in African 

female like women of white decent; lactobacillus 

species found in the vagina of premenopausal 

healthy black women against inaccurate speculation 

     [76] 
 
 
[77] 
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that they are susceptible to STDs and bacterial 

vaginosis due to lack of lactobacilli in their vagina. 

Identify/visualize the prevalence and risk factors of 

clitoral adhesions of 614 women. 

      
 

 [16] 

Characterized cervical cancer burden and identified 

opportunities for prevention, and ovarian cancer. 

   [9]  [121]   

Detection and classification of cervical cells.   120]      

Other Cancerous Condition 

Predicts colorectal cancer among multi-ethnic 

colorectal cancer families (63% women); validates 

modifiable factors for cancer prevention. 

  
[53] 

      
 

Pregnancy 

Identify ectopic pregnancy cases; 92.3% 

effectiveness. 

     [38]   

Identify causative factors/predict postpartum 

depression; early detection/intervention decisions; 

economic burden. 

 [47, 
56, 
69] 

 [67]  [68] [47]  

Identifies severe maternal morbidity/risk factors.  [57]    [105]   

Identify the requirements for real time remote health 

monitoring of pregnant women. 

   [58]  [58]   

Predict/visualize early warning for risky pregnancy, 

especially for rural women as quality services are 

deficient. 

 
 

[106]      [61] 

Determine pregnancy related issues and health 

status of a newborn from demographic information, 

lifestyle (smoking and drug use, and other attributes 

during gestation period); Accurately assess 

gestational age of babies compared to the early 

ultrasound date. 

 [114]    [111]   

Identify causes of stillbirth in low-income countries; a 

rate of 27.2 per 1000 births: Asphyxia: 46.6% (38% 

had prolonged or obstructed labor); infection 

(20.8%); congenital anomalies due to Syphilis; 

prematurity (6.6%); antepartum hemorrhage: 19%; 

pre-eclampsia /eclampsia; 67.4% of the stillbirths had 

no signs of maceration; obstetric hemorrhage, 

pregnancy-related infection. Pregnancy/postpartum 

increased the risk of venous thromboembolism; 

worry plays a unique role in pre-eclampsia; predict 

stillbirths among 4.9m data. 

  
 
 
 
 
 
 
 
 
 
[113] 

   [70] 
 

[63] 
 
[71] 

 
[119] 

 
[127] 

  

Pregnant women/nCoV infection: see COVID section.  [102]    [100]   

Identify women with symptomatic uterine fibroids.      [66]   

Better classification from buccal swabs of mothers 

from which DNA can be extracted that correctly 

classified mothers/child carrying mosaicism. 

 [107]       

Create digital tool for antenatal care: algorithms for 

developing clinical workflows and testing. 

   [125]     
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Created a smart mobile data module for the remote 

monitoring and visualization of fetal heart rate. 

 [115]      [115] 

Proposed methods of handling uncertainty in the 

decision-making related to high-risk pregnancy. 

        

Predicted preterm birth; miscarriage and results 

transmitted to doctors and pregnant woman for 

quick decision making. 

 [109]  [110]   [110]  

Determine the risks around the neighborhood 

prevalence of preterm birth mediated by infection 

and substance use. 

 [112]       

Monitoring and identifying high risk pregnancy / 

outcome. 

   [71]  [72]   

Pregnant women use of online forums to discuss 

maternal health, baby-related topics, people and 

relationships and pregnancy state pain. 

 [69]  [69]     

Predict/identify obesity among pregnant women, 

pre-pregnancy body mass index, child's sex, effects of 

smoking during pregnancy (subject: 2334 healthy non 

obese pregnant women). 

    [79] [44]   

Identified pregnancy episodes, start dates, delivery 

outcomes with live birth for 4.9 million women; 

achieved high accuracy (92.8% - 96.4%); Predicts fetal 

congenital anomalies 89.5% accuracy. 

 [62]    [64, 
65] 

  

Kidney Diseases 

Determines the difference between re-calculated 

estimated glomerular filtration rate on retrospective 

data and the use of automated value. Kidney 

function assessment and staging of kidney diseases. 

   [124]     

Alzheimer’s Disease 

Determine risk factors associated with Alzheimer’s 

disease in 350 ageing women using unsupervised ML. 

 
 

 
[80] 

      

Cardiovascular Disease 

Predicts 5-year risk of incident cardiovascular disease 

without the aid of clinical measures achieving 

successes within 95% confidence interval for women. 

  
 

 

    
[81] 

 

  

Identify predictors of incident myocardial infarction 

in women’s health initiative cohort of 46,568 

patients. 

 [82]       

Determine whether the socio-economic gradient of 

estimated cardiovascular risk differs between ethnic 

groups (see socioeconomics). 

     [83]   

Stress and Mental-Health 

Physiological and behavioral measures captured 

through wearable sensors and mobile phones, for 

self-reported stress and mental health status of 201 

college students (36% female). 

  
[84] 

      

Sexual Health 
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Diagnose/treatment hypoactive sexual desire 

disorder. 

     [85]   

Classified women into different health risk segments 

for customized awareness programs to resolve 

serious health issues, e.g., sexually transmitted 

infection. 

 [13]       

Radiology 

Measuring lung vessel morphology and visualization 

(55% of the sample were women). 

      
[86] 

  
[86] 

HIV/AIDS 

Determine predictors of poor health outcomes 

among HIV-infected inpatients. Of 66% women, 53% 

had tuberculosis confirmed. 

  
 

    
[55] 

  

Urinary Tract Infection 

Identifies women with urinary incontinence. 

Symptoms includes painful urges; pyelonephritis; 

three or more urinary tract infections in the last 12 

months; dysuria; visible hematuria. 

     [87]   

Menstrual Cycle 

Food visualization elicited greater brain Inactivation; 

intake of food during menstrual cycle fluctuates 

especially during early follicular and luteal phases. 

       [88] 

Investigated joint model for serum hepcidin and iron 

during menstrual cycle. 

     [89]   

Occupational Health 

Unveil health risk factors in women at workplace and 

designing future medical protocols/policies.  

[90]        

Arthritis associated physical stressors (heavy physical 

work & awkward trunk posture), kneeling and arm 

elevation (21,389 sample (49.2% women). 

    [91]    

Identified factors with greatest impact on worker’s 

health surveillance process (lung auscultation and 

breathing exploration); women show more resilience 

on occupational disease than men. 

 [14]       

Socioeconomic Factors on Women’s Health 

Predicts social determinants of healthy aging and 

maternal healthcare utilization in 5565 women. 

 [104]   [92]    

See cardiovascular risk differences by ethnic groups.      [83]   

Pattern recognition of minority/women experienced 

more disability and mental illness. 

     [93]   

Identify severe maternal morbidity and comorbidities 

based on sociodemographic characteristics. 

     [105, 

120] 

  

Accuracy of sex classification to enhance women’s 

health/safety using gait information. 

[94]     [94]   

General Health Checks 

Evaluates inter- and intra-rater measured reliability 

of cyclotorsion in healthy subjects (56% women) 

     [96]   
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Visualizing electronic health records reveals sex and 

age biases in admin known drug-drug interactions. 

       [97] 

Confirmed that RNA expression data is limited and 

cannot be used to identify specific patients. 

 [98]       

Predicts risk factors in stroke risk model (age, bmi, 

cholesterol, hypertension, diabetes, smoking status 

and intensity, alcohol drinking); 82% in women. 

    [99]    

Women’s worries: heart disease & breast cancer. [113]     [117]  [95] 

Social/behavioral determinants of health are helpful 

to understand health and health care outcomes. 

       [73] 

Predict gestation diabetes in 4378 women (98.4% 

effective). 

      

[101] 

  

Identify genes that discriminate individuals with 

fibromyalgia syndrome diagnosis from healthy 

controls in women. 

    [116]    

Coronavirus Disease (COVID-19) 

Pregnant women diagnosed of COVID-19 can have 

severe morbidities. 

     [100]   

Identified gaps in women v men; (51% of patients 

with diagnosed COVID-19 cases were women; 

headache, anosmia, and ageusia more frequent in 

females. Chest X-ray & blood tests were performed 

less frequently in women (65.5% vs. 78.3% and 49.5% 

vs. 63.7%) 

 [102]       

Sex gap among 583 healthcare workers (72% 

women). Women more vulnerable, being impacted 

by insomnia, depression, poor well-being 

 [126]       

 

 

 

4.3 The Relationship Between the Scientific Literature (SL) and Usage and Citation Analysis 

Here we examine the articles' usage and citation impacts. The data from the selected 150 indexed 

documents on the WoS come in two streams, namely, U1 and U2 (Table 4). 

• U1 (usage count within the past 180 days or last six months): 53 articles used 145 times. 

• U2 (usage count in the past 7 years, 2014-2020): 121 articles used 806 times. 

The results (U1=35.3%, U1=81%), indicating active usage of the scientific literature during the period 

shown. The data does not distinguish specific users (researchers, health/industry practitioners, and 
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others) or for what purposes. The frequency of the articles' usage also increased astronomically in the 

most recent years (U1=98%, U1=91% used between 2017-2020), indicating an active research area.  

Table 4. Usage and citation impact of the scientific literature on data science application in women’s 

health studies (U1, U2 = usage in the last 6 months, 7 years, respectively). 

REF Article Focus Sources PY Citation 

(WoS) 

U1 U2 

[49] Breast cancer mortality Lancet Oncology 2012 221 0 25 

[76] Lactobacillus vaginal microbiota Sexually Transmitted Diseases 2006 62 0 3 

[84] Stress and mental health J of medical Internet research 2018 47 3 37 

[85] Sexual desire disorder in women Mayo Clinic Proceedings 2018 36 2 14 

[88] Brain responses to food images 

during menstrual cycle in healthy 

young women 

American Journal of Clinical 

Nutrition 

2011 36 0 12 

[41] Genitourinary syndrome of 

menopause in women with high risk 

for breast cancer 

Menopause 2018 36 1 8 

[100] Care of pregnant women with 

COVID-19 in labor & delivery 

American Journal of 

Obstetrics and Gynecology 

2020 27 6 8 

[119] Syphilis during pregnancy and threat 

to maternal-fetal health 

American journal of obstetrics 

and gynecology 

2017 25 0 17 

[104] Factors determining healthy ageing Scientific Reports 2017 23 0 6 

[43] Predicting breast cancer Radiology 2019 22 3 21 

[105] Severe maternal morbidity and 

health disparities 

Obstetrics and gynecology 2017 22 0 7 

[70] Stillbirth in low-and middle-income 

countries 

International Journal of 

Obstetrics & Gynecology 

2018 22 0 5 

[79] Organic pollutants and gestational 

diabetes among healthy US women.  

Environment international 2019 18 4 22 

[94] Accurate sex classification to 

enhance women’s health/safety. 

Expert Systems with 

Applications 

2018 15 0 42 

[120] Detection and classification of 

cervical cells 

Journal of Supercomputing 2020 15 18 18 

[81] Predicts risk of cardiovascular 

disease for women. 

CMAJ 2018 13 0 3 

[50] Detection and classification of breast 

cancer 

Future Generation Computer 

Systems 

2019 11 0 5 

[63] Maternal deaths in low / middle-

income countries  

International Journal of 

Obstetrics & Gynaecology 

2018 11 1 5 

[123] Overcoming false positives and false 

diagnoses of breasts tumor 

Journal of Grid Computing 2018 10 0 18 

[101] Gestational diabetes mellitus 

prediction in early pregnancy. 

Scientific reports 2019 10 0 7 
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Regarding the citation impact, the total basic citation count was 1078, an average of 7.18 per 

document. However, 49 papers (32.7%) are yet to receive any citations, while 68.3% gained at least one 

citation, ranging as follows (1-10: 53.3%; 11-65: 14%; >65: <1% citations). Table 4 presents the top 20 

most cited documents and the focus of women’s health research. 

 

5. DISCUSSION 

This study evaluates the DS methods employed in solving diverse women's problems, including machine 

learning, big data analytics, deep learning, and novel/existing algorithms. Other techniques used are 

clinical decision support systems and visual analytics/visualization. These techniques were very effective 

in tackling diverse women's health problems. Significant and improved health outcomes occurred in 

predicting and managing breast cancer, gynecologic oncology, and pregnancy-related health challenges 

(pre-eclampsia, eclampsia, prediction of risks during pregnancy, and more). Other health challenges 

addressed include menstrual cycle, psychosocial stress, gestational diabetes, and vaginosis. Diseases 

that are not solely related to women, like Alzheimer's, cardiovascular diseases, and even scabies, are 

also examined. Occupational health and the importance of women's health records confidentiality, and 

utilization of health facilities, family planning, and the characterization of drug-drug interaction. Table 3 

presents a detailed analysis. 

The research employing DS involves data collection through primary and secondary sources 

(medical records, claims data, and questionnaire administration) involving large volumes and sometimes 

complex data structures. The studies involved diverse groups of women, including patients, college 

students, healthcare and other workers, pregnant women, women living in a specified neighborhood, 

and patient caregivers. The sample sizes also vary for the different studies.  The most extensive cohort 

study involved identifying pregnancy episodes and outcomes using a claims database of about 4.9 
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million women and the smallest that investigated brain activation during food visualization and the 

changes in estradiol concentration among nine women.
88,127

 

A significant breakthrough in women's health using DS occurred in using big data and visual 

analytics to undertake studies in obstetrics and gynecology, which helps to reduce maternal 

mortality.
11,128

 The methods use personal information such as sex and genomic data to predict cancer.
98

 

However, there are ongoing challenges and societal hurdles, as some women seem uncomfortable using 

big data to develop health risk prediction.
129

 We believe that formulating appropriate privacy policies 

using big secondary data can resolve these issues. 

The study also identifies disparities between women and minority groups. For example, a sex 

gap was identified in the treatment of COVID-19 among hospital patients. Although 51% of patients with 

diagnosed COVID-19 cases were women, more men were treated than women. Chest X-ray and blood 

tests were performed less frequently in women (65.5% vs. 78.3% and 49.5% vs. 63.7%).
102

 Issues relating 

to access to health are common, including women of different groups. Healthcare utilization differed 

across groups of cervical cancer patients, and this revelation can help identify opportunities for early 

prevention.
9
 A study found wealth, social group, literacy, religion, and early age at marriage as social 

determinants of maternal health care utilization.
92

 Midlife women's health and analysis of most 

women's concerns involves worries about breast cancer and heart disease.
95

 

 

6. CONCLUSION 

This study focused on evaluating DS methods and algorithms to solve women's health problems. The 

goals in evaluating the techniques used, maps the methods and issues, analyzing the effectiveness, 

identifying what works, and what else can help to mitigate the disparities regarding women’s health 

burden and access to health. This paper has achieved these goals, further determines the origin and 

growth of this area of study, and predicts future growth using simple linear trends and forecasting.   
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The science mapping of the scientific literature production on this subject indicates an upward 

trend. About 95% (143 out of 150) of research utilizing data science methods in women's health studies 

occurred within the last four (4) years (2017 to 2020), while only 4.7% of the research happened 

between 2000 and 2016, indicating a new field. The potency of the data science methods and the 

improved outcomes that can help solve women's health problems raises hope of reducing the health 

gap between men and women, especially regarding the disease burden. However, addressing access to 

health requires more than advances in computer technology and the deployment of information 

systems and methods. Policymakers need to play a critical role in reducing the overall gaps, especially 

access to health. Further, the ratio of the studies involving data science to solving women's health issues 

is relatively low and requires greater participation. Ironically, while the data science techniques appear 

promising to address women's health problems, but some women activists are unknowingly opposing 

the adoption, indicating the need for enlightenment regarding the usefulness of the identified 

techniques. 
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