
   
 

   
 

Hyperinflammatory ARDS is characterized by interferon-stimulated gene expression, T-cell 1 
activation, and an altered metatranscriptome in tracheal aspirates 2 
 3 
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Abstract:  Two molecular phenotypes of the acute respiratory distress syndrome (ARDS) with 40 
substantially different clinical trajectories have been identified. Classification as 41 
“hyperinflammatory” or “hypoinflammatory” depends on plasma biomarker profiling. Differences 42 
in the biology underlying these phenotypes at the site of injury, the lung, are unknown. We 43 
analyze tracheal aspirate (TA) transcriptomes from 46 mechanically ventilated subjects to 44 
assess differences in lung inflammation and repair between ARDS phenotypes. We then 45 
integrate these results with metatranscriptomic sequencing, single-cell RNA sequencing, and 46 
plasma proteomics to identify distinct features of each ARDS phenotype. We also compare 47 
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phenotype-specific differences in gene expression to experimental models of acute lung injury 48 
and use an in silico analysis to identify candidate treatments for each phenotype. We find that 49 
hyperinflammatory ARDS is associated with increased integrated stress response and interferon 50 
gamma signaling, distinct immune cell polarization, and differences in microbial community 51 
composition in TA. These findings demonstrate that each phenotype has distinct respiratory 52 
tract biology that may be relevant to developing effective therapies for ARDS. 53 
 54 
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Introduction 95 
The acute respiratory distress syndrome (ARDS) is a clinical condition characterized by 96 

noncardiogenic pulmonary edema and hypoxemia within one week of a physiologic insult1. This 97 

broad clinical definition encompasses a heterogeneous population of critically ill patients, 98 
including those with direct pulmonary injury from pneumonia or aspiration and those with 99 
indirect pulmonary injury caused by dysregulated systemic inflammation from sepsis, 100 
pancreatitis, or trauma. The global incidence of ARDS has surged during the COVID-19 101 
pandemic, increasing the importance of finding effective treatments. While some pharmacologic 102 
treatments have decreased mortality in mechanically ventilated patients with COVID-192,3, no 103 
drug has consistently reduced mortality in more typical heterogeneous cohorts of patients with 104 
ARDS. There is a growing recognition that biological heterogeneity within the syndrome is a 105 
significant barrier to identifying effective treatments4.  106 

Two clinically distinct molecular phenotypes of ARDS (termed “hyperinflammatory” and 107 
“hypoinflammatory”) have been identified using latent class analysis of clinical and plasma 108 
biomarker data in five clinical trial cohorts and three observational studies1,5–11. The 109 
hyperinflammatory phenotype is characterized by elevated plasma inflammatory cytokines (IL-8, 110 
IL-6, TNFr-1), lower plasma Protein C and bicarbonate, and higher 90-day mortality compared 111 
to the hypoinflammatory phenotype. Differences between phenotypes are not primarily 112 
explained by the physiologic insult that caused ARDS (e.g. sepsis, pneumonia, aspiration of 113 
gastric contents). Importantly, significant differences in treatment response to simvastatin, 114 
ventilator settings, and fluid management have been observed across molecular phenotypes in 115 
retrospective analyses of three ARDS clinical trials5–7; further, in patients with COVID-19-related 116 
ARDS, hyperinflammatory patients may preferentially respond to corticosteroid treatment12,13. 117 
These results suggest that understanding and targeting the heterogeneous biology underlying 118 
ARDS molecular phenotypes is essential to identifying effective new treatments for ARDS. 119 
Prospective studies designed to identify these phenotypes using parsimonious models are 120 
laying the groundwork for precision clinical trials4,14.   121 

Despite this exciting progress, a critical barrier to developing new therapies for ARDS is 122 
our superficial understanding of the biological pathways characterizing each phenotype. This 123 
knowledge gap was recently cited by an NHLBI workshop on precision medicine in ARDS as a 124 
top research priority for the field4. To date, analyses of the biological differences between these 125 
phenotypes have been limited to circulating biomarkers in plasma or blood, largely due to the 126 
relative ease of sampling. Understanding the biological differences between ARDS phenotypes 127 
in the lung will be critical to development of informative pre-clinical models of disease and 128 
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targeted treatments for ARDS. Here, we employ a systems biology approach incorporating bulk 129 
and single-cell RNA-sequencing, metagenomics, and proteomics to understand differences in 130 
lung immunology, microbiology, and systemic inflammatory responses between ARDS 131 
phenotypes.  132 
 133 
Results 134 
Patient enrollment and ARDS phenotype assignment 135 

To determine if previously identified ARDS phenotypes are associated with differences 136 
in pulmonary biology, we first studied tracheal aspirates (TA) collected from the Acute Lung 137 
Injury in Critical Illness study, a prospective, observational cohort of mechanically ventilated 138 
patients admitted to the ICU at the University of California San Francisco Medical Center 139 
(UCSFMC). Patients were enrolled in this cohort from July 2013 until March 2020, when 140 
enrollment was paused due to the COVID-19 pandemic. 77 out of 323 participants had ARDS in 141 
this cohort (Supplementary Figure 1). TA host sequencing was available for 41 of the ARDS 142 
participants. In addition, we had TA sequencing from five participants who were intubated for 143 
neurologic injury, had no evidence of pulmonary disease on chest x-ray (CXR), and were not 144 
immunosuppressed. We used a previously validated three-variable classifier model to determine 145 
ARDS molecular phenotype based on plasma IL-8, bicarbonate, and Protein C levels14. When 146 

plasma biomarkers were unavailable from the day of TA collection (n=5), we used a recently 147 
described and validated machine learning model to assign phenotype11,15. 10 out of 41 ARDS 148 
subjects (24%) had hyperinflammatory ARDS, which is consistent with the proportion of 149 
hyperinflammatory subjects observed in previous studies5–9. There were four extrapulmonary 150 
fungal infections (two C. albicans, one C. glabrata, and one H. capsulatum) in the 151 
hyperinflammatory phenotype vs. zero in the hypoinflammatory phenotype (p < 0.01, Table 1). 152 
There were no significant differences in patient age, sex, BMI, immunosuppression, or ARDS 153 
risk factors between the groups.   154 
 155 
TA RNASeq identifies increased pro-inflammatory cytokine signaling and increased 156 
stress response in hyperinflammatory ARDS  157 
        We sequenced TA using established methods16 and used DESeq217 and apeglm18 to 158 
compare TA gene expression between ARDS molecular phenotypes. 1,334 genes (7% of all 159 
protein-coding genes) were differentially expressed between ARDS phenotypes at a false 160 
detection rate (FDR) <0.1 and absolute empirical Bayesian posterior log2-fold change >0.5 161 
(Supplementary Figure 2A, Supplementary Data 1A).  162 
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We next used Ingenuity Pathway Analysis (IPA)19 Upstream Regulator analysis to 163 
analyze differentially expressed genes. This analysis predicts whether measured gene 164 
expression is consistent with activation or inhibition of upstream regulators of gene expression, 165 
which include cytokines, receptors, transcription factors, enzymes, endogenous chemicals, and 166 
drugs. IPA predicted increased activation of several cytokines and other upstream regulators of 167 
differentially expressed genes in hyperinflammatory ARDS (Figure 1.A.i, Supplementary Data 168 
2A). Predicted upstream regulators included several pro-inflammatory cytokines that were 169 
previously found to be elevated in plasma of patients with hyperinflammatory ARDS, including 170 
IL1B, IL6, and TNF. In addition, IPA identified activation of several cytokines that were not 171 
previously associated with hyperinflammatory ARDS, including several interferons; IL2 and 172 
IL15, which stimulate cytotoxic T cell and NK cell responses20; and the chemokine ligand 173 
CCL2/MCP-1. In addition, upstream regulator analysis predicted increased activation of the 174 
integrated stress response (XBP1, NFE2L2), T cell activation (CD3, CD28), stimulation of Toll-175 
like receptors (TLR2, TLR3, TLR4, TLR7, TLR9), a metabolic shift to glycolysis (MLXILP), and 176 
increased cellular differentiation (MYC, NONO) in hyperinflammatory ARDS (Figure 1.A.ii-iv, 177 
Supplementary Data 2A). Because there was a significant difference in fungal infections 178 
between phenotypes, we performed a sensitivity analysis adjusting for systemic fungal 179 
infections. 997 genes were differentially expressed between phenotypes (711 genes overlapped 180 
with the unadjusted analysis), and pathway anlaysis identified similar upstream regulators of 181 
gene expression (Supplementary Figure 2, Supplementary Data 1B, Supplementary Data 2B). 182 
Together, these analyses identify several novel pathways that are differentially regulated 183 
between ARDS molecular phenotypes and support the hypothesis that previously described 184 
differences in systemic inflammation are associated with marked differences in respiratory tract 185 
biology  186 

To further understand how pathways in each phenotype were dysregulated compared to 187 
mechanically ventilated lungs, we next performed differential expression and pathway analyses 188 
comparing each phenotype to five mechanically ventilated control samples (Figure 1B and 1C, 189 
Supplementary Data 1C and 1D). 2,989 genes (15% of protein-coding genes) were differentially 190 
expressed between hyperinflammatory ARDS participants and controls, while 2,132 genes 191 
(11% of all protein-coding genes) were differentially expressed between hypoinflammatory 192 
ARDS and controls. Notably, this analysis identified several cytokines that were activated in 193 
both hyperinflammatory ARDS and hypoinflammatory ARDS compared to controls, including 194 
IL1B, TNF, and IFNG. While this analysis identified some similarities between phenotypes, we 195 
also identified several upstream regulators that were only significantly upregulated in 196 
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hyperinflammatory ARDS (Supplementary Data 2C and 2D), including IL-17C, a member of the 197 
IL-17 family secreted by airway epithelial cells21; several Type I/Type III interferons; FAS, which 198 
stimulates apoptosis22; TICAM/MyD88 signaling, which are downstream effectors of Toll-like 199 
receptors23,24; and the T-cell receptor, suggesting these pathways play a role in the distinct 200 
biology of hyperinflammatory ARDS.  201 

 202 
LPS models of acute lung injury replicate gene expression in hyperinflammatory ARDS 203 

Upstream regulator analysis identified LPS, a component of Gram-negative bacteria, as 204 
a candidate upstream regulator of genes differentially expressed between ARDS phenotypes 205 
(Supplementary Data 2A). LPS was also identified as an upstream regulator of gene expression 206 
in comparisons of each ARDS phenotype to controls (Supplementary Data 2B, Supplementary 207 
Data 2C). LPS is a potent stimulator of NF-kB signaling via TLR4 and MyD8825 and is frequently 208 
used in experimental models of acute lung injury (ALI)26 thus, we hypothesized that genes 209 
upregulated in experimental models of lung injury would be enriched in genes that were 210 
upregulated in hyperinflammatory ARDS compared to controls but would be relatively less 211 
enriched in genes upregulated in hypoinflammatory ARDS compared to controls. Respiratory 212 
tract gene expression data was available from four LPS models of ARDS in the Gene 213 
Expression Omnibus. We also identified 17 more datasets from other experimental models of 214 
ARDS including ventilator-induced lung injury (VILI), ozone, hyperoxia, Pam3Cys (a TLR2 215 
agonist), and hemorrhagic shock (Supplementary Data 3A). We used GEO2Enrichr27 to identify 216 
gene sets that were differentially expressed in lung injury compared to controls in experimental 217 
models. We then used gsva to calculate a expression score for each of these gene sets in TA 218 
samples and used limma to compare expression of these gene sets in each ARDS phenotype to 219 
controls (Figure 1D, Supplementary Data 3B and 3C). Gene sets from four models were 220 
significantly enriched (FDR < 0.1) in TA from both ARDS phenotypes. As expected, LPS models 221 
had a significant overlap with both phenotypes, but LPS experimental gene sets had higher 222 
GSVA scores in hyperinflammatory participants. In addition, gene sets from five experimental 223 
models (two ozone models, two LPS models, and one VILI model) were enriched in 224 
hyperinflammatory ARDS, but were not enriched in hypoinflammatory ARDS, suggesting these 225 
models better replicate dysregulated gene expression observed in the hyperinflammatory 226 
phenotype.  227 
 228 
  229 
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Transcriptomes identify candidate drugs for hyperinflammatory ARDS 230 
To identify candidate treatments for each ARDS phenotype, we next used IPA’s 231 

Upstream Regulator Analysis to identify drugs that were predicted to shift gene expression from 232 
each ARDS phenotype toward control subjects. This approach has been used to identify drugs 233 
that can be tested in experimental models and clinical systems, and we have previously used 234 
this approach to identify candidate treatments for COVID-19 ARDS.16,28 This in silico analysis 235 
identified several drugs predicted to shift gene expression in the hyperinflammatory phenotype 236 
toward ventilated controls (Figure 1.E.i, Supplementary Data 2B), while fewer drugs were 237 
predicted to shift gene expression in hypoinflammatory ARDS toward controls (Figure 1.E.ii, 238 
Supplementary Data 2C). Interestingly, our analysis also identified drugs predicted to shift gene 239 
expression from control mechanically ventilated patients toward ARDS phenotypes. For 240 
example, nitrofurantoin, amiodarone, and cytarabine, all of which cause drug-induced 241 
pneumonitis, were predicted to shift gene expression from controls toward the 242 
hyperinflammatory phenotype (Figure 1.E.ii).  243 
 244 
TA immune cells are distinctly polarized in hyperinflammatory ARDS 245 

To identify the sources of differential gene expression identified in bulk RNA sequencing 246 
data, we used a neutrophil-preserving single-cell RNA sequencing (scSeq) pipeline to study TA 247 
from eight COVID-negative patients with ARDS enrolled in a separate prospective, 248 
observational cohort, the COVID-19 Multiphenotyping for Effective Therapies (COMET) study. 249 
TA scSeq was available from six participants with hypoinflammatory ARDS and two participants 250 
with hyperinflammatory ARDS. 18,717 cells passed quality control filters (3,782 from 251 
hyperinflammatory ARDS, Figure 2A). We determined cell identities using SingleR29 to compare 252 
cell transcriptomes to signatures derived from the Human Primary Cell Atlas (Figure 2B). 253 
Neutrophils were the most common cell type identified in TA from both phenotypes (48% of 254 
hyperinflammatory TA cells and 36% of hypoinflammatory TA cells, Figure 2C), which 255 
highlighted the importance of using neutrophil-preserving methods to study ARDS phenotypes.  256 

To identify cell-specific differences between ARDS phenotypes, we used MAST to fit 257 
mixed effects models of differential gene expression (FDR < 0.1)30. To address 258 
pseudoreplication bias and account for within-subject correlation in gene expression31, we 259 
modeled ARDS phenotype as a fixed effect and each subject as a random effect. 231 genes 260 
were differentially expressed between phenotypes in TA neutrophils (Figure 2.D.i, 261 
Supplementary Data 4A). CCL2/MCP-1, which synergistically promotes neutrophil migration 262 
with IL-8 and is elevated in bronchoalveolar lavage (BAL) fluid from LPS-challenged volunteers 263 
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and patients with ARDS32, was identified as an upstream regulator of neutrophil gene 264 
expression in hyperinflammatory ARDS (Figure 2.D.ii, Supplementary Data 5A). In addition, 265 
upstream regulator analysis predicted increased activaton of MYC, a key mediator of 266 
granulopoiesis33, and MLXIPL, which promotes glycolysis34, in hyperinflammatory neutrophils 267 
(Figure 2.D.iii, Supplementary Data 5A). Notably, increased glycolytic activity has previously 268 
been reported in LPS-stimulated neutrophils35. In contrast to our bulk RNASeq analysis, 269 
upstream regulator analysis predicted relatively higher activation of several proinflammatory 270 
cytokines, including TNF, IL6, and IFNG, in hypoinflammatory neutrophils.  271 

Next, we investigated differences in monocytes and macrophages in ARDS phenotypes. 272 
189 genes were differentially expressed between 690 hyperinflammatory monocytes and      273 
3802 hypoinflammatory monocytes (Figure 2.E.i, Supplementary Data 4B) while 339 genes 274 
were differentially expressed in 296 monocyte-derived macrophages (MDM) from 275 
hyperinflammatory ARDS and 1,930 MDM from hypoinflammatory ARDS (Figure 2.F.i, 276 
Supplementary Data 4C). Only 15 genes were differentially expressed in alveolar macrophages 277 
(Supplementary Data 4D), which was insufficient for pathway analysis and suggested these 278 
cells played less of a role in differences between ARDS phenotypes. As in the neutrophils, IPA 279 
predicted relatively higher activation of several pro-inflammatory cytokines in hypoinflammatory 280 
ARDS, including TNF, IL1B, and IFNG, in monoctyes and MDM, while two canonical Type 2 281 
cytokines, IL4 and IL13, were predicted to be activated in hyperinflammatory ARDS for both cell 282 
types (Figure 2.E.ii and 2.F.ii, Supplementary Data 5B and 5C). As in the bulk RNASeq data, we 283 
observed higher activation of NFE2L2, which protects against oxidative stress and inhibits the 284 
NLRP3 inflammasome37 in monoctyes and MDM from hyperinflammatory ARDS (Figure 2.E.iii 285 
and Figure 2.F.iii).  286 

We next compared gene expression in T cells and found 281 genes that were 287 
differentially expressed between 477 T cells from hyperinflammatory ARDS and 1,665 T cells 288 
from hypoinflammatory ARDS (Figure 2.G.i, Supplementary Data 4E). IPA identified activation 289 
expression of interferon, TLR4, and NF-KB stimulated genes in T cells from the 290 
hyperinflammatory phenotype (Figure 2.G.ii, Supplementary Data 5D), which was consistent 291 
with the pattern observed in bulk RNA sequencing and suggested these T cells were Th1 292 
polarized. IPA also predicted increased activation of cell differentiation markers (NONO) and 293 
activation of the integrated stress response (XBP1, EIF2AK2) in T cells from the 294 
hyperinflammatory phenotype (Figure 2.G.iii, Supplementary Data 5D). 295 

We used connectome38, which compares single-cell gene expression to the FANTOM5 296 
ligand-receptor database39, to identify ligand-receptor pairs in lower respiratory cells that were 297 
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unique to each ARDS phenotype (Supplementary Data 6A and 6B). Several ligand-receptor 298 
pairs were observed in hyperinflammatory ARDS but were not present in hypoinflammatory 299 
ARDS (Supplementary Figure 3). For example, IFNG from T and NK cells and IFNGR2 on MDM 300 
were identified as a distinct ligand-receptor pair in hyperinflammatory ARDS, suggesting these 301 
cells play a key role in the dysregulated pathways identified in bulk and single-cell differential 302 
expression analyses. Together, our scSeq analyses confirm that TA immune cells have distinct 303 
transcriptomic profiles in each ARDS phenotype.  304 

 305 
Plasma proteomic analysis identifies additional cytokines that are upregulated in 306 
hyperinflammatory ARDS 307 

To further validate the biologic relevance of the TA findings, we used the O-Link Target 308 
96 Inflammation panel to measure plasma protein biomarker concentrations. 21 participants 309 
included in the TA bulk sequencing analysis also had plasma O-link data available. In addition, 310 
proteomic data was available for four participants from the same cohort who did not have TA 311 
bulk sequencing available for analysis. Of the 25 included participants, five had 312 
hyperinflammatory ARDS and 20 had hypoinflammatory ARDS. We also measured plasma 313 
protein concentrations in 14 healthy volunteers on the same O-link plate.  314 

Plasma concentrations of 28 proteins were higher in hyperinflammatory ARDS than in 315 
hypoinflammatory ARDS (FDR < 0.1, Figure 3A). Some of these biomarkers confirmed known 316 
differences between phenotypes, including higher concentrations of IL6 and TNF in 317 
hyperinflammatory ARDS. In addition, we identified nine plasma protein biomarkers notably 318 
higher in hyperinflammatory ARDS over controls (Figure 3B) but not higher in hypoinflammatory 319 
ARDS compared to controls (Figure 3C), suggesting they identify distinctly dysregulated 320 
pathways in the hyperinflammatory phenotype. These proteins included IL-8, which is one of the 321 
cytokines that defines the hyperinflammatory phenotype; CASP-8, an effector of FAS 322 
signaling40; the interferon gamma (IFNγ) induced proteins CXCL9 and CXCL1041; plasma 323 
urokinase (uPA); oncostatin M; and adenosine deaminase (ADA). In addition, CCL2/MCP-1 and 324 
the T cell activation marker CD542 were higher in hyperinflammatory ARDS and in controls 325 
compared to hypoinflammatory ARDS. These observations were consistent with observed 326 
differences in TA gene expression at both the bulk RNASeq and scSeq level, particularly 327 
increased CCL2 and FAS activity, IFNγ-stimulated gene expression, and T cell activation in 328 
hyperinflammatory ARDS. 329 
 330 
  331 
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Phenotypes were associated with differences in the respiratory microbiome 332 
Because our analyses demonstrated significant differences in host respiratory tract 333 

biology in each phenotype, we hypothesized that each phenotype would have a distinct 334 
respiratory microbiome that could stimulate a dysregulated response. We used a previously 335 
described metagenomic sequencing pipeline to align non-human sequences in TA sequencing 336 
to microbial genomes43 and used established methods to filter background contamination from 337 
samples44. Taxa were aggregated at the genus level for downstream analyses. There was no 338 
significant difference in alpha diversity between phenotypes for all microbial taxa, bacteria, or 339 
fungi (Figure 4A). There was a significant difference in microbial community composition 340 
between phenotypes (Bray-Curtis distance, PERMANOVA p = 0.001, Figure 4B). This 341 
difference was not significant when the analysis was restricted to bacterial taxa (p = 0.117, 342 
Figure 4C), but was significant when the analysis was restricted to fungal taxa (p = 0.004, 343 
Figure 4D). We next compared differential abundance of microbial transcripts using 344 
metagenomeSeq45. We found increased abundance of Candida in TA from patients with 345 
hyperinflammatory ARDS (Figure 4E). In addition, we observed greater abundance of multiple 346 
bacterial taxa in the hypoinflammatory phenotype, including Escherichia, Proteus, and 347 
Citrobacter, three taxa in the Enterobactericeae family, which was associated with an increased 348 
risk of ARDS in a cohort of trauma patients46. Together, these observations support the 349 
hypothesis that there is a significant difference in microbial community composition between 350 
ARDS phenotypes.  351 
 352 
Discussion  353 

In this study, we performed an integrated transcriptomic and proteomic analysis of 354 
ARDS phenotypes. To our knowledge, this represents the first demonstration of differences in 355 
pulmonary biology between molecular phenotypes of ARDS, which have previously been 356 
characterized primarily using plasma biomarkers. We identified differences between phenotypes 357 
in bulk RNA transcriptomes and used scSeq to identify distinctly polarized immune cells in the 358 
TA. In addition, O-Link proteomics identified differences in plasma protein concentrations 359 
consistent with these observations. We also found significant differences in the TA microbial 360 
community composition between phenotypes. Our findings support the hypothesis that each 361 
ARDS phenotype has distinct pulmonary pathobiology and may be more likely to respond to 362 
treatments specifically targeting these dysregulated pathways.   363 

Here, we find hyperinflammatory ARDS was associated with markedly higher IFNγ 364 
stimulated gene expression and T cell activation in TA. In bulk RNA sequencing, pathway 365 
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analysis identified markedly higher expression of IFNγ stimulated genes and increased 366 
expression of genes stimulated by the T cell receptor. Plasma proteomics identified increased 367 
concentrations of the IFNγ-stimulated proteins CXCL9 and CXCL10 and the T cell activation 368 
marker CD5 in hyperinflammatory ARDS but not in hypoinflammatory ARDS. Notably, in an 369 
alternative molecular phenotyping approach that used k-means clustering of plasma biomarkers 370 
to categorize ARDS subjects into two molecular phenotypes (“reactive” and “uninflamed”), 371 
plasma IFNγ is one of the defining biomarkers of the higher mortality “reactive” phenotype47. 372 
Together, our analyses support a central role of IFNγ and T cell activation in hyperinflammatory 373 
ARDS.  374 

We used scSeq to identify cell-specific differences in immune responses. We found 375 
evidence of increased neutrophil migration and differentiation in hyperinflammatory ARDS. 376 
MDM from the higher-mortality hyperinflammatory phenotype expressed fewer pro-inflammatory 377 
genes, which is consistent with a prior analysis showing decreased pro-inflammatory gene 378 
expression in BAL macrophages collected on the day of intubation was associated with 379 
increased mortality in a cohort of ARDS patients48. In contrast, T cells demonstrated higher 380 
interferon-stimulated gene expression in hyperinflammatory ARDS. Interestingly, this pattern of 381 
high interferon-stimulated gene expression in T cells but diminished immune responses in 382 
macrophages has also been reported in severe COVID-1949. These findings suggest 383 
dysregulated responses to immune signaling in specific cell populations may drive inflammation 384 
in hyperinflammatory ARDS.  385 

The interplay of the respiratory microbiome, lung injury, and ARDS has long been 386 
hypothesized but remains an important knowledge gap in the field. In one experimental study, 387 
changes in the respiratory microbiome mediated lung injury50, however, a small prior study 388 
using 16S sequencing of mini-BAL specimens found no difference in the microbiome 389 
composition between phenotypes51. Because we used metatransciptomic sequencing, we were 390 
able to identify non-bacterial taxa present in TA samples. We identified significant differences in 391 
microbial community composition between phenotypes and more transcripts from Candida in 392 
hyperinflammatory ARDS. Decreased fungal diversity in the respiratory tract has previously 393 
been associated with increased organ dysfunction and shock in patients with ARDS52, and an 394 
increased burden of BAL Candida is associated with worse outcomes in ventilated patients with 395 
COVID53.  Prior studies have also shown an association between Enterobacteriaceae and a risk 396 
of developing ARDS46,54; in our analysis, three genera in Enterobacteriaceae (Escherichia, 397 
Proteus, and Citrobacter) were more abundant in hypoinflammatory ARDS than 398 
hyperinflammatory ARDS.  While Candida can stimulate the dysregulated pathways observed in 399 
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hyperinflammatory ARDS55, further research is required to determine if the respiratory 400 
microbiome causes (or, alternatively, results from) inflammation in hyperinflammatory ARDS, 401 
and, if the association is causal, which taxa are responsible for lung injury.  402 

We compared differentially expressed genes in clinical samples to experimental ALI 403 
models. A prior analysis comparing rodent ALI models to human LPS challenge models found a 404 
significant overlap in gene expression between animal and human experimental systems56. An 405 
experimental model combining intratracheal LPS and mechanical ventilation was the murine 406 
model with the strongest overlap in gene expression with ARDS subjects in both phenotypes. 407 
This gene signature was from an experiment demonstrating that a combined MV/LPS model 408 
generated markedly higher neutrophilic inflammation in the lung than LPS or MV alone57. These 409 
observations suggest a two-hit model reproduces important biological changes observed in 410 
ARDS. In addition, gene signatures from five models were enriched in hyperinflammatory ARDS 411 
but were not enriched in hypoinflammatory ARDS, suggesting these models did not replicate 412 
respiratory tract biology of the latter group. These observations may partially explain why 413 
therapies that appear promising in pre-clinical models are not effective in more heterogeneous 414 
clinical trial populations.  415 

Our results provide further evidence that ARDS molecular phenotypes identify 416 
biologically-important differences in immune biology, and have several important implications for 417 
developing a precision approach to treating ARDS4. Pathway analyses identified different drugs 418 
that were predicted to shift gene expression from ARDS toward ventilated controls in each 419 
phenotype. These candidate therapies require further investigation in pre-clinical models, and 420 
our results also demonstrate that some experimental models are more effective at reproducing 421 
changes in gene expression observed in clinical samples in each phenotype. Future preclinical 422 
studies and RCTs must account for this biological heterogeneity.   423 

Strengths of this study include transcriptomic analysis of samples from the focal organ of 424 
injury in ARDS, providing a highly detailed picture of the pulmonary biology of both ARDS 425 
phenotypes, and validation of these observations with metatranscriptomics, single-cell 426 
sequencing, and peripheral blood proteomics. In addition, the inclusion of non-ARDS ventilated 427 
controls allowed us to further characterize the physiologic dysregulation in the phenotypes, 428 
rather than defining gene expression relative to another pathologic state. This approach also 429 
allowed us to compare our clinical samples to experimental models and identify candidate 430 
medications that may be suitable for clinical trials in each phenotype.  431 

This analysis also has some limitations. The sample size for each analysis is modest; 432 
however, it was adequately powered to detect large changes in gene expression and protein 433 
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concentrations. We performed CD45+ selection for scSeq samples, which allowed us to isolate 434 
hematopoietic immune cells, including neutrophils, but selected against epithelial cells, which 435 
generate important signals in our bulk RNASeq and plasma protein analyses and likely play a 436 
important role in ARDS phenotype biology. In addition, while TA contains fluid from the distal 437 
airspaces58, and we have previously shown that TA and BAL isolate similar immune cells16 and 438 
microbiota59, it is possible that more invasive BAL testing may identify additional differences 439 
between the phenotypes. Future analyses should include larger cohorts to replicate these 440 
findings and determine if TA sequencing or plasma cytokines more accurately predict clinical 441 
trajectory and response to treatment.   442 
 In conclusion, an integrated, multi-omic analysis of ARDS molecular phenotypes defined 443 
by plasma protein biomarkers suggests the hyperinflammatory phenotype is characterized by 444 
marked differences in TA gene expression, metagenomics, and plasma proteins. Our findings 445 
suggest the respiratory tract biology of these phenotypes is distinct and further supports the use 446 
of molecular phenotypes to study acute lung injury biology and develop new treatments for 447 
ARDS. 448 
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Table 1: Characteristics of patients included in differential expression analysis of ARDS phenotypes from the Acute Lung Injury in 449 
Critical Illness cohort. Normally distributed values are reported as mean ± SD. Non-normally distributed values are reported as 450 
median [IQR]. Categorical data are reported as N (% of total for category). P-values are for a t-test for normally distributed 451 
continuous data, Wilcoxon rank-sum for non-normally distributed, and chi-square test for categorical data. P values are for (1) 452 
hyperinflammatory ARDS vs. hypoinflammatory ARDS; (2) hyperinflammatory ARDS vs. controls; (3) hypoinflammatory ARDS vs. 453 
controls. *No subjects in this cohort had a systemic viral infection or respiratory fungal infection.   454 

 
Hyperinflammatory Hypoinflammatory  P (1)   Control  P (2) P (3) 

N 10 31     5  
 

 

Age 66 [56, 72] 63 [51, 70]  0.63   66 ± 23  0.85 0.42 

Female 4 (40) 21 (68)  0.95   3 (60)  0.26 0.49 

BMI (kg/m2) 25.0 [23.6, 25.6] 25.9 [23.9, 32.2]  0.27   25.7 ± 4.8  0.24 0.23 

Vasopressors at enrollment 9 (90) 19 (61)  0.19   1 (20)  <0.01 0.21 

IL-8, pg/ml 424 [228, 1068] 15 [9, 25]  <0.01   10 [8, 11]  <0.01 0.21 

Protein C, % control 51 [31, 62] 103 [76, 132]  <0.01   115 [79, 148]  <0.01 0.76 

Immunosuppression 4 (40) 6 (19)  0.37       

Primary ALI Risk Factor    0.79       

Pneumonia 4 (40) 16 (48)            

Sepsis 4 (40) 7 (23)           

Aspiration 2 (20) 6 (23)            

Pancreatitis 0 (0) 1 (3)         

None 0 (0) 1 (3)         

Clinical microbiology*           

Respiratory virus 1 (10) 1 (3)  0.98       

Respiratory bacteria 3 (30) 11 (36)  1.00       

Extrapulmonary bacteria 3 (30) 5 (16)  0.62       

Extrapulmonary fungus 4 (40) 0 (0)  <0.01       
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Captions 455 
 456 
Figure 1: Bulk RNA sequencing analyses of TA collected in the Acute Lung Injury in Critical 457 
Illness cohort.  458 
 459 
A-C) Differential gene expression and IPA upstream regulator scores in TA. A) 10 460 
hyperinflammatory ARDS participants vs. 31 hypoinflammatory ARDS participants. B) 10 461 
hyperinflammatory ARDS participants vs. five hypoinflammatory ARDS participants. C) 31 462 
hypoinflammatory ARDS participants vs. five control participants.  463 
 464 
For each comparison: (i) volcano plot of differential gene expression, where the log2 fold 465 
difference is on the x-axis and the -log10 adjusted p-value is on the y-axis; (ii-iv) IPA upstream 466 
regulator z-scores for (ii) cytokines, (iii) transmembrane and nuclear receptors, and (iv) 467 
transcription regulators in the IPA database. A maximum of 20 significant upstream regulators 468 
are shown for each panel. Redundant upstream regulators (e.g. inteferons or interleukins in the 469 
same family) were omitted from the figure. For a complete list of upstream regulator scores, see 470 
Supplementary Data 2.  471 
 472 
D) Gene set variation analysis for experimental models of lung injury. We identified 21 models 473 
of acute lung injury in the Gene Expression Omnibus and used GEO2Enrichr to identify up to 474 
200 genes differentially expressed (FDR < 0.05) in the experimental model compared to 475 
controls. GSVA scores were calculated for each sample, and the difference between 476 
hyperinflammatory ARDS and controls (orange) and hypoinflammatory ARDS and controls 477 
(blue) was estimated with limma. Experimental gene sets that are significantly different from 478 
controls are shown with solid triangles, while gene sets that are not significant are shown with 479 
transparent circles. For each model, the GEO Accession Number, organism, and lung injury 480 
model are listed on the x-axis.  481 
  482 
E) IPA Upstream Regulator Analysis scores for selected drugs in the IPA database for (i) 483 
hyperinflammatory ARDS vs. controls, and (ii) hypoinflammatory ARDS vs. controls. A positive 484 
z-score indicates the drug is predicted to shift gene expression from ventilated lungs toward 485 
ARDS lungs, while a negative score indicates the drug is predicted to shift gene expression 486 
from ARDS towards controls. Upstream regulators that did not meet statistical significance 487 
criteria are displayed using a transparent dot. 488 
 489 
Figure 2: Single-cell RNA sequencing from TA in the COMET cohort. A) Seurat UMAP 490 
projection of 18,717 TA cell transcriptomes from two participants with hyperinflammatory ARDS 491 
and six participants with hypoinflammatory ARDS, annotated with cell type as predicted by 492 
SingleR. B) UMAP projection of TA cells transcriptomes separated by ARDS phenotype. C) Bar 493 
plot of cell proportions in each phenotype.  494 
 495 
D-G) Differential expression and pathway analyses for D) Neutrophils, E) Monocytes, F) 496 
Monocyte-derived macrophages, and G) T cells. For each cell type: (i) volcano plot of 497 
differential gene expression. A positive fold change indicates the gene is more highly expressed 498 
in hyperinflammatory ARDS. (ii) IPA upstream regulator scores for cytokines and (iii) IPA 499 
upstream regulator scores for the top 40 non-cytokine regulators of gene expression. A positive 500 
z-score indicates the cytokine is predicted to be more active in hyperinflammatory ARDS 501 
compared to hypoinflammatory ARDS.  502 
 503 
Figure 3: O-Link proteomics results for plasma biomarkers from 5 hyperinflammatory ARDS, 20 504 
hypoinflammatory ARDS, and 14 control participants. Each heatmap shows plasma protein 505 
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biomarkers that were significantly different between groups (FDR < 0.1); for a complete list of 506 
proteins, see Supplementary Data 7. Each column represents an individual subject and each 507 
row shows the z-scaled concentrations. Rows and columns are clustered using the Euclidean 508 
distance. Columns are annotated by phenotype (orange is hyperinflammatory, blue is 509 
hypoinflammatory, and green is healthy volunteer). Z-score for expression is shown on the color 510 
bar on the right, and the scale is the same across all three heatmaps.  A) Hyperinflammatory 511 
ARDS vs. hypoinflammatory ARDS. B) Hyperinflammatory ARDS vs. healthy volunteers. C) 512 
Hypoinflammatory ARDS vs. healthy volunteers. 513 
 514 
Figure 4: Results of metatranscriptomic sequencing analyses of TA from 31 subjects with 515 
hypoinflammatory ARDS and 10 subjects with hyperinflammatory ARDS from the Acute Lung 516 
Injury in Critical Illness cohort. All analyses are performed with metatranscriptomic data 517 
aggregated at the genus level. A) Shannon diversity index for each TA sample, shown for all 518 
taxa, bacteria, and fungi. Each point represents an individual participant. P-value for Wilcoxon 519 
rank-sum test. B-D) Principal components analysis of metatranscriptomic reads mapped to all 520 
taxa, bacteria, or fungi in TA. Each point represents an individual subject. Subjects with 521 
systemic fungal infections are identified with triangles. Ellipses show the 95% confidence 522 
interval around the centroid. PERMANOVA for Bray-Curtis dissimilarity was calculated using 523 
adonis2 in vegan. D) Volcano plot showing differential abundance for TA metatranscriptomes. 524 
Genera that are significantly higher in hyperinflammatory ARDS are in orange and genera that 525 
are significantly higher in hypoinflammatory ARDS are in blue.  526 
 527 
Supplementary data 1: Differential gene expression for pairwise comparisons of bulk RNA 528 
gene expression for TA in the Acute Lung Injury in Critical Illness cohort. A positive log2 fold 529 
difference indicates the gene is more highly expressed in the first group compared to second 530 
group for each comparison. A) Hyperinflammatory ARDS vs. hypoinflammatory ARDS; B) 531 
Hyperinflammatory ARDS vs. controls; and C) Hypoinflammatory ARDS vs. controls; and D) All 532 
ARDS subjects vs. controls.  533 
 534 
Supplementary data 2: IPA Upstream Regulator scores for pairwise comparisons of bulk RNA 535 
gene expression for TA in the Acute Lung Injury in Critical Illness Cohort. A positive z-score 536 
indicates gene expression is consistent with higher activity of the upstream regulator in the first 537 
group compared to second group for each comparison. A) Hyperinflammatory ARDS vs. 538 
hypoinflammatory ARDS; B) Hyperinflammatory ARDS vs. controls; C) Hypoinflammatory 539 
ARDS vs. controls; and D) All ARDS vs. controls. 540 
 541 
Supplementary data 3: A) 200 most upregulated genes in experimental models of lung injury 542 
compared to controls for 21 experimental systems in the Gene Expression Omnibus. B) Gene 543 
set enrichment analysis scores and leading edge genes for experimental model gene sets in TA 544 
differential expression for hyperinflammatory ARDS vs. controls. C) Gene set enrichment 545 
analysis scores and leading edge genes for experimental model gene sets in TA differential 546 
expression for hypoinflammatory ARDS vs. controls. 547 
 548 
Supplementary data 4: Differential gene expression for single-cell RNA sequencing for TA for 549 
the COMET cohort. A positive log2 fold difference indicates the gene is more highly expressed in 550 
hyperinflammatory ARDS. A) Neutrophils, B) Monocytes, C) Monocyte-derived macrophages, 551 
D) Alveolar macrophages, E) T cells, F) Dendritic cells  552 
 553 
Supplementary data 5: IPA Upstream Regulator scores for pairwise comparisons of bulk RNA 554 
gene expression for TA in the COMET. A positive z-score indicates gene expression is 555 
consistent with higher activity of the upstream regulator in the hyperinflammatory ARDS 556 
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samples. A) Neutrophils, B) Monocytes, C) Monocyte-derived macrophages, D) T cells, and E) 557 
Dendritic cells  558 
 559 
Supplementary Data 6: Connectome results for ligand-receptor pairs in TA single-cell RNA 560 
sequencing from the COMET cohort for A) hyperinflammatory ARDS and B) hypoinflammatory 561 
ARDS. 562 
 563 
Supplementary Data 7: A) Z-scaled O-link protein concentrations for five hyperinflammatory 564 
ARDS, 20 hypoinflammatory ARDS, and 14 control subjects. B) Results of Wilcoxon rank-sum 565 
tests for pairwise comparisons of hyperinflammatory ARDS, hypoinflammatory ARDS, and 566 
control subjects.  567 
 568 
Supplementary figure 1: Subjects included in this analysis.  569 
 570 
Supplementary figure 2: Sensitivity analysis for differential gene expression between 571 
phenotypes after adjusting for fungal infections. (A) volcano plot of differential gene expression, 572 
where the log2 fold difference is on the x-axis and the -log10 adjusted p-value is on the y-axis. 573 
(B) Scatter plot showing estimated log2-fold difference in gene expression between phenotypes. 574 
The log2-fold difference in gene expression without adjusting for systemic fungal infections is on 575 
the x-axis, and the log2-fold difference in gene expression after adjusting is shown on the y-axis. 576 
(C-E) IPA upstream regulator z-scores for (C) cytokines, (D) transmembrane and nuclear 577 
receptors, and (E) transcription regulators in the IPA database. A maximum of 20 significant 578 
upstream regulators are shown for each panel. Redundant upstream regulators (e.g. inteferons 579 
or interleukins in the same family) were omitted from the figure. For a complete list of upstream 580 
regulator scores, see Supplementary Data 2B.  581 
 582 
Supplementary figure 3: Circos plots showing ligand-receptor pairs that are only significant in 583 
hyperinflammatory ARDS.  584 
 585 
Supplementary figure 4: Heatmaps for plasma proteins that are significantly higher in A) 586 
Controls vs. hyperinflammatory ARDS and B) Controls vs. hypoinflammatory ARDS  587 
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Methods 746 
Patient selection  747 

Subjects were selected from two prospective observational cohorts of critically ill 748 
patients. The first, the Acute Lung Injury in Critical Illness study, is a cohort of mechanically 749 
ventilated adults (age ≥ 18) admitted to the intensive care unit at the University of California, 750 
San Francisco Medical Center (UCSFMC) between from July 2013 until March 2020, when 751 
enrollment was paused due to the COVID-19 pandemic. The second, the COVID-19 752 
Multiphenotyping for Effective Therapies (COMET) study, is a multi-omic study of hospitalized 753 
patients with COVID-19 and hospitalized controls admitted to UCSFMC or Zuckerberg San 754 
Francisco General Hospital (ZSFGH). 755 

These studies were approved by the UCSF Institutional Review Board (17-24056, 20-756 
30497), which granted an initial waiver of informed consent to collect TA and blood samples 757 
within 48 hours of ICU admission. Informed consent was then obtained from patients or 758 
surrogates, as previously described60.  759 

In this analysis, we included all available subjects in each cohort who were: 1) admitted 760 
to the intensive care unit for mechanical ventilation for ARDS or airway protection without 761 
radiographic evidence of underlying pulmonary disease and 2) for whom we had TA sequencing 762 
with at least 500,000 protein-coding counts. We reviewed PCA plots, hierarchical clustering, and 763 
percentage of non-zero reads per samples for quality control and excluded four samples as 764 
technical outliers. For our non-ARDS control patients, we excluded control subjects on 765 
immunosuppression, including corticosteroids, and those with immunocompromising conditions 766 
(HIV, chemotherapy, etc.).  767 
 768 
ARDS adjudication and phenotype assignment 769 
 Subject charts were reviewed for ARDS adjudication by at least two study authors (AS, 770 
PS, ES, FM, CL, ZL, KK, CH, MM, CC) blinded to all biological data. ARDS was diagnosed 771 
using the Berlin Definition61. Lower respiratory tract infections were diagnosed using the CDC 772 
surveillance definition62. ARDS phenotype was determined using a three-variable classifier 773 
model (IL-8, protein C, and bicarbonate) previously developed and validated for this purpose14. 774 
This classifier model assigns subjects a probability of assignment to the hyperinflammatory 775 
molecular phenotype identified using latent class analyses. Subjects with a probability of class 776 
assignment greater than 0.5 were assigned to the hyperinflammatory class. Plasma biomarkers 777 
were not available for five subjects with TA bulk RNA sequencing. For these subjects, we used 778 
a validated clinical classifier model to assign phenotype.11,15  779 
 780 
RNA sequencing 781 

Following enrollment, TA was collected and stored in RNAse free conditions as 782 
previously described60. Metagenomic next generation sequencing (mNGS) of RNA was 783 
performed on TA specimens using an established sequencing pipeline. Following RNA 784 
extraction (Zymo Pathogen Magbead Kit) and DNase treatment, human cytosolic and 785 
mitochondrial ribosomal RNA was depleted using FastSelect (Qiagen). To control for 786 
background contamination, we included negative controls (water and HeLa cell RNA) as well as 787 
positive controls (spike-in RNA standards from the External RNA Controls Consortium (ERCC)). 788 
RNA was then fragmented and underwent library preparation using the NEBNext Ultra II 789 
RNASeq Kit (New England Biolabs). Libraries underwent 146 nucleotide paired-end Illumina 790 
sequencing on an Illumina Novaseq 6000 instrument. 791 
  792 
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Host differential expression and pathway analysis 793 
Following demultiplexing, sequencing reads were pseudo-aligned with kallisto (v. 0.46.1; 794 

including bias correction) to an index consisting of all transcripts associated with human protein 795 
coding genes (ENSEMBL v. 99), cytosolic and mitochondrial ribosomal RNA sequences, and 796 
the sequences of ERCC RNA standards. Gene-level counts were generated from the transcript-797 
level abundance estimates using the R package tximport, with the scaledTPM method. Samples 798 
retained in the dataset had a total of at least 500,000 estimated counts associated with 799 
transcripts of protein coding genes, and the median across all samples was 7,528,890 counts. 800 

We used an established bioinformatics pipeline to compare differential gene expression 801 
in TA from hyperinflammatory and hypoinflammatory ARDS. Differential expression analysis 802 
was performed using DESeq2. Gene expression was fit to a model using the design formula 803 
~Seqeuncing Batch + Gender + Z-scaled Age + Diagnosis. We performed pairwise comparisons 804 
of 1) hyperinflammatory ARDS to hypoinflammatory ARDS, 2) all ARDS subjects to 805 
mechanically ventilated controls, 3) hyperinflammatory ARDS to controls, and 4) 806 
hypoinflammatory ARDS to controls. Empirical Bayesian shrinkage estimators for log2-fold 807 
change were fit using apeglm. Differentially expressed genes with an independent-hypothesis 808 
weighted FDR < 0.1 and absolute shrunken log2FoldChange greater than 0.5.  809 

Differentially expressed genes were analyzed using Ingenuity Pathway Analysis (IPA, 810 
Qiagen). We ran IPA Core Analyses for each pairwise comparison of differential gene 811 
expression. IPA compares differentially expressed genes to a database of gene signatures 812 
derived from experimental datasets. In addition to identifying signatures of canonical pathways 813 
and cellular function, IPA includes a database of upstream regulators of gene function. These 814 
include endogenous signaling molecules, such as cytokines, and exogenous stimuli, such as 815 
drugs or toxins. The dataset also includes annotations of the relationship between regulators, 816 
which can be used to construct mechanistic networks of regulators that may indirectly affect 817 
gene expression. For each of the signatures, IPA calculates a p-value for the overlap of DE 818 
genes with genes in the signature (using Fisher’s exact test) and a z-score that tests whether 819 
the measured direction of gene expression is consistent the direction in a gene signature. We 820 
defined significant pathways, regulators, and networks as those with a Benjamini-Hochberg 821 
false detection rate less than 0.1 or an absolute z-score greater than 2.  822 
 823 
Single-cell RNA sequencing 824 
  TA were collected and stored at room temperature (to preserve neutrophils) and 825 
processed within three hours as previously described63. Briefly, TA cells were isolated and 826 
selected for expression of CD45, prepared with a V(D)J v1.1 kit according to the manufacturer’s 827 
protocol, processed on a 10x Genomics Chip A without multiplexing, and sequenced on an 828 
Illumina NovaSeq 6000 platform. Because samples had to be processed shortly after collection, 829 
batch processing and multiplexing were not feasible. Transcripts were aligned in Cell Ranger 830 
and filtered count matrices were imported into a Seurat object. Cells were filtered to have at 831 
least 300 counts, no more than 30,000 counts, and less than 10% mitochondrial genes. Cell 832 
types were determined using SingleR, and the Human Primary Cell Atlas was used as the 833 
annotation reference. Patients were assigned phenotypes on the basis of plasma IL-8, protein 834 
C, and bicarbonate concentrations. Differential gene expression for each cell type was 835 
determined using MAST, using a mixed effects model with fixed effects for phenotype and 836 
cellular detection rate and a random effect for subject. Differentially expressed genes were 837 
identified using Benjamini-Hochberg FDR < 0.1.  838 
 839 
Plasma proteomic analysis 840 
 Plasma samples were analyzed using the O-link Proteomics Assay. This assay 841 
generates a semi-quantitative measure of plasma protein concentrations for 96 plasma 842 
biomarkers. We excluded all samples that were flagged with a QC warning from the O-link 843 
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platform, and excluded any biomarker where protein concentrations could not be measured for 844 
at least 90% of samples. Measurements for 73 of the biomarkers on the panel passed the 845 
manufacturer’s quality control filter and were included for analysis. Normalized protein 846 
expression measurements were compared using a Wilcoxon rank-sum test and p-values were 847 
adjusted using the Benajmini-Hochberg method (FDR < 0.1).  848 
 849 
Comparison of differentially expressed genes to experimental models of acute lung injury 850 
 We selected experimental models of acute lung injury in the Gene Expression Omnibus 851 
from a list of previously identified rodent and human models56. Lists of all genes differentially 852 
expressed at a Benjamini-Hochberg corrected p-value less than 0.05 were downloaded using 853 
GEO2Enrichr27. We then used the genes that were upregulated in the experimental lung injury 854 
model as gene signatures in GSVA. If more than 200 genes were differentially expressed in the 855 
experimental model, we used the top 200 genes (by p-value) for the experimental gene 856 
signature. A complete list of GEO accession numbers, experimental models, and genes used in 857 
each signature can be found in Supplemental Table 3A. We used limma to compare GSVA 858 
scores in samples from each phenotype to GSVA scores in controls. 859 
 860 
Metagenomic sequencing 861 
 FASTQ files were analyzed using IDSeq43 to identify microbial reads in TA 862 
transcriptomes. Count matrices were downloaded for tracheal samples and water controls for 863 
analysis in RStudio. Taxonomic data were downloaded from NCBI using taxize64, and the matrix 864 
was filtered to only include viruses, bacteria, and fungi. We fit a negative binomial model of 865 
taxon-specific transcript counts against the total number of ERCC spike-in transcript reads in 866 
each of the water control samples. We then used this model to predict the background 867 
contamination of each taxon in each TA sample based on the number of ERCC reads. We then 868 
subtracted the predicted contamination from the measured reads in the sample to estimate the 869 
abundance in TA and rounded the estimate to the nearest integer. If the taxon-specific reads in 870 
a TA sample were not significantly different from predicted background contamination after 871 
adjusting for multiple comparisons using the Benjamini-Hochberg method, we estimated the 872 
abundance as zero. This background-corrected count matrix was used to construct a phyloseq65 873 
object. Taxa were agglomerated at the genus level for downstream analysis.  874 

We used estimate_richness to calculate the Shannon diversity index for all microbial 875 
taxa, as well as subgroup analyses of bacterial and fungal genera, in TA samples. We then 876 
used vegan66 to estimate the Bray-Curtis dissimilarity between samples and used adonis2 to 877 
calculate PERMANOVA p-values. We then used metagenomeSeq45 to estimate differential 878 
abundance between phenotypes using zero-inflated log-normal mixture models for each genus. 879 
Normalization factors were calculated using Wrench normalization and differential abundance 880 
was estimated using fitFeatureModel.  881 
 882 
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