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Main text 40 

 41 

Background  42 

     Quantifying the infectivity of pathogens is a crucial step towards the understanding of 43 

infection risks. In human challenge trials the infection risk is observed as the proportion of 44 

exposed participants that become infected. Dose-response models describe how this 45 

proportion infected changes with an increase in the infectious dose used to expose the 46 

participant [1,2]. Such dose-response models can be used to improve trial designs [3], to 47 

describe infectivity and immunogenicity in human hosts [4], and to simulate the infection 48 

risks via various transmission routes [5]. 49 

     Dose-response models can account for variation in host susceptibility, and most often such 50 

variation has been modelled by a beta distribution [6,7]. However, when a proportion of 51 

individuals is completely immune, the variation is better captured by other distributions (e.g., 52 

[8]).  53 

     Here, we start by reformulating dose-response models with a flexible description of the 54 

variation in host susceptibility that allows for an intuitive biological interpretation. We show 55 

how variation in susceptibility determines the dose-response relationship for the endemic 56 

human coronavirus HCoV-229E and we compute the plausible range of SARS-CoV-2 dose-57 

response curves based on available outcomes of a challenge study.  58 

     Our approach suggests how the design of human challenge trials can be improved to better 59 

capture the variation in susceptibility, and suggests how to translate the outcomes of human 60 

challenge studies into infection risks for the general population.  61 

 62 

Methods  63 

Human challenge studies  64 

     We conducted a literature search to collect available data from human challenge studies 65 

with endemic coronaviruses and SARS-CoV-2. The collected data consists of 5 studies with 66 

endemic coronaviruses HCoV 229E and one study with SARS-CoV-2. In all cases the study 67 

population consisted of healthy adult volunteers, and the participants were intranasally 68 

inoculated with certain doses in each trial. The challenge studies reported the challenge dose, 69 

the number of challenged individuals, and the number of infected individuals as summarized 70 

in Supplementary Material, Table S1 and Table S2. 71 

 72 

Dose-response models to analyze human challenge studies  73 

     The reported infectious doses 𝑑 are expectations of a Poisson distribution of the actual 74 

infectious dose, with mean 𝑑. If each host is equally susceptible, the probability of infection 75 

𝑃(𝑑) given a challenge dose 𝑑 is 𝑃(𝑑) = 1 − 𝑒𝑥𝑝(−𝑑). This assumes that each infectious 76 

particle can independently establish an infection [2,9].  77 

     We capture the variation in susceptibility among study participants by assigning each a 78 

level of susceptibility 𝑠, according to a distribution 𝑓(𝑠) with mean 1. A participant with a 79 

level of susceptibility 𝑠 has 𝑠 times higher probability of infection compared to an average 80 

individual, per infectious particle. The probability of infection upon challenge with a dose 𝑑 81 

is 𝑃(𝑑) = 1 − ∫ 𝑒𝑥𝑝(−𝑠𝑑)𝑓(𝑠)𝑑𝑠
∞

0
. By fitting this model for the probability of infection to 82 

the observed proportion of infections in human challenge studies we can infer the shape of the 83 

distribution 𝑓(𝑠) using the method of maximum likelihood, see Supplementary Material for 84 
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details. We use four different models for the distribution: a Dirac delta distribution to reflect 85 

a situation where all individuals have the same level of susceptibility; a gamma distribution 86 

to reflect a situation where the level of susceptibility varies continuously; a bimodal 87 

distribution with one fraction of the population almost immune, and the remaining fraction 88 

with a single level of susceptibility; and a bimodal distribution with one fraction of the 89 

population almost immune, and the remaining fraction with a gamma distribution for the level 90 

of susceptibility to vary continuously. Detailed model descriptions and estimated parameters 91 

are provided in Table S3. 92 

 93 

Results  94 

Susceptibility distributions determine the shape of dose-response curves  95 

     We described the proportion of infections among individuals exposed to different doses of 96 

the endemic coronavirus HCoV-229E by fitting dose-response models. Since the collected 97 

trial data include participants who might have been exposed to viruses, we included bimodal 98 

distributions of susceptibility.  99 

     The results reveal a strong statistical support for a distribution reflecting a situation where 100 

a fraction of the population is almost immune whereas the remaining fraction of the population 101 

has a single level of susceptibility. There is no statistical support for a homogeneous level of 102 

susceptibility or continuous variation in susceptibility for all individuals (Table S4).  103 

 104 

Plausible SARS-CoV-2 dose-response curves  105 

      In the available human challenge study with SARS-CoV-2 all participants were healthy 106 

young adults with no evidence of previous SARS-CoV-2 infection or vaccination, and they 107 

were all exposed to the same single dose [10]. Here we show how the variation in 108 

susceptibility would affect the infection risk at different doses. Since participants had not had 109 

any prior exposure to this virus, we assumed a continuous variation in susceptibility only. We 110 

fitted the model with several gamma distributions for the level of susceptibility 𝑠  to the 111 

observed SARS-CoV-2 challenge data, where we increased the coefficient of variation (𝐶𝑉) 112 

over orders of magnitude from small (10−6) to large (102). The corresponding curves reveal 113 

that the infection risk increases more gradually with increasing CV in susceptibility (Figure 114 

1A).  115 

     We accounted for the statistical uncertainty in the fraction of the participants that were 116 

infected by taking 1000 bootstrap samples and fitting dose-response curves to each 117 

bootstrapped dataset, reflecting a situation where the susceptibility level is completely 118 

homogeneous (𝐶𝑉 = 0), and where the level is similar to that of the endemic coronavirus 119 

infection (𝐶𝑉 = 1)(Figure 1B and 1C).  120 

     We compared the bootstrapped SARS-CoV-2 dose-response curves with the dose-response 121 

curve from a SARS-CoV-1 mouse model obtained by Watanabe et al. [11], which has been 122 

widely used in risk assessments of SARS-CoV-2 (dotted lines in Figure 1). This reveals that 123 

using the current reference model based on mouse data with SARS-CoV-1 could lead to 124 

serious underestimation of the infection risk for SARS-CoV-2, irrespective of the shape of the 125 

distribution of susceptibility level. We also compared the SARS-CoV-2 dose-response curves 126 

with the observed outcomes from the challenge studies with endemic coronavirus (Figure 127 

1D). This suggests that the estimated range of infection risks of endemic coronavirus is 128 

consistent with the observed infection risk in the SARS-CoV-2 trial [12].  129 

 130 
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Discussion  131 

     In this study, we revealed the plausible range of infection risk over multiple orders of 132 

magnitude of the infectious dose for the endemic coronavirus HCoV 229E and SARS-CoV-133 

2, based on human challenge trials. We presented how these dose-response relationships are 134 

shaped by the underlying distribution of susceptibility to infection. 135 

     The range of SARS-CoV-2 dose-response curves arises from the unknown distribution of 136 

background susceptibility in the population and the statistical uncertainty due to the limited 137 

number of participants that have participated in the human challenge study. Our results 138 

caution against assuming equal susceptibility in the population in risk assessments [5,11], as 139 

this assumption results in a lower bound for infection risks at lower doses.  140 

     Our results provide implications for further research. We address three of them here.  141 

     Firstly, our approach suggests a possible improvement in the design of human challenge 142 

trials. Conventional trials tend to use a single dose such as the median human infectious 143 

dose (HID50) [13]. Using two (or more) challenge doses would be highly informative for 144 

extrapolating the findings over a wider range of doses. If multiple challenge doses would not 145 

be feasible, we advise to consider using a different challenge dose than the doses used in 146 

previous studies. The outcomes of the different studies can be combined in a meta-analysis 147 

that takes advantage of those different doses to infer how infection risk changes with dose. 148 

This would elucidate the unknown variation in level of susceptibility among individuals. 149 

     Secondly, the dose-response models proposed here, as many other dose-response models, 150 

have underlying assumptions that the infectious particles are homogeneously mixed in the 151 

inoculates and act independently in causing an infection [2,9]. These assumptions suffice for 152 

describing the outcome of human challenge studies, even though it might not hold, for 153 

example, when virus particles aggregate. The dose-response model can be extended to allow 154 

for variation in the per-particle probability, using methods explored previously [2,14], which 155 

would allow for a built-in check of violating this assumption. 156 

     Thirdly, our approach offers guidance for the translation of the observed risk of infection 157 

in human challenge studies to the general population. Currently this translation is difficult as 158 

the study population of challenge studies, due to safety and ethical reasons, consists of 159 

healthy adult volunteers [15]. Such a study population is not representative of a general 160 

population which includes children and elderly. Besides, the general population now 161 

includes persons who have been exposed to SARS-CoV-2. The strict selection of healthy 162 

adult study participants with no evidence of previous exposure inevitably reduces the 163 

variation in susceptibility relative to the general population. The proposed dose-response 164 

models with flexible distribution of susceptibility allows for exploring the impact of an 165 

expected increase in variability of the level of susceptibility in the general population and a 166 

flattening of the dose-response curve.  167 

     In conclusion, our study reveals plausible dose-response relationships for SARS-CoV-2, 168 

based on information from human challenge trials, that are consistent with dose-response 169 

curves obtained for human endemic coronaviruses. Human challenge trials would be more 170 

informative if they use different doses. When translating the observed infection risks in the 171 

specific study population to the general population, the expected higher variability of 172 

susceptibility in the general population should be taken into account.  173 

  174 
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Figures and Tables 222 

 223 

Figure 1. Dose-response curves of SARS-CoV-2 (panel A, B, and C) and comparison with an 224 

estimated dose-response curve of endemic coronaviruses (panel D) based on observed human 225 

challenge data. In panel A-C, light red dots stand for observations from human challenge data of 226 

SARS-CoV-2 (Table S2), and whiskers show Jeffrey’s binomial confidence intervals (95%). Panel 227 

A illustrates that the steepness of fitted curves (blue lines) decreases over the increase in the 228 

coefficient of variation (CV) in susceptibility from 10-6 to 102. Panel B and C show curves fitted to 229 

1000 bootstrapped samples from observed data where the CV is set as 0 and 1 respectively. These 230 

values are selected to consider two scenarios where the susceptibility level is completely 231 

homogeneous and where the level is comparable to that of endemic coronavirus infection. Dotted 232 

grey lines show reference dose-response curves of SARS-CoV-1 animal model [11]. In panel D, plots 233 

and whiskers are observed challenge data of endemic coronaviruses (Table S1), and dark and light 234 

blue lines indicate fitted SARS-CoV-2 models where the CV is fixed as 0 and 1 respectively.  235 
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Materials and Methods 

 

Human challenge data 

The challenge data of endemic coronaviruses and SARS-CoV-2 were collected from 

published articles. We conducted literature search using PubMed and Google Scholar, and 13 human 

challenge studies were found in total. For further analysis, 7 studies [1–7] were excluded because the 

information on inoculated doses was unavailable. Thus, 5 studies of endemic coronaviruses [8–12] 

and 1 study of SARS-CoV-2 [13] were used in the dose-response analysis. The data consisted of the 

number of exposed doses, total participants, and infected individuals in each trial. The summary of 

analyzed data with details (i.e., inoculation methods and references) is shown in Table S1.  

To synthesize the obtained data, we set two assumptions. First, the infection status was 

comparable across those studies. Several studies defined the infection status by antibody level, while 

others defined it by the presence of viruses. Second, there was negligible effect of aggregation of 

viruses. Since the detailed information of inoculated samples was not available, the unit of dose is 

defined as the reported unit (i.e., TCID50, Median tissue culture infectious dose). If there is data that 

quantify the level of aggregation, further extension of the dose-response analysis is also possible (see 

[14,15]). 

 

Rephrased dose-response model 

Here we denote the probability of infection in controlled infection experiments as 𝑃𝑖𝑛𝑓(𝑑), a 

function of dose 𝑑. In a host, it is reasonable to assume that all the particles are independently 

infectious and effective to establish an infection (i.e., single-hit theory [15,16]). The simplest dose-

response relationship is formulated by incorporating Poisson uncertainty in a microbial inoculum: 

𝑃𝑖𝑛𝑓(𝑑; 𝑟) = 1 − 𝑒𝑥𝑝(−𝑟𝑑) 𝐸𝑞. 1 

where 𝑟 is the probability of establishing infection by a single-hit.  

While previous studies formulated the variation in 𝑟 (often with a beta distribution [15,17–

19]), here we focus on the variation in a host. Suppose that the susceptibility to infection among 

individuals differs and is distributed as 𝑓(𝑠) with a level of susceptibility 𝑠. The interpretation of 

variable 𝑠 is that an individual with the level of susceptibility 𝑠 = 𝑠′ has 𝑠′ times higher probability 

of infection compared to an individual with 𝑠 = 1. By expanding Eq.1 and integrating the variation 

in susceptibility, the marginal probability of infection is written as  

𝑃𝑖𝑛𝑓(𝑑; 𝑟, 𝜽) = 1 − ∫ 𝑒𝑥𝑝(−𝑟𝑑𝑠) 𝑓(𝑠; 𝜽)𝑑𝑠
∞

0

𝐸𝑞. 2 

where 𝜽 is a parameter vector of 𝑓(𝑠). If a single-hit always results in infection, that is, 𝑟 = 1, Eq.2 

can be further simplified 

𝑃𝑖𝑛𝑓(𝑑; 𝜽) = 1 − ∫ 𝑒𝑥𝑝(−𝑑𝑠) 𝑓(𝑠; 𝜽)𝑑𝑠
∞

0

= 1 − ℒ𝑠(𝑑) 𝐸𝑞. 3 

where ℒ𝑠 refers to the Laplace transform of 𝑓(𝑠).  

As an illustrative example, we introduce the dose-response model where the level of 

susceptibility is distributed as a Gamma distribution, 𝑠 ∼ Gamma(𝛼, 𝛽). By solving Eq.3, the dose-

response model is derived as  

𝑃𝑖𝑛𝑓(𝑑; 𝛼, 𝛽) = 1 − (1 +
𝑑

𝛽
)

−𝛼

𝐸𝑞. 4 

and this formula is the same as the so-called Beta-Poisson model [15,19]. Note that we can derive 

Eq.4 without violating the single-hit principle, and the equation can be interpreted as the relationship 

between dose-dependent infection probability and the susceptibility distribution within a host.  
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Model fitting 

Since the results of controlled infections are obtained as either infected or not in challenge 

experiments, such observation process leads to a binomial likelihood 

𝐿(𝜽) = ∏(1 − 𝑃𝑖𝑛𝑓(𝑑𝑖))(𝑛𝑖−𝑚𝑖) 𝑃𝑖𝑛𝑓(𝑑𝑖)𝑚𝑖

𝑖

 

and thus the log-likelihood is  

ℓ(𝜽) = ∑[(𝑛𝑖 − 𝑚𝑖)ln (1 − 𝑃𝑖𝑛𝑓(𝑑𝑖)) + 𝑚𝑖ln (𝑃𝑖𝑛𝑓(𝑑𝑖))]

𝑖

 

where for each trial i we have a dose 𝑑𝑖 and a group of 𝑛𝑖 volunteers of which 𝑚𝑖 are infected. To 

estimate the set of parameters 𝜽, maximum likelihood estimation (MLE) was performed. For this 

computation we used the optim() function in the R statistical programming environment version 

3.5.1., and 95 % confidence intervals were computed from 1000 bootstrapped samples. 

 

Referred animal dose-response model 

Current risk assessments of SARS-CoV-2 infection risk among humans often refer to the 

animal dose-response model obtained by Watanabe et al. [20]. Their study used a Delta model (i.e., 

the first model in Table S3) and fitted it to available SARS-CoV-1 data based on mouse experiments. 

As a result, the estimated parameter was 𝑎 =
1

410
 in Table S3 notation. For details, see the original 

article [20]. For comparison of dose-response curves, we converted the unit of inoculated doses using 

the ratio of PFU to TCID50 that is previously established as 0.7 [21].  
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Supplementary figures and tables  

 

 

Figure S1. Estimated dose-response models of endemic coronavirus based on observed human 

challenge data. Grey bubbles indicate the observed data, and the size of bubbles indicates the 

number of participants in each trial. To describe different heterogeneity in susceptibility, dose-

response models with Delta (panel A), Gamma (panel B), Two-level (panel C), and Gamma with 

point-mass distributions (panel D) were fitted to the data.  

 

 

 

Figure S2. Simulated SARS-CoV-2 dose response curves based on observed human challenge data. 

Red plot and whiskers indicate the observed data and its 95% binomial confidence intervals. Each 

curve is obtained by bootstrapping with a gamma model. From panel A to F, the coefficient of 

variation is decreased from 102 to 10-3.  
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Table S1. Human challenge data with endemic coronavirus.   

Dose Total  Infected Unit Pathogen Age Inoculation Reference 

100 24 21 TCID50* HCoV-229E 21-53 Nasal drop Bende 1989 (Table 1) 

31.6 6 4 TCID50 HCoV-229E 18-50 Nasal drop Bradburne 1967 (Fig 1) 

5.0 6 1 TCID50 HCoV-229E 18-50 Nasal drop Bradburne 1967 (Fig 1) 

4.0 5 2 TCID50 HCoV-229E 18-50 Nasal drop Bradburne 1967 (Fig 1) 

15.8 9 6 TCID50 HCoV-229E 18-50 Nasal drop Bradburne 1967 (Fig 1) 

100 15 10 TCID50 HCoV-229E Unknown Nasal drop Callow 1990 (Main text) 

17.8 22 7 TCID50 HCoV-229E 18-50 Nasal drop Reed 1984 (Table V) 

31.6 24 12 TCID50 HCoV-229E 18-50 Nasal drop Reed 1984 (Table V) 

15848.9 12 7 TCID50 HCoV-229E 18-50 Nasal drop Reed 1984 (Table V) 

100 55 50 TCID50 HCoV-229E 18-53 Nasal drop Tyrell 1993 (Table 2) 
†TCID50: Median tissue culture infectious dose. 

 

 

Table S2. Human challenge data with SARS-CoV-2.   

Dose Total  Infected Unit Pathogen Age Inoculation Reference 

10 34 18 TCID50* SARS-CoV-2† 18-29   Nasal drop Killingley 2022 

*TCID50: Median tissue culture infectious dose. 
†Pre-alpha wild-type virus (Genbank accession number OM294022). 

 

 

 

Table S3. Description of dose-response models with different distributions for describing the 

heterogeneity in susceptibility against endemic coronavirus and its estimated parameters. 

Susceptibility 

distribution  

Dose-response model  Estimated parameters Description 

Delta 𝑃𝑖𝑛𝑓(𝑑) = 1 − exp (−𝑎𝑑) 𝑎 = 1.3 × 10−3  

[6.6 × 10−4, 2.3 × 10−3] 
All individuals have the 

same level of 

susceptibility, and the 

variance is zero.  

Gamma 𝑃𝑖𝑛𝑓(𝑑) = 1 − (1 + 𝜃𝑑)−𝑘 𝜃 = 1.2  

[1.4 × 10−1, 3.9 × 102]  
𝑘 = 2.7 × 10−1  

[1.1 × 10−1, 5.3 × 10−1]   

The level of 

susceptibility for all 

individuals follows a 

gamma distribution. 

Two-level 𝑃𝑖𝑛𝑓(𝑑) = 1 − [𝑝1exp (−𝑎1𝑑) + (1

− 𝑝1)exp (−𝑎2𝑑)] 

𝑎1 = 4.2 × 10−9  

[5.8 × 10−13, 2.5 × 10−5]  
𝑎2 = 4.2 × 10−2  

[1.9 × 10−2, 6.9 × 10−2]  
𝑝1 = 1.7 × 10−1  

[1.4 × 10−3, 2.4 × 10−1]   

A population has two 

levels of susceptibility; 

a proportion (𝑝1) has a 

mass at level of 

susceptibility 𝑎1 and the 

other has another mass 

at level of susceptibility 

𝑎2.  

Gamma with 

point mass 

𝑃𝑖𝑛𝑓(𝑑) = 1 − [𝑝1exp (−𝑎1𝑑) + (1

− 𝑝1)(1 + 𝜃𝑑)−𝑘] 

𝑎1 = 7.5 × 10−17  

[9.7 × 10−36, 4.2 × 10−5]  
𝑝1 = 1.7 × 10−1  

[4.2 × 10−7, 2.5 × 10−1] 
𝜃 = 6.2 × 10−7  

[4.9 × 10−8, 1.0 × 10−1]  
𝑘 = 6.8 × 104  

[7.4 × 10−1, 7.7 × 105]  

The level of 

susceptibility for a 

proportion 1 − 𝑝1 of 

population follows 

gamma distribution, and 

the other proportion 𝑝1 

has a level of 

susceptibility 𝑎1.  
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Table S4. Comparison of estimated dose-response models based on model fit to the observed 

endemic coronavirus challenge data.  

  Delta Gamma Two-level Gamma+point-mass 

Log-Likelihood -393.0 -107.2 -98.3 -98.3 

No. of parameters 1 2 3 4 

AIC* 787.9 218.5 202.6 204.6 

Difference in AIC† 585.3 15.9 0 2.0 

*AIC: Akaike Information Criterion. The lowest value indicates the best model in terms of prediction. 
†Difference of >10 indicates strong evidence [22]. The values here suggest substantial support for the 

heterogeneity in susceptibility.  
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