
  

  

Abstract— Dementia with Lewy Bodies (DLB) is the second 
most common form of dementia, but diagnostic markers for 
DLB can be expensive and inaccessible, and many cases of DLB 
are undiagnosed. This work applies machine learning techniques 
to determine the feasibility of distinguishing DLB from 
Alzheimer’s Disease (AD) using heterogeneous data features. 
The Repeated Incremental Pruning to Produce Error Reduction 
(RIPPER) algorithm was first applied using a Leave-One-Out 
Cross-Validation protocol to a dataset comprising DLB and AD 
cases. Then, interpretable association rule-based diagnostic 
classifiers were obtained for distinguishing DLB from AD. The 
various diagnostic classifiers generated by this process had high 
accuracy over the whole dataset (mean accuracy of 94%). The 
mean accuracy in classifying their out-of-sample case was 
80.5%. Every classifier generated consisted of very simple 
structure, each using 1-2 classification rules and 1-3 data 
features. As a group, the classifiers were heterogeneous and used 
several different data features. In particular, some of the 
classifiers used very simple and inexpensive diagnostic features, 
yet with high diagnostic accuracy. This work suggests that 
opportunities may exist for incorporating accessible diagnostic 
assessments while improving diagnostic rate for DLB.  

 
Clinical Relevance— Simple and interpretable high-

performing machine learning algorithms identified a variety of 
readily available clinical assessments for differential diagnosis of 
dementia, offering the opportunities to incorporate various 
simple and inexpensive screening tests for DLB and addressing 
the problem of DLB underdiagnosis.  
 

I. INTRODUCTION 

Despite being the second most common form of 
neurodegenerative dementia, it is estimated that under half of 
dementia with Lewy bodies (DLB) cases are detected in 
routine clinical care [1, 2]. Accurate diagnosis, however, is 
critical in establishing accurate prognosis and comprehensive 
treatment plan [3]. 

Successive iterations of clinical DLB criteria have 
become more sensitive and less specific over time, 
particularly as biomarkers such as 123I-2β-carbomethoxy-3β-
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(4- iodophenyl)-N-(3-fluoropropyl) nortropane SPECT (FP-
CIT), and 123I-metaiodobenzylguanidine (MIBG) cardiac 
scintigraphy have emerged [4]. However, these investigations 
are not available to all clinical services, and may be infeasible 
in some patients. It is therefore important that opportunities to 
characterise the clinical features (i.e., the signs and symptoms 
identified by the healthcare practitioner) are pursued.  

Machine learning (ML) methods [5] may offer one such 
approach to clinically characterizing DLB. Identification of 
subphenotypes using ML have assisted clinical decision-
making in Alzheimer’s disease (most common form of 
dementia) [6], and disorders such as delirium [7] and sporadic 
Creutzfeldt-Jakob disease [8]. In contrast, most DLB studies 
to date have adopted traditional statistical methods to provide 
group-level insights that may not apply to all subgroups 
within DLB. Recent studies applying ML, particularly, deep 
learning on structural or functional neuroimaging data could 
detect DLB from AD with accuracy in the range ~71 – 89% 
[9-11]. However, these ML algorithms were complex and not 
readily interpretable and were not applied to heterogeneous 
data, including readily accessible assessments.  

This work aims to determine the feasibility of using 
simple and interpretable machine learning on heterogeneous 
data, including accessible diagnostic assessments, of well 
characterised DLB and AD research cohorts to identify novel 
subphenotypes based on clinical observations alone.  

II. METHODS 

A. Data Description  
Data was collected as part of a study investigating the 

diagnostic utility of MIBG and FP-CIT in a clinically 
representative UK cohort [12]. Participants met research 
criteria for either probable DLB [13] or probable AD [14]. 
Subjects were all over 60 years old at recruitment, and 
recruited through psychiatry of Old Age, geriatric medicine 
and neurology clinics in North-East England between 
September 2015 and June 2017. Written informed consent 
was provided by patients, or by a nominated consultee when 
participants did not demonstrate capacity to consent for
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themselves. Each subject underwent detailed clinical 
examination that included multiple rating scales and 
neuropsychological testing, data from which were used for 
this study.  

B. Data Pre-processing 
The resultant dataset had 233 data feature columns 

including the Diagnosis column, with 33 rows representing 
cases. The Diagnosis column had 17 cases diagnosed with 
DLB and 16 cases diagnosed with AD and was used as the 
outcome variable. This dataset had 7% missing values, which 
were imputed, separately from the Diagnosis column to avoid 
“double-dipping” [15], using the missForest algorithm [16] 
and R package [17]. The missForest algorithm was used as 
previous work by the authors found it to be an accurate and 
flexible imputation algorithm [18].  

C. Random Forest Feature Importance  

To obtain an overview of the most relevant variables, a 
Random Forest (RF) model [19] was built using the whole 
imputed dataset, and the randomForest package in R [20]. The 
variable importance was extracted from the model and plotted 
along a single-dimensional plot using the lattice package [21]. 
FP-CIT and MIBG related features were highlighted 
separately in the plot, as they are excluded from some of the 
analysis. 

D. Association Rule-Based Classifiers 
A Leave-One-Out-Cross-Validation (LOOCV) technique, 

in which each row of the dataset was omitted in turn, was used 
to extract 33 association rule-based classifiers from the data 
using the Repeated Incremental Pruning To Reduce Error 
Production (RIPPER) algorithm [22] as implemented in the 
RWeka package [23]. This simple classifier was selected for 
two reasons: (i) to avoid overfitting given that the data is high-
dimensional with a small sample size; and (ii) to maximize 
the transparency of interpretation of the algorithm to 
encourage clinical adoption.  

The dataset was then pruned to remove data related to FP-
CIT and MIBG, as the goal is to identify novel clinical 
diagnostic DLB subphenotypes. The LOOCV process was 
run again on this reduced dataset and 33 new rule-based 
classifiers were extracted by RIPPER.  

In the case where any of the rule-based classifiers 
extracted on different iterations of LOOCV were identical to 
each other, the total number of instances of each rule-based 
classifier was recorded.  Each classifier was then tested on the 
entire dataset, and class-balanced accuracy, sensitivity and 
specificity (with DLB as the positive class) was recorded. 

Each classifier was separately used to classify the omitted 
individual case (the latter not being used in the training 
dataset when the classifier was built), and the total number of 
correct classifications of omitted subjects was recorded.  

E. Testing statistical validity of extracted rules 

Because this dataset is high-dimensional, with far more 
features than cases, it is important to guard against the risk of 
overfitting (when a model does not generalize beyond the 
training data). It could be speculated that with 232 features to 
choose from, the RIPPER algorithm will always find some 

diagnostic rules that can accurately classify the 33 cases. As 
a precaution against this, the methodology was tested against 
noise data with the same dimensionality and variable 
distributions but randomly scrambled from the original 
dataset. Specifically, the values of the dataset features were 
permuted (i.e. the columns of the dataset were shuffled) using 
the modelr package [24] in R. 100 permuted datasets were 
generated and 100 rules-based classifiers were extracted from 
these datasets using RIPPER. A simple t-test was used to 
determine whether the overall accuracy of classifiers built on 
permuted datasets in classifying their (permuted) training data 
was significantly different from the overall accuracy of the 
classifiers built on the original dataset, in classifying their 
training data. A significant difference here would suggest that 
the algorithm is detecting valid rather than spurious patterns 
in the original data.  
 
F. Software and Hardware for Analysis 

The above analyses and algorithms were run within R 
Studio version 1.146 on a Windows machine with eight 
memory cores, Intel i7 processor, 16GB RAM and R version 
3.5.2 installed. Source codes for the computations are 
available at https://github.com/mac-n/DLB.The dataset used 
during the study is available from the corresponding author 
(JPMK) on reasonable request.  

III. RESULTS 

A. Ranking Feature Importance Identified Heterogeneous 
Set of Assessments 

A strip plot of the Random Forest Importance (RFI), as 
determined by decrease in Gini index [25], of all the data 
features is shown in Fig. 1, and the names of the top-ranked 
features in Table I (described in Appendix Table I). Data 
features deriving from FP-CIT and MIBG are coloured in red 
in Fig. 1 and are in bold text in Table I. It can be seen in Fig. 
1 that the vast majority of the 232 features sit at the left of the 
plot, meaning very few features had a strong impact on the 
classifier accuracy (for DLB-vs-AD diagnosis). Other than 
the Trail Making Test – Part A [26] (trailsA), the other top-
ranked 14 features in Table I were expected as they are 
currently directly or indirectly contributing to the diagnosis of 
DLB. Hence, it was interesting to see the algorithm 
identifying a new feature for potential assessment.  

 
 

 
 
Figure 1. Strip plot of Random Forest Importance (RFI) of all features in 
the dataset. See Table I for these specific features. Red dots: Features 
deriving from FP-CIT or MIBG. 
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B. Simple, Readily Available Assessments with 
Classification Accuracy 

Table II shows all the association rule-based classifiers 
selected with this dataset using the RIPPER algorithm and 
LOOCV, and their classification accuracy over the whole 
dataset. The classifier rules shown in the table are simple to 
interpret. Specifically, the rules can be understood as stating 
that if the condition on the left of ⇒ is true, the outcome value 
on the right should be predicted. The classifier follows each 
rule in the order listed. If none of the rules apply, the classifier 
chooses a default value.  

It can be seen that the Unified Parkinson’s Disease Rating 
Scale (UPDRS) [27] - Rigidity subscale (Rev_UPDRS_Rig) 
was most frequently selected as the basis of classification. 
This relates to the impairment of movement often associated 
with DLB [28]. FP-CIT brain imaging variables were also 

frequently selected for the classifier. This was expected, given 
the important role of FP-CIT in influencing the clinical 
diagnosis of DLB [4]. Thus, this validated the use of the 
association rule-based classifier.  

Each classifier was then tested on the out-of-sample 
subject which was not used in this training data. The mean 
accuracy was 76% i.e., 25 of the 32 classifiers predicted the 
correct diagnosis for their out-of-sample patient. Mean 
sensitivity was 0.9 and mean specificity was 0.68, with DLB 
as the positive class.  

Next, we aim to identify more readily accessible 
assessments. Table III shows the association rule-based 
classifiers selected when FP-CIT and MIBG features were 
removed. Even with this, the classification accuracy remained 
very high, as discussed below. We can also observe in Table 
III that the UPDRS Rigidity subscale is still frequently 
selected as the sole basis for classification, and in one 
instance, combined with the Neuropsychiatric Inventory 
(NPI) [29] – Hallucinations subscale. Interestingly, specific 
rigidity scores within this UPDRS Rigidity subscale such as 
Rigid_LL (left leg rigidity) constituted accurate diagnostic 
classifiers on their own.  Moreover, in both Tables II and III, 
the selected rule-based classifiers were all very simple, 
consisting of only one or two rules for diagnosis. Note that 
since these classifiers produced highly accurate performance 
on the training data, the RIPPER algorithm did not seek out 
additional rules.  

When these association rule-based classifiers were each 
tested in turn on the out-of-sample subject which was not used 
in their training data, mean accuracy was 85% (95% CI 0.681, 
0.9489) i.e., 28 of the 33 classifiers predicted the correct 
diagnosis for their out-of-sample patient. Mean sensitivity 
was 0.88 and mean specificity was 0.82, with DLB as the 
positive class. Given the very simple nature of the classifiers, 
this is a strong performance on the out-of-sample test data. 

TABLE I 
TOP FEATURES RANKED BY RANDOM FOREST IMPORTANCE (RFI) 

Feature name RFI 
Right_Striatum 1.0203290 
Right_Putamen 1.0011375 
Right_Caudate 0.8860200 
Rev_UPDRS_Rig 0.7767815 
Rigid_LL 0.7010586 
Visual_Rating_Mod_Benamer 0.4670800 
Left_Striatum 0.4544895 
Left_Putamen 0.4472282 
Rigid_LU 0.4147690 
Fluctuations_clinican_1 0.3687250 
HOEHN_YAHR_Stage 0.3580730 
trailsA 0.3548774 
Left_Caudate 0.3534562 
Rapid_Hand_Left 0.3213017 
npihallsev 0.2903526 
All features are described in Appendix Table I. Bold: Features deriving from FP-CIT scans.  
 
 

TABLE II 
ASSOCIATION RULE-BASED CLASSIFIERS SELECTED BY RIPPER WITH 

LOOCV 
Rules #  Acc Sens Spec 

(Rev_UPDRS_Rig ≤0) ⇒ 
Final_diag=AD   
otherwise Final_diag=DLB 22 0.94  0.88  1 
(Rigid_LL ≤ 0) ⇒ Final_diag=AD  
otherwise Final_diag=DLB 3 0.9  0.8  1 
(Left_Striatum ≥ 1.4415) and (Rigid_LL 
≤0) ⇒ Final_diag=AD  
otherwise Final_diag=DLB 2 1  1  1 
((Right_Striatum ≥  1.55) ⇒ 
Final_diag=AD  
otherwise Final_diag=DLB 2 0.94  0.94  0.94 
(Rigid_LU ≤0.07) ⇒ Final_diag=AD  
otherwise Final_diag=DLB 2 0.87  0.76  1 
(DCFS_drowsy ≤2) and (Rigid_RU ≤ 
0) ⇒ Final_diag=AD  
otherwise Final_diag=DLB 1  0.94  0.94  0.94 
(Right_Caudate ≥ 1.491) ⇒ 
Final_diag=AD   
otherwise Final_diag=DLB 1  0.9  0.8  1 
(Left_Caudate ≥ 1.62) ⇒ 
Final_diag=AD  
otherwise Final_diag=DLB 1  0.9  0.88  0.93 
 
Rules: Ruleset describing the classifier 
#: Number of times classifier was mined with RIPPER using LOOCV 
Acc: Whole-sample accuracy of classifier 
Sens: Whole-sample sensitivity of classifier (positive class: DLB) 
Spec: Whole-sample specificity of classifier  

TABLE III 
ASSOCIATION RULE-BASED CLASSIFIERS SELECTED BY RIPPER WITH 

LOOCV WITHOUT FP-CIT AND MBIG 
Rules #  Acc Sens Spec 

Rigid_LL ≥ 1) ⇒ Final_diag=DLB   
(Rey_ListB ≤1) ⇒ Final_diag=DLB  
otherwise Final_diag=DLB  

10 0.97 0.94 1 

(Rev_UPDRS_Rig ≤0) ⇒ Final_diag=AD  
otherwise Final_diag=DLB 

9 0.94 0.88 1 

DCFS_Sleep ≤3) and (Rigid_LU ≤0) ⇒ 
Final_diag=AD  
otherwise Final_diag=DLB 

5 1 1 1 

(Rev_UPDRS_Rig ≥ 1) ⇒ 
Final_diag=DLB  
otherwise Final_diag=AD 

4 0.94 1 0.88 

((npihall ≥  0.8) ⇒ Final_diag=DLB  
(Rev_UPDRS_Rig ≥ 2) ⇒ 
Final_diag=DLB  
otherwise Final_diag=AD 

2 1 1 1 

(Rigid_LL ≤0) ⇒ Final_diag=AD   
otherwise Final_diag=DLB  

1 0.97 0.94 1 

((UPDRS_Total ≤  7) ⇒ Final_diag=AD 1 
(ACE_recog ≤1) ⇒ Final_diag=AD  
otherwise Final_diag=DLB  

1 0.94 0.94 0.94 

 
Rules: Ruleset describing the classifier 
#: Number of times classifier was mined with RIPPER using LOOCV 
Acc: Whole-sample accuracy of classifier 
Sens: Whole-sample sensitivity of classifier (positive class: DLB) 
Spec: Whole-sample specificity of classifier 
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Results in both Table II and Table III suggest possible 
diagnostic screening routes that do not involve FP-CIT or 
MIBG but include some very simple and readily available 
assessments. The identified features other than FP-CIT 
features were Rev_UPDRS_Rig, Rigid_LL, npihall, 
DCFS_Sleep, DCFS_Drowsy, Rigid_LU, UPDRS_Total, 
ACE_recog, and Rey_ListB. These features are described in 
Appendix Table 1. It should be noted that these data features, 
even when used individually or in pairs for diagnosis as is the 
case here, can produce highly accurate diagnostic classifiers 
(≥ 94%). It is also interesting to note that a wide variety of 
data features can be used for these accurate diagnostic 
predictions; this suggests that even if some of these features 
are later eliminated as potential candidates for use in DLB 
diagnosis after more extensive testing, or unavailable in 
certain clinics, many other promising avenues of assessments 
remain. 

C. Validation of Results 
To verify that the classifiers selected by RIPPER were not 

the result of overfitting on this low-N high-dimensional 
dataset, the methodology was tested on 100 noise-generated 
datasets with the same dimensionality (Section II.E).  The 
accuracy of each classifier in classifying its noise-generated 
training dataset was compared with the accuracy of classifiers 
shown in Tables II and III. The mean accuracy of the 100 
classifiers trained on noise-generated data when classifying 
their training data was 78%, with varying performance 
ranging from 51% to 100%. By contrast, the mean accuracy 
of the classifiers described in Table II and Table III was 94% 
when classifying their training dataset, with performance 
ranging from 90% to 100%. A simple t-test determined the 
classifiers trained on noise-generated data to perform 
significantly different from the classifiers in Tables II and III, 
(p<2 x10-16). Thus, this demonstrated that our results (Tables 
II and III) were not the product of overfitting.  
 

IV. DISCUSSION 

Our previous work [12] had used receiver operating 
characteristic (ROC) based analysis on the MIBG features of 
the same clinical dataset to determine an optimal cutoff for 
MIBG-based diagnosis of DLB. With certain optimal cutoff 
value for diagnosing DLB from AD based on MIBG, an 
overall accuracy of 85%, a sensitivity of 71%, and specificity 
of 100% were obtained. In comparison, our current work 
(Tables II and III), using machine learning approach, had 
identified many possible, including alternative, assessment 
candidates for DLB diagnosis with accuracy ranging from 
90% to 100%, sensitivity 76–100%, and specificity 88–100%. 
It is noteworthy that our results seemingly performed better 
than state-of-the-art machine learning (deep learning) 
approaches on neuroimaging data, which had DLB-against-
AD classification accuracies in the range ~71 – 89% [9-11].   

The association rule-based classifiers derived here from 
the data were simple and interpretable, and hence, conducive 
for practical clinical use. Simple and efficient clinical tests, 
even tests as simple as measuring the rigidity in one limb, 
performed remarkably well as a diagnostic assessment feature. 
Specifically, the Rigid_LL feature, measuring rigidity in the 
left leg, which can be tested in a few seconds, was sufficient 

to distinguish DLB from AD in this dataset with 97% 
accuracy.  However, it should not be assumed that such high 
accuracy will generalise to larger or other dataset; there is, for 
example, no physiological reason why the right leg rigidity 
should be any less predictive of DLB.  Nonetheless, these 
results are very promising. This is particularly the case given 
that many different data features were selected in different 
rulesets, so that even if some possible candidate diagnostic 
tests do not generalise well to other data, it is likely that others 
will.  

A limitation of the work is the small size of the dataset. 
This work uses high-dimensional data (232 features) with a 
small N of 33, which can create a risk of overfitting, when an 
algorithm optimises for patterns in the data which are not true 
patterns in the underlying population. This is particularly 
relevant when the DLB diagnosis, and thus recruitment into 
the original study, was based on the presence or absence of 
particular clinical features. Some measures used in this work 
to guard against overfitting included: (i) using a very simple 
classifier (hence with low model parameter number); (ii) using 
a conservative yet practical leave-one-out cross-validation 
technique, and testing each extracted classifier against the out-
of-sample case; (iii) testing the methodology with a dataset 
including well-established diagnostic variables (FP-CIT) as 
“sanity check”; (iv) using domain knowledge to verify the 
extracted classifiers that seemed plausible; and (v) applying 
the methodology to randomly permuted data of the same 
dimensionality and comparing the results. Given these 
precautions, it is probable that many of the diagnostic rules 
uncovered here will generalize to other data, although the very 
high accuracy, sensitivity and specificity measures associated 
with the individual rulesets may not. The t-test performed to 
compare classifier error rates may also be prone to Type I error 
and hence, reproducibility issues.  

In future work, validation and further investigation on a 
larger dataset is needed. A larger dataset would also allow 
more complex diagnostic classifiers, using more than 1-2 
variables, to be extracted from the data, improving accuracy 
without the risk of overfitting. For example, diagnostic 
classifiers could be developed based on combinations of the 
rules extracted here. It is likely that further work on a larger 
dataset could develop a DLB diagnostic classifier which 
greatly improves on the mean out-of-sample accuracy of these 
classifiers (currently at 80.5%), while retaining algorithmic 
transparency.  

Overall, while further research is needed to validate and 
develop the results, this work suggests there may be 
opportunities to refine routine clinical assessment through the 
introduction of quick and simple bedside tests for DLB into 
the dementia care pathway, thereby addressing the problem of 
large-scale underdiagnosis and improving outcomes and 
quality of life for patients with DLB.  
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APPENDIX TABLE I 
DESCRIPTION OF DATA FEATURES IDENTIFIED IN THIS WORK 

Feature name Description 
Right_Striatum FP-CIT Right Striatum 
Right_Putamen FP-CIT Right Putamen 
Right_Caudate FP-CIT Right Caudate 

Rev_UPDRS_Rig 
Unified Parkinson’s Disease Rating 
Scale (UPDRS) [27] -Rigidity subscale 

Rigid_LL Left Leg Rigidity (UPDRS) 

Visual_Rating_Mod_Benamer 
Visual Rating of FP-CIT reading using 
the Benamer scale [30] 

Left_Striatum FP-CIT Left Striatum 
Left_Putamen FP-CIT Left Putamen 
Rigid_LU Left Arm Rigidity (UPDRS) 
Fluctuations_clinican_1 Fluctuations – Clinician rated 
HOEHN_YAHR_Stage Hoehn and Yahr Scale Staging [31] 
trailsA Trail Making Test Part A [26] 
Left_Caudate FP-CIT Left Caudate 

Rapid_Hand_Left 
UPDRS rapid alternating movement of 
hands - Left hand 

npihallsev 
Neuropsychiatric Inventory (NPI)[29]– 
Hallucinations severity 

npihall NPI– Hallucinations distress 

DCFS_Sleep 
Dementia Cognitive Fluctuations Scale 
[32](DCFS) -sleep 

DCFS_Drowsy DCFS drowsiness 
UPDRS_Total UPDRS total score 

ACE_recog 
Addenbrooke’s Cognitive Examination 
[33] - Recognition 

Rey_ListB 
Rey Auditory Verbal Learning Test 
[34]– List B 
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