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 82 
Abstract (251 words) 83 

Background: Epidemiological studies of associations between metabolites and cancer 84 
risk have typically focused on specific cancer types separately. Here, we designed a 85 
multivariate pan-cancer analysis to identify metabolites potentially associated with 86 
multiple cancer types, while also allowing the investigation of cancer type-specific 87 
associations.  88 

Methods: We analyzed targeted metabolomics data available for 5,828 matched case-89 
control pairs from cancer-specific case-control studies on breast, colorectal, 90 
endometrial, gallbladder, kidney, localized and advanced prostate cancer, and 91 
hepatocellular carcinoma nested within the European Prospective Investigation into 92 
Cancer and Nutrition (EPIC) cohort. From pre-diagnostic blood levels of an initial set 93 
of 117 metabolites, 33 cluster representatives of strongly correlated metabolites, and 94 
17 single metabolites were derived by hierarchical clustering. The mutually adjusted 95 
associations of the resulting 50 metabolites with cancer risk were examined in 96 
penalized conditional logistic regression models adjusted for body mass index, using 97 
the data shared lasso penalty. 98 

Results: Out of the 50 studied metabolites, (i) six were inversely associated with risk 99 
of most cancer types: glutamine, butyrylcarnitine, lysophosphatidylcholine a C18:2 100 
and three clusters of phosphatidylcholines (PCs); (ii) three were positively associated 101 
with most cancer types: proline, decanoylcarnitine and one cluster of PCs; and (iii) 10 102 
were specifically associated with particular cancer types, including histidine that was 103 
inversely associated with colorectal cancer risk, and one cluster of sphingomyelins that 104 
was inversely associated with risk of hepatocellular carcinoma and positively with 105 
endometrial cancer risk.  106 

Conclusions: These results could provide novel insights for the identification of 107 
pathways for cancer development, in particular those shared across different cancer 108 
types. 109 

 110 
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Background 122 

Metabolomics allows the simultaneous measurement of a large variety of compounds 123 
present in biological samples, such as human blood1,2. Circulating metabolite levels 124 
can reflect both endogenous and exogenous processes, providing a snapshot of 125 
biological activity3,4. As a result, metabolomics may facilitate the identification of 126 
biological mechanisms involved in the development of chronic diseases. For example, 127 
prior metabolomics studies have identified metabolites associated with the risk of 128 
various chronic conditions, including type-2 diabetes (T2D)5–7, cardiovascular diseases 129 
(CVD)8–10, and different site-specific cancers, including cancers of the breast11, 130 
prostate12,13, endometrium14, kidney15, colorectum16–18, hepatocellular carcinoma 131 
(HCC)19, and others20,21.  132 

Several shared biological mechanisms are known to underlie multiple chronic 133 
diseases. Obesity, physical inactivity and adherence to a Western-type diet, as well as 134 
chronic inflammation and insulin resistance, are recognized risk factors for cardio-135 
metabolic diseases, including T2D, CVD, and several site-specific cancers22–24. 136 
Metabolomics may help uncover novel etiological mechanisms that are common to 137 
several chronic diseases as well as those that are disease-specific. One recent study 138 
identified metabolites associated with the risk of multimorbidity, defined as the 139 
simultaneous presence of multiple chronic conditions within one individual. Focusing 140 
on a pre-defined panel of metabolites, a targeted metabolomics study of breast, 141 
prostate and colorectal cancers in a German population found that circulating levels 142 
of the phosphatidylcholine PC ae C30:0 and several lysophosphatidylcholines, 143 
including lysoPC a C18:0, were predictive of the development of any of these three 144 
cancers25, suggesting that some etiological mechanisms could be shared across 145 
multiple cancer types.  146 

In this work, we extended this concept by leveraging targeted metabolomics data 147 
available within nested case-control studies on eight cancer types (breast, colorectal, 148 
endometrial, gallbladder and biliary tract, kidney, localized prostate and advanced 149 
prostate cancers, and HCC) previously acquired in the European Prospective 150 
Investigation into Cancer and Nutrition (EPIC)11,12,14,15,19. The data shared lasso26–28, a 151 
penalized multivariate approach specifically designed for the investigation of a set of 152 
shared risk factors across different disease outcomes, was used to carry out a 153 
multivariate pan-cancer analysis to identify mutually adjusted metabolites associated 154 
with cancer risk and to identify those metabolites with consistent or heterogeneous 155 
patterns of associations across the eight cancer types.  156 

 157 

Methods 158 

Study population. EPIC is an ongoing multicentric prospective study with over 500,000 159 
men and women recruited between 1992 and 2000 from 23 centers in 10 European 160 
countries29, originally designed to study the relationship between diet and cancer risk. 161 
Incident cancer cases were identified through a combination of methods, including 162 
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health insurance records, cancer and pathology registries and active follow-up 163 
through study participants and their next-of-kin. At recruitment, information on diet 164 
and lifestyle was collected via self-administered questionnaires. Blood samples were 165 
collected from around 386,000 participants according to a standardized protocol. In 166 
France, Germany, Greece, Italy, the Netherlands, Norway, Spain, and the UK, serum 167 
(except in Norway), plasma, erythrocytes, and buffy coat aliquots were stored in liquid 168 
nitrogen (− 196 °C) in a centralized biobank at the International Agency for Research 169 
on Cancer (IARC). In Denmark, blood fractions were stored locally in the vapor phase 170 
of liquid nitrogen containers (− 150 °C), and in Sweden, they were stored locally at − 171 
80 °C in standard freezers. Fasting was not required. 172 

Our analyses used a set of metabolomics measurements from 15,948 EPIC participants 173 
from seven cancer-specific matched case-control studies nested within EPIC (Table 1). 174 
In each study, each case was matched to one control selected among cancer-free 175 
participants (other than non-melanoma skin cancer) by risk set sampling, using 176 
matching factors that included study center, sex, age at blood collection, time of the 177 
day of blood collection, fasting status, and use of exogenous hormones for women. All 178 
participants provided written informed consent to participate in the EPIC study. The 179 
cancer-specific case-control studies were all approved by the ethics committee of IARC 180 
and participating EPIC centers. 181 

Laboratory analysis. As summarized in Table 1, pre-diagnostic blood samples were 182 
assayed at the Helmholtz Zentrum (München, Germany) for the second colorectal 183 
cancer study, at Imperial College London (UK) for the endometrial cancer study, and 184 
at IARC for all other studies. Data for a total of 171 metabolites were acquired by 185 
tandem mass spectrometry using either the AbsoluteIDQ p150 (for the second 186 
colorectal cancer study) or the AbsoluteIDQ p180 commercial kit (Biocrates Life 187 
Science AG, Innsbruck Austria). Two successive assays were used, liquid 188 
chromatography-tandem mass spectrometry (LC-MS/MS) for amino acids and 189 
biogenic amines, and flow injection analysis-tandem mass spectrometry (FIA-MS/MS) 190 
for the other metabolites. Samples were either serum or citrate plasma, and samples 191 
within each study were all from the same type of blood matrix, except for the breast 192 
cancer study (Table 1).  193 

Selection of the metabolites, data pre-processing. Data were pre-processed following an 194 
established procedure30. Briefly, metabolites with more than 25% missing values in any 195 
study were excluded. Samples with more than 25% missing values overall were 196 
excluded, as were those detected as outliers by a principal component analysis (PCA)-197 
based approach applied within each study separately. Then, for all metabolites 198 
measured by FIA with a semi-quantitative method (acylcarnitines, 199 
glycerophospholipids, sphingolipids, hexoses), measurements below the batch-200 
specific limit of detection (LOD) were imputed to half the LOD. When the batch-201 
specific LOD was unknown, LOD was first set to study-specific medians of known 202 
batch-specific LODs. For the metabolites measured with a fully quantitative approach 203 
(amino acids and biogenic amines), measurements below the lower limit of 204 
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quantification (LLOQ) or above the upper limit of quantification (ULOQ) were 205 
imputed to half the LLOQ or to the ULOQ, respectively. For all metabolites, other 206 
missing values were imputed to the batch-specific median of the non-missing 207 
measurements. The resulting measurements were then log-transformed to improve 208 
symmetry.  209 

Cancer types and exclusion criteria. We focused on eight cancer types, namely breast, 210 
colorectal, endometrial, kidney, gallbladder and biliary tract cancers, HCC, advanced 211 
and localized prostate. As detailed in Section 1 of the Supplementary Material 212 
(Additional file 1), matched case-control pairs for HCC and gallbladder and biliary 213 
tract cancer were extracted from the liver cancer study, while matched case-control 214 
pairs for advanced and localized prostate cancer were extracted from the prostate 215 
cancer study. Since hormones could affect metabolite levels and their association with 216 
cancer risk11, women using exogenous hormones (either hormone replacement therapy 217 
or oral contraceptive) at baseline were excluded. 218 

Statistical analyses. All analyses were performed using R software. Characteristics of 219 
cases and controls for the eight studied cancer types were described using mean and 220 
standard deviation or frequency. Pearson correlations between the metabolites were 221 
computed in controls only to reduce collider bias.  222 

Clustering of metabolites: The most strongly correlated metabolites were grouped 223 
together by applying the hierarchical clustering approach implemented in the 224 
ClustOfVar R package31 to the control samples. For each cluster, the method defined 225 
its representative as the first principal component in the PCA of the metabolites 226 
grouped into that cluster. In our figures and tables, cluster representatives were 227 
labeled as “xxx_clus”, with “xxx” representing one particular metabolite that 228 
composed that cluster. We retained the model with lowest number of clusters such 229 
that representatives explained at least 80% of the total variation in each cluster. Cluster 230 
representatives and metabolites left isolated after the clustering were simply referred 231 
to as metabolites hereafter.  232 

Multivariate analyses: Given the number of studied metabolites, penalized conditional 233 
logistic regression models were used to estimate mutually adjusted associations with 234 
cancer risk. Since body-mass index (BMI) could be a strong confounder of the 235 
relationship between several of the examined metabolites32,33 and cancers34–38, 236 
metabolite-specific linear models were used to compute residuals on BMI. To account 237 
for the large number of metabolites and leverage possible commonalities among the 238 
metabolic disorders preceding cancer development for different cancer types, 239 
estimation was based on the data shared lasso26–28, an extension of the lasso39 allowing 240 
the analysis of case-control studies with multiple disease types. For each metabolite, 241 
the data shared lasso decomposes its type-specific odds-ratio as the product of (i) an 242 
overall odds-ratio capturing the overall association with cancer, and (ii) type-specific 243 
deviations from this overall odds-ratio. Then, the method identifies whether its overall 244 
(mutually adjusted) association with cancer is null or not, and also whether some of 245 
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its type-specific associations deviate from its (possibly null) overall association with 246 
cancer. Compared to more standard approaches, the data shared lasso was shown to 247 
perform particularly well for the identification of features with a consistent non-null 248 
association with multiple disease types, while also allowing for the identification of 249 
type-specific associations28.  250 

To assess the robustness of the identified associations, the data shared lasso was 251 
applied repeatedly on 100 bootstrap samples generated from the original sample40. 252 
Moreover, following the rationale of the lasso-OLS hybrid41, associations identified by 253 
the data shared lasso were further inspected using unpenalized conditional logistic 254 
regression models, (i) to quantify their strength and investigate possible heterogeneity 255 
among the type-specific associations beyond those identified by the data shared lasso 256 
(see Section 3 in Additional file 1 for details); (ii) to assess possible departure from 257 
linearity by comparing models with natural cubic splines to models with linear terms 258 
only; and (iii) to assess possible attenuation after excluding, in turn, first two and first 259 
seven years of follow-up (to examine potential reverse causation and more generally 260 
assess the impact of time to diagnosis on our findings), and after adjustment for 261 
additional factors (education level, waist circumference, height, physical activity, 262 
smoking status, alcohol intake, use of non-steroidal anti-inflammatory drugs, and, for 263 
women, menopausal status and phase of menstrual cycle in premenopausal women). 264 
Finally, effect modification by BMI was assessed under standard (i.e., non-conditional) 265 
logistic regression models after breaking the matching and correcting metabolite 266 
measurements for batch and study effects30. 267 

Univariate analyses: For comparison, non-mutually adjusted associations with cancer 268 
risk were estimated for each metabolite in conditional logistic regression models 269 
adjusted for BMI. Each cancer type was first modelled separately, and then jointly, via 270 
one global conditional logistic regression model. Heterogeneity of associations across 271 
cancer types was tested by comparing the difference in log-likelihood between the 272 
global model and a model with interaction terms between each metabolite and cancer 273 
type to a chi-square distribution with 8-1=7 degrees of freedom. To account for 274 
multiple comparisons, associations and heterogeneities with a False Discovery Rate 275 
(FDR) inferior to 5% were considered as statistically significant42.  276 

Analysis of additional metabolites: The 16 metabolites (Table S1, Additional file 2) that 277 
were not acquired in the second colorectal cancer study (AbsoluteIDQ p150 kit) were 278 
not included in our main analysis and were examined in a reduced sample, using the 279 
methods described above. 280 

 281 

Results 282 

Description of the study population. After the exclusions of subjects detailed in Figure 1, 283 
11,656 EPIC participants were included in the analysis comprising 5,828 matched case-284 
control pairs. Cases were diagnosed at an average age of 64.4 years, 8.4 years after 285 
blood collection. The main characteristics of cases and controls in each study are 286 
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displayed in Table 2. The main analysis focused on 117 metabolites that were retained 287 
after the pre-processing step (Table S1, Additional file 2). As displayed in Figure S1 in 288 
Additional file 2, strong positive correlations were observed between some 289 
metabolites, particularly between some of the glycerophospholipids 290 
(phosphatidylcholines, PCs, and lysophosphatidylcholines, lysoPCs), and 291 
sphingomyelins (SMs). 292 

Clustering of metabolites. The hierarchical clustering applied to controls grouped 100 293 
metabolites into 33 clusters of size ranging from 2 to 6 metabolites per cluster, while 294 
17 metabolites remained isolated. As displayed in Figure 2, clusters comprised 295 
metabolites of the same chemical class, and correlations between metabolites and their 296 
representative were consistently greater than 0.83. On average, clusters’ 297 
representatives explained 86% of the total variation of their cluster (range: 80%-95%), 298 
and the 33 + 17 = 50 studied metabolites together explained more than 88% of the total 299 
variation of the original 117 metabolites. 300 

Multivariate analyses. As displayed in Figures 3 and 4, the data shared lasso identified 301 
nine metabolites with a non-null overall association with cancer: butyrylcarnitine 302 
(acylcarnitine C4), glutamine, lysoPC a C18:2, and three clusters of PCs (those 303 
containing PC aa C32:2, PC aa C36:0, and PC aa C36:1, respectively), with an inverse 304 
overall association with cancer risk, and decanoylcarnitine (acylcarnitine C10), proline 305 
and the cluster of PCs that included PC aa C28:1 with a positive overall association. 306 
Cancer type-specific deviations from the overall association with cancer risk were 307 
identified for three of these metabolites: the association between proline and breast 308 
cancer risk was inverse or null, while the associations between lysoPC a C18:2 and the 309 
cluster containing PC aa C36:0 with localized prostate cancer were positive or null.  310 

Several cancer type-specific associations were identified among the remaining 41 311 
metabolites. Specifically, positive associations were observed between breast cancer 312 
risk and two clusters, that included tetradecenoylcarnitine (acylcarnitine C14:1) and 313 
PC aa C36:5, respectively. Risk of colorectal cancer was positively associated with 314 
arginine and PC ae C36:0, and inversely associated with the cluster that included 315 
histidine. Risk of HCC was positively associated with the cluster containing PC aa 316 
C40:2, and inversely associated with the two clusters that included lysoPC a C20:3 and 317 
SM C16:0, respectively. This latter cluster was also positively associated with 318 
endometrial cancer risk. The cluster that included octadecenoylcarnitine (acylcarnitine 319 
C18:1) was inversely associated with risk of advanced prostate cancer. Finally, risk of 320 
localized prostate cancer was inversely associated with hexoses (H1).  321 

The strength of the associations identified by the data shared lasso was similar after 322 
excluding, in turn, the first two and the first seven years of follow-up (Figure S2, 323 
Additional file 2). Likewise, models adjusted for additional factors produced similar 324 
associations (Figure S2, Additional file 2), except for the overall association with cancer 325 
for the cluster that included PC aa C28:1, whose odds-ratio (OR) was attenuated from 326 
1.09 (95% confidence interval: 1.01-1.17) to 1.04 (0.98-1.12), and for the association 327 
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between endometrial cancer risk and the cluster that included SM C16:0, whose OR 328 
decreased from 1.51 (1.19-1.93) to 1.20 (0.97-1.47). For each overall association and 329 
type-specific deviation identified by the data shared lasso, linearity and absence of 330 
effect modification by BMI were compatible with our data (Figure S3, Additional file 331 
2). Focusing on the nine metabolites that had a non-null overall association with 332 
cancer, the analysis presented in Figure S4 in Additional file 2 suggested possible 333 
cancer type-specific deviations from the overall associations beyond the three ones 334 
identified by the data shared lasso, in particular for HCC (with acylcarnitine C4, 335 
proline and the cluster that comprises PC aa C36:1) and for kidney cancer (with 336 
acylcarnitines C10 and C4 and the cluster that comprises PC aa C36:1). However, none 337 
of the comparisons between the models identified by the data shared lasso and the 338 
nine “extended” models used to derive these fully cancer-type specific associations 339 
reached statistical significance (Figure S4, Additional file 2). 340 

As displayed in Table 3 (third column), 15 out of the 22 associations identified by data 341 
shared lasso were replicated in more than 50% of the bootstrap samples. As displayed 342 
in Table 4, three inverse cancer type-specific associations that were not identified by 343 
the data shared lasso on the original sample were identified in more than 55% of the 344 
bootstrap samples: the cluster comprising glycine with endometrial cancer risk 345 
(identified in 65% of the bootstrap samples), the cluster containing decenoylcarnitine 346 
(acylcarnitine C10:1) with risk of kidney cancer (56%) and lysoPC a C16:1 with risk of 347 
localized prostate cancer (84%). Positive associations between arginine and kidney 348 
cancer risk (74%) and between the cluster containing lysoPC a C16:0 and localized 349 
prostate cancer risk (86%) were also observed in more than 55% of the bootstrap 350 
samples. 351 

Analysis of the extended list of metabolites. After excluding 2,134 samples from the second 352 
colorectal cancer study which used a different platform that measured a lower number 353 
of metabolites, 16 additional metabolites could be evaluated (Table S1, Additional file 354 
2). Among them, the clustering step grouped leucine and isoleucine together. The 355 
analysis of this extended list of metabolites then focused on 65 metabolites (31 isolated 356 
metabolites and 34 cluster representatives), measured in 9,522 participants. As 357 
displayed in Table 3, 11 out of the 22 associations identified in the main analysis 358 
presented above were again replicated in more than 50% of the bootstrap samples 359 
generated from this reduced sample. Four associations that were not identified in our 360 
previous analyses were identified in more than 55% of these new bootstrap samples 361 
(Table 4): an overall positive association between cancer risk and glutamate (55% of 362 
the bootstrap samples), an overall inverse association between cancer risk with 363 
spermine (78%), as well as two cancer type-specific associations between glutamate 364 
with breast cancer risk (inverse, 56%) and between serotonin and colorectal cancer risk 365 
(positive, 84%).  366 

Univariate analyses. As displayed in Figure S5 in Additional file 2, the cancer type-367 
specific univariate analyses identified associations with risks of breast cancer (two 368 
positive associations and four inverse), colorectal cancer (three inverse), endometrial 369 
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cancer (two inverse), kidney cancer (one inverse), HCC (four positive associations and 370 
16 inverse) and advanced prostate cancer (seven inverse associations). The univariate 371 
pooled analysis identified 15 inverse associations, and there was no evidence of 372 
heterogeneity across cancer type for four of them (butyrylcarnitine, and the three 373 
clusters containing PC aa C32:2, PC ae C36:4, and PC ae C38:2, respectively).  374 

 375 

Discussion 376 

Using available metabolomics data from eight cancer-specific matched case-control 377 
studies nested within the EPIC cohort, we investigated the relationship between pre-378 
diagnostic blood levels of over one hundred metabolites and risks of breast cancer, 379 
colorectal cancer, endometrial cancer, gallbladder and biliary tract cancer, HCC, 380 
kidney cancer, and localized and advanced prostate cancers. In our main analysis, we 381 
found nine metabolites associated with cancer risk across different cancer types, 382 
suggesting the existence of shared metabolic pathways, as well as fourteen cancer-type 383 
specific associations. These identified associations were found to be robust after 384 
extensive sensitivity analyses: in particular, they were not attenuated after exclusion 385 
of the first years of follow-up, hence were less likely to be due to reverse causality, 386 
were not attenuated after adjustment for relevant cancer risk factors, were not 387 
modified by BMI, and did not deviate significantly from linearity. In additional 388 
analyses, in particular those based on bootstrap samples, we identified several 389 
additional metabolites possibly associated with risk of specific cancer types or with 390 
cancer risk across different cancer types. 391 

Our results suggested that concentrations of glycerophospholipids 392 
(phosphatidylcholines and lysophosphatidylcholines) could be linked to the risk of 393 
cancer overall as well as to specific cancer types. The role of glycerophospholipids in 394 
carcinogenesis is not fully understood but could be related to their documented anti-395 
inflammatory properties, protection from oxidative stress, inhibition of cell 396 
proliferation and induction of apoptosis43–45. We observed a consistent inverse 397 
association between cancer risk with lysoPC a C18:2 as well as three clusters of 398 
phosphatidylcholines across all studied cancer types, except localized prostate cancer 399 
for which the association with lysoPC a C18:2 and one cluster of phosphatidylcholines 400 
was absent, or positive. An inverse association was previously reported between 401 
lysoPC a C18:2 with T2D in different studies7,46 as well as with risks of breast, colorectal 402 
and prostate cancers in the pan-cancer analysis conducted in the EPIC Heidelberg 403 
study25. Our results regarding the three clusters of phosphatidylcholines were in line 404 
with many previously reported inverse associations between cancer and 405 
phosphatidylcholines11,12,15,16,20,47. Besides, we identified a positive association between 406 
the cluster that included PC aa C28:1 and cancer risk across all studied cancer types. 407 
This cluster also comprised PC ae C30:0, for which a positive association was reported 408 
with risks of breast, colorectal and prostate cancers in the EPIC Heidelberg study25. 409 
Cancer type-specific positive associations were found for the cluster containing PC aa 410 
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C36:5 with breast cancer, PC ae C36:0 with colorectal cancer, and the cluster containing 411 
PC aa C40:2 with HCC. These three clusters were correlated with one another (Pearson 412 
correlation greater than 0.48), indicating that higher levels of these 413 
phosphatidylcholines might contribute to the development of these three cancer types.  414 

We also observed robust associations between specific circulating amino acids and 415 
cancer risk. Our results suggested that proline was positively related to cancer risk 416 
across all studied cancer types, except breast cancer and possibly HCC (see Figure S4 417 
in Additional file 2). A positive association between proline and prostate cancer risk 418 
was previously reported in EPIC12. In addition, a drosophila model of high-sugar diet48 419 
recently highlighted the possible role of proline in tumour growth, and proline was 420 
also found to distinguish colorectal cancer patients from those with adenomas49, and 421 
to be associated with metastasis formation50. Glutamine was inversely associated with 422 
overall cancer risk in our analysis, while glutamate, a metabolite of glutamine, was 423 
positively related to the risk of all cancer types except for breast cancer. Although prior 424 
studies of the French E3N and SU.VI.MAX cohorts reported a positive association 425 
between glutamine and premenopausal breast cancer51,52, our results regarding 426 
glutamine and glutamate were consistent with those of many previous studies that 427 
reported inverse associations between glutamine and risk of colorectal cancer18, 428 
HCC19,53 and T2D7,54, and positive associations between glutamate and risk of 429 
premenopausal breast cancer52, kidney cancer15, HCC19,53, as well as T2D7. Lower serum 430 
levels of glutamine were also observed in kidney cancer55 and ovarian cancer56 cases 431 
compared to controls. Glutamine is an energy substrate for cancer cells and makes a 432 
major contribution to nitrogen metabolism. Alterations in glutamine-glutamate 433 
equilibrium often reflect energetic processes related to cancer metabolism57. It is 434 
possible that altered levels of glutamine and glutamate in individuals subsequently 435 
diagnosed with cancer may reflect ongoing metabolic processes related to cancer 436 
development and as such may serve as an early biomarker of cancer risk. However, 437 
the inverse association between glutamine levels and overall cancer risk observed in 438 
our analysis was only slightly attenuated after excluding, in turn, the first two and the 439 
first seven years of follow-up suggesting that changes in the glutamine-glutamate may 440 
precede cancer development.  441 

Our analysis additionally identified two positive and two inverse cancer type-specific 442 
associations with circulating amino acids. We observed an inverse association between 443 
colorectal risk and the cluster containing histidine, for which previous studies reported 444 
inverse associations with risks of colorectal cancer and T2D54, while a positive 445 
association was reported with breast cancer52. Also, lower serum levels of histidine 446 
were previously reported in ovarian cancer cases compared to controls58. Our results 447 
further suggested an inverse association between endometrial cancer risk and the 448 
cluster composed of glycine and serine, in line with previous results from the EPIC 449 
cancer-specific study of endometrial cancer14. Previous studies also reported inverse 450 
associations between glycine and/or serine with risks of T2D54. Finally, our analysis 451 
suggested a positive association between arginine with risks of colorectal and kidney 452 
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cancers (Table 4). Arginine was previously found to be positively associated with 453 
breast cancer in the E3N cohort52, while an inverse association with breast cancer was 454 
reported in EPIC11.  455 

Regarding the biogenic amines, we found a positive association between serotonin 456 
levels and colorectal cancer risk, consistent with previous results from the CORSA 457 
case-control study and a previous EPIC analysis of colon cancer59. We also found a 458 
consistent inverse association between spermine and risk of the eight studied cancer 459 
types. Like other polyamines, spermine is involved in cell proliferation and 460 
differentiation and has antioxidant properties60, and dysregulation of polyamines 461 
metabolism is characteristic of multiple types of tumours61. It was previously reported 462 
that polyamine supplementation, in particular spermidine, which acts as an 463 
intermediate in the conversion of putrescine to spermine, could be related to reduced 464 
overall and cancer-specific mortality62–64.  465 

In our analysis, localized and advanced prostate cancers were considered as two 466 
different outcomes as previous results suggested that metabolic dysregulation might 467 
be predictive of advanced or aggressive prostate cancers only12. In fact, we observed 468 
some differences between the metabolites associated with risks of localized and 469 
advanced prostate cancers, respectively. Specifically, and as previously reported12,13, 470 
our results suggested that hexoses, glycerophospholipids, octadecenoylcarnitine 471 
and/or octadecadienylcarnitine could help differentiate the respective mechanisms 472 
involved in the development of aggressive and localized prostate tumours.  473 

Some metabolites identified in our study were previously associated with established 474 
cancer risk factors, such as obesity 32,33. In particular, a recent metabolomics study of 475 
BMI reported inverse associations with glutamine, lysophosphatidylcholine a C18:2 476 
and phosphatidylcholine PC aa C38:0 (which was clustered with PC aa C36:0 in our 477 
analysis), and a positive association with glutamate33. Directions of the associations 478 
with BMI were consistent with those identified in our study with cancer risk after 479 
adjustment for BMI, indicating that these metabolites might be mediators of the 480 
obesity-cancer relationship.  481 

Our study has several strengths. First, it relied on a large sample of pre-diagnostic 482 
metabolomics data acquired among 5,828 case-control pairs in nested studies on eight 483 
cancer types within a large prospective cohort, on average 6.4 years before cases 484 
developed cancer. Second, in a context where some metabolites might be predictive of 485 
cancer risk for multiple cancer types, the data shared lasso used in our analysis 486 
automatically accounted for or ignored cancer types when assessing the association 487 
between each metabolic feature with cancer risk, depending on whether heterogeneity 488 
among the cancer type-specific associations was supported by the data for that 489 
particular feature. The comparison of results produced by the standard univariate 490 
analyses and the data shared lasso illustrated the interest of the latter. First, the data 491 
shared lasso benefited from the increased statistical power of the pooled analysis for 492 
the identification of metabolites that could be involved in cancer development for 493 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 14, 2022. ; https://doi.org/10.1101/2022.04.11.22273693doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.11.22273693
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 
 

multiple cancer types: for example, butyrylcarnitine (acylcarnitine C4) was not 494 
associated with cancer risk in any of the cancer type-specific univariate analyses, while 495 
it was in the univariate pooled analysis and in the data shared lasso analysis. 496 
Moreover, unlike the simple pooled analysis, the data shared lasso would not 497 
necessarily mask cancer type-specific associations: for example, the data shared lasso 498 
identified a positive association between the cluster containing tetradecenoylcarnitine 499 
(acylcarnitine C14:1) and breast cancer risk, as the univariate analysis of the breast 500 
cancer study did, while the univariate pooled analysis could not. Another key 501 
difference between the standard univariate analyses and the data shared lasso is that 502 
the latter allowed the investigation of mutually adjusted associations, hence the 503 
identification of metabolites or clusters of metabolites whose association with cancer 504 
risk could not be explained away by other metabolites included in our analysis. 505 
Further, mutual adjustment revealed associations that could not be detected in 506 
minimally-adjusted models, such as the one between arginine and colorectal cancer 507 
risk, which was not apparent in models not adjusted for glutamine and histidine. 508 
Another strength of our study stemmed from the extensive sensitivity analyses that 509 
we carried out.  510 

On the other hand, identifying cancer risk factors is particularly challenging when 511 
candidate risk factors are strongly correlated with one another. Here, we clustered the 512 
most strongly correlated metabolites together prior to applying the data shared lasso. 513 
As a sensitivity analysis, the data shared lasso was applied to the original set of 117 514 
metabolites, thus ignoring the clustering step, and results were largely consistent with 515 
those of our main analysis (Figure S6, Additional file 2). Moreover, because strong 516 
correlations remained among some of the metabolites produced by the hierarchical 517 
clustering (Figure S7, Additional file 2), we applied the data shared lasso to multiple 518 
bootstrap samples to gauge the robustness and specificity of the associations identified 519 
in our main analysis. Although most of the identified associations were replicated in a 520 
large proportion of bootstrap samples, a few of them were less robust, hence more 521 
questionable. For example, the identified inverse association between HCC risk and 522 
the cluster that included lysoPC a C20:3 was replicated in 32% of the bootstrap samples 523 
only. This lack of robustness could be due to the strong correlation between this cluster 524 
and the other three studied metabolites related to lysoPCs (Pearson correlation greater 525 
than 0.65; Figure S7 in Additional file 2). As a matter of fact, an inverse association 526 
between HCC risk and at least one of the four metabolites related to lysoPCs was 527 
identified in 78% of the bootstrap samples. Overall, these results were suggestive of a 528 
stronger inverse association with features related to lysoPCs for HCC compared to the 529 
other cancer types, but our analysis failed to unambiguously identify which specific 530 
lysoPCs might underlie this stronger inverse association. An additional limitation for 531 
interpreting the lipid results is the lack of specificity for lipids measured with the 532 
AbsoluteIDQ p180/p150 kits as a result of the FIA method65,66. Moreover, the limited 533 
sample size for some of the studied cancer types (in particular gallbladder and biliary 534 
tract cancer and HCC) was a limitation for the identification of cancer type-specific 535 
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deviations. In this respect, we complemented our analysis by the inspection of 536 
estimates computed under models derived from the one identified by the data shared 537 
lasso but that further allowed fully type-specific associations (Figure S4, Additional 538 
file 2). Another potential limitation of our study was the lack of repeated 539 
measurements, yet previous studies suggested that blood levels of metabolites were 540 
relatively stable and that a single measurement might be sufficient to capture medium 541 
term exposure67–69. 542 

 543 

Conclusions 544 

Our results confirmed the complex link between metabolism and cancer risk and 545 
highlighted the potential of metabolomics to identify possible informative markers 546 
associated with cancer risk and to gain insights into the biological mechanisms leading 547 
to cancer development. Our study indicated that specific metabolite families might be 548 
related to the risk of multiple cancer types. Some of these metabolites could reflect 549 
biological mechanisms underlying the carcinogenic effects of some established cancer 550 
risk factors, including obesity.  551 

 552 
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original model (ii) the extended type-specific model. Figure S5: results from the 578 
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Tables and Figures 
 

Table 1. Description of the original seven cancer-specific matched case-control studies nested within EPIC 

1except Swedish participants (n=101; EDTA plasma). 2Helmhotz Zentrum München. 3Imperial College 
London 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Cancer site 
Number of 
Samples 

Matrix Laboratory Kit Used 

Breast 3,172 Citrate plasma1 IARC p180 
Colorectal 
(Study 1) 

946 Citrate plasma IARC p180 

Colorectal 
(Study 2) 

2,295 Serum HZM2 p150 

Endometrial 1,706 Citrate plasma ICL3 p180 

Liver 662 Serum IARC p180 

Kidney 1,213 Citrate plasma IARC p180 
Prostate 6,020 Citrate plasma IARC p180 
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Table 2. Main characteristics of the control (Ctrl) and case (Case) sub-populations in the eight cancer type-specific EPIC studies  

 BrC study CRC study EnC study KiC study GBTC study HCC study Adv. PrC study Loc. PrC study 

 N = 1,088 pairs N = 1,500 pairs N = 689 pairs N = 511 pairs N = 85 pairs  N = 121 pairs N = 533 pairs N = 1301 pairs 

 Ctrl  Case  Ctrl  Case  Ctrl  Case  Ctrl  Case  Ctrl  Case  Ctrl  Case  Ctrl  Case  Ctrl  Case  

Age at blood collection                 

Mean  
(SD) 

51.8 
(8.31) 

51.8 
(8.33) 

57.0 
(7.58) 

57.1 
(7.57) 

54.3 
(7.83) 

54.3 
(7.84) 

55.8 
(8.47) 

55.8 
(8.46) 

58.7 
(7.13) 

58.7 
(7.08) 

59.9 
(7.01) 

59.9 
(6.98) 

57.6 
(7.18) 

57.6 
(7.18) 

57.9 
(6.80) 

58.0 
(6.80) 

Age at cancer diagnosis                 

Mean  
(SD) 

- 
 - 

60.4 
(8.83) 

- 
 - 

64.9 
(8.18) 

- 
- 

62.7 
(8.16) 

- 
 - 

64.5 
(8.83) 

- 
 - 

64.9 
(7.60) 

- 
 - 

66.1 
(7.49) 

- 
- 

66.3 
(7.02) 

- 
- 

67.1 
(6.36) 

Sex                 

Female 1088 
(100%) 

1088 
(100%) 

769 
(51.3%) 

769 
(51.3%) 

689 
(100%) 

689 
(100%) 

197 
(38.6%) 

197 
(38.6%) 

48 
(56.5%)

) 

48 
(56.5%)

) 

35 
(28.9%)

) 

35 
(28.9%)

) 

0 (0%) 0 (0%) 0 (0%) 0 (0%) 

BMI (kg/m2)                 

Mean  
(SD) 

25.7 
(4.32) 

26.2 
(4.80) 

26.5 
(3.88) 

27.2 
(4.34) 

26.0 
(4.29) 

28.2 
(5.52) 

26.7 
(3.84) 

27.8 
(4.47) 

26.9 
(4.38) 

27.3 
(3.98) 

26.9 
(3.72) 

28.4 
(4.73) 

26.7 
(3.48) 

27.0 
(3.20) 

27.5 
(3.49) 

27.2 
(3.37) 

Education                 

None 56 
(5.1%) 

62 
(5.7%) 

124 
(8.3%) 

136 
(9.1%) 

67 
(9.7%) 

76 
(11.0%) 

42 
(8.2%) 

34 
(6.7%) 

6 
(7.1%) 

6 
(7.1%) 

6 
(5.0%) 

7 
(5.8%) 

28 
(5.3%) 

32 
(6.0%) 

106 
(8.1%) 

136 
(10.5%) 

Primary school completed 397 
(36.5%) 

377 
(34.7%) 

574 
(38.3%) 

526 
(35.1%) 

269 
(39.0%) 

231 
(33.5%) 

184 
(36.0%) 

186 
(36.4%) 

33 
(38.8%) 

39 
(45.9%) 

49 
(40.5%) 

52 
(43.0%) 

160 
(30.0%) 

166 
(31.1%) 

444 
(34.1%) 

411 
(31.6%) 

Technical/professional 
school 

245 
(22.5%) 

254 
(23.3%) 

333 
(22.2%) 

334 
(22.3%) 

124 
(18.0%) 

118 
(17.1%) 

107 
(20.9%) 

109 
(21.3%) 

20 
(23.5%) 

15 
(17.6%) 

31 
(25.6%) 

38 
(31.4%) 

140 
(26.3%) 

127 
(23.8%) 

305 
(23.4%) 

306 
(23.5%) 

Secondary school 158 
(14.5%) 

178 
(16.4%) 

188 
(12.5%) 

227 
(15.1%) 

100 
(14.5%) 

127 
(18.4%) 

66 
(12.9%) 

72 
(14.1%) 

11 
(12.9%) 

8 
(9.4%) 

11 
(9.1%) 

5 
(4.1%) 

58 
(10.9%) 

59 
(11.1%) 

103 
(7.9%) 

91 
(7.0%) 

Longer education (incl. 
University deg.) 

211 
(19.4%) 

195 
(17.9%) 

241 
(16.1%) 

227 
(15.1%) 

100 
(14.5%) 

100 
(14.5%) 

96 
(18.8%) 

93 
(18.2%) 

15 
(17.6%) 

17 
(20.0%) 

22 
(18.2%) 

17 
(14.0%) 

132 
(24.8%) 

124 
(23.3%) 

306 
(23.5%) 

324 
(24.9%) 

Not specified 21 
(1.9%) 

22 
(2.0%) 

40 
(2.7%) 

50 
(3.3%) 

29 
(4.2%) 

37 
(5.4%) 

16 
(3.1%) 

17 
(3.3%) 

0  
(0%) 

0  
(0%) 

2 
(1.7%) 

2 
(1.7%) 

15 
(2.8%) 

25 
(4.7%) 

37 
(2.8%) 

33 
(2.5%) 
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Table 3: Robustness of the associations identified in the main analysis. For each identified association, the 
proportion of bootstrap samples on which it was replicated is reported (in bold when ≥50%). 
 

Feature Cancer 

Type* 

Proportion of 

bootstrap samples1 

Proportion of 

bootstrap samples2 

Overall associations with cancer risk 

c10 Overall 62% 59% 

c4 Overall 47% 39% 

gln Overall 73% 76% 

pro Overall 65% 50% 

lysopc_a_c18_2 Overall 57% 47% 

pc_aa_c28_1_Clus Overall 57% 64% 

pc_aa_c32_2_Clus Overall 49% 71% 

pc_aa_c36_0_Clus Overall 86% 95% 

pc_aa_c36_1_Clus Overall 50% 40% 

Cancer type-specific associations 

c14_1_Clus BrC 80% 76% 

pro BrC 77% 70% 

pc_aa_c36_5_Clus BrC 36% 47% 

arg CRC 88% 19% 

his_Clus CRC 81% 72% 

pc_ae_c36_0 CRC 80% 46% 

sm_c16_0_Clus EnC 85% 87% 

lysopc_a_c20_3_Clus HCC 32% 47% 

pc_aa_c40_2_Clus HCC 61% 34% 

sm_c16_0_Clus HCC 90% 78% 

c18_1_Clus Adv.PrC 40% 49% 

lysopc_a_c18_2 Loc.PrC 14% 23% 

pc_aa_c36_0_Clus Loc.PrC 49% 41% 

* BrC stands for breast cancer, CRC for colorectal cancer, EnC for endometrial cancer, HCC for hepatocellular 
carcinoma, and Adv.Prc Loc.PrC for advanced and localized prostate cancers, respectively. 
1 Bootstrap samples were generated from the original sample of 5,828 matched case-control pairs with 
information on 117 metabolites (corresponding to 50 features after the clustering step).  
2 Bootstrap samples were generated from the original sample which comprised 4,761 matched case-control 
pairs with information on 133 metabolites (corresponding to 65 features after the clustering step) after 
excluding the participants of the second CRC study. 
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Table 4: Other associations identified in a large proportion of the bootstrap samples. Associations identified in at least 55% of both bootstrap analyses are reported, along with 
the proportion of bootstrap samples in which they were identified, and the corresponding average log odds-ratio (as estimated by the data shared lasso on each bootstrap 
sample).  
 

Feature Cancer Type* Proportion of bootstrap 

samples1 

Average log-OR1 Proportion of bootstrap 

samples2 

Average log-OR2 

Overall associations with cancer risk 

glu Overall -- -- 55%  0.09 

spermine Overall -- -- 78% -0.10 

Type-specific associations 

gly_Clus EnC 65% -0.17 78% -0.14 

c10_1_Clus KiC 56% -0.18 56% -0.17 

lysopc_a_c16_1 Loc.PrC 84% -0.19 78% -0.18 

arg KiC 74%  0.23 71%  0.21 

lysopc_a_c16_0_Clus Loc.PrC 86%  0.24 79%  0.22 

glu BrC -- -- 56% -0.14 

serotonin CRC -- -- 84%  0.35 

* BrC stands for breast cancer, CRC for colorectal cancer, EnC for endometrial cancer, KiC for Kidney cancer, and Loc.PrC for localized prostate cancer. 
1 Bootstrap samples were generated from the original sample of 5,828 matched case-control pairs with information on 117 metabolites (corresponding to 50 features after 
the clustering step). 
2 Bootstrap samples were generated from the original sample which comprised 4,761 matched case-control pairs with information on 133 metabolites (corresponding to 65 
features after the clustering step) after excluding the participants of the second CRC study. 
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Figure 1. Flowchart summarizing the exclusion criteria to derive the final sample used in our main analysis. 
GBC stands for gallbladder and biliary tract cancer and HCC for hepatocellular carcinoma. 
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Figure 2. Description of the 50 “metabolites” retained for the main analysis, which includes 33 clusters of 
strongly correlated metabolites and 17 “isolated” metabolites. For example, the 19th metabolite is an isolated 
metabolite (valine), while the 26th one is a cluster made of two phosphatidylcholines. For each cluster, 
correlations between its representative and the individual metabolites that compose that cluster are 
represented as a heat map (this correlation is 1 when the “cluster” is actually reduced to an isolated metabolite) 
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Figure 3. Summary of the main results from our the multivariate pan-cancer analysis, which evaluated 
mutually adjusted associations between each feature (more precisely, their residuals after adjustment for 
BMI) and the risk of the eight cancer types, using a data shared lasso penalty. White entries correspond 
to the absence of identified associations, while green and red entries correspond to inverse and positive 
associations, respectively. The more intense the colour, the larger the absolute value of the log-odds-ratio 
(that were re-estimated in multivariate unpenalized conditional regression models; see Section 3.a in the 
Supplementary Material for details). The x-axis represents the 50 features (33 cluster representatives and 
17 isolated metabolites). In the labels of the y-axis, numbers correspond to numbers of pairs for each 
type-specific cancer (and in total for the pooled analysis), while BrC stands for breast cancer, CRC for 
colorectal cancer, EnC for endometrial cancer, KiC for Kidney cancer, GBC for gallbladder and biliary 
tract cancer, HCC for hepatocellular carcinoma, and Adv.PrC and Loc.PrC for advanced and localized 
prostate cancers, respectively. 
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Figure 4. Summary of the mutually adjusted associations between the 50 metabolic features and risks of 
the eight cancer types, as identified by the data shared lasso. Only the 19 features (8 isolated metabolites 
and 11 cluster representatives ) for which the data shared lasso identified an association with at least one 
cancer type are presented on the y axis. Point estimates and 95% confidence intervals of the 
corresponding odds-ratios were obtained through non-penalized conditional logistic regression models 
using the design matrix derived from the positions of the non-zero components in the data shared lasso 
vector estimate !",$ %&!, ⋯ , %&"(; see Section 3.a in the Supplementary Material for details. They have to be 
interpreted with caution since they are the result of post-selection inference. In the labels of the columns, 
BrC stands for breast cancer, CRC for colorectal cancer, EnC for endometrial cancer, KiC for Kidney 
cancer, GBC for gallbladder and biliary tract cancer, HCC for hepatocellular carcinoma, and Adv.PrC 
and Loc.PrC for advanced and localized prostate cancers, respectively. 
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