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Abstract
Physicians  record  their  detailed  thought-processes  about  diagnoses  and  treatments  as 
unstructured text in a section of a clinical note called the assessment and plan. This information 
is more clinically  rich than structured billing codes assigned for  an encounter but  harder to 
reliably extract given the complexity of clinical language and documentation habits. We describe 
and release a dataset containing annotations of 579 admission and progress notes from the 
publicly  available and de-identified MIMIC-III  ICU dataset with over 30,000 labels identifying 
active  problems,  their  assessment,  and  the  category  of  associated  action  items  (e.g. 
medication,  lab  test).  We  also  propose  deep-learning  based  models  that  approach  human 
performance,  with  a  F1 score  of  0.88.  We found that  by  employing  weak supervision  and 
domain specific data-augmentation, we could improve generalization across departments and 
reduce the number of human labeled notes without sacrificing performance. 
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Introduction
After seeing a patient, physicians write a formal clinical note that records the patient's history,  
findings, and conclusions.  A key section, called the assessment and plan, is commonly written 
as  a  loosely  structured problem-oriented  list  of  conditions  (e.g.  "rheumatoid  arthritis"),  their 
assessments (e.g. "a new flare"), and plans (e.g. "CT of the neck and initiate treatment"). The 
text  itself  is  free-form and written in  physician-  speciality-,  and organizationally-idiosyncratic 
ways,  making  it  hard  to  algorithmically  parse  into  structured  data.  This  structured  data  is 
valuable,  for  example,  to  drive  a  longitudinal  visualization  of  when  various  diagnoses  and 
treatments occurred. Relying on inherently structured data elements, such as coded ICD-9/10 
diagnoses, can be unreliable1 and the free text is a more informative reflection of the physician's 
assessment.

Prior  research dealing  with  the  conversion  of  the  unstructured clinical  note  data  into  more 
structured forms has focused mostly on the entity matching and linking level (e.g. identifying 
diseases,  drugs  and  their  relations).  Previous  works  have  tackled  various  aspects  of  this 
problem,  identifying  entities2–6 and  their  relations7,8,  identifying  salient  events9 and  building 
personalized clinical knowledge graphs10. However, structuring full notes or sections remains 
mostly  unexplored.  The most  closely  related work  is  Mullenbach  et  al.11 which  focused on 
identifying and classifying discharge instructions in discharge summaries, an important task for 
follow-up outpatient care after a hospitalization. In this work, we focus on inpatient assessment 
and plan sections and their richer problem-oriented structure, which includes not only action 
items (analogous to discharge instructions) but their associated condition and its assessment in 
admission and progress notes.

In this  paper  we describe a dataset  and deep learning models for  parsing an unstructured 
assessment and plan (A&P) section into segments indicating conditions, assessments, and plan 
action  items.  We present  a  dataset  of  579  notes  from the publicly  available,  de-identified, 
MIMIC-III ICU dataset12 with A&P sections annotated by clinicians for active problems and their 
associated assessment description and plan action items (more than 30,000 annotations). We 
then  present  a  series  of  deep  learning  and  hand-engineered  models  and  analyze  their 
performance.  We  show  that  models  trained  on  this  task  approach  human-comparable 
performance. In addition, training with weak supervision on clinically inspired heuristics followed 
by human labels as well as using data-augmentations provides the best performance. We then 
show these techniques can reduce the requirements for human labeled data and help the model 
generalize to notes written by other hospital departments. 
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Results
At a high level, we had medical professionals annotate assessment and plan sections from a 
public dataset and trained a series of models to perform the same annotations using a variety of 
modeling techniques including weak supervision and data augmentation. We then examined 
how many manually annotated notes were necessary during training for good performance and 
generalization across notes from different hospital departments.

Labeling and Data Collection
We classify spans of text in A&P sections related to the problem oriented structure into three 
categories: the active problem’s title (e.g. “sepsis”), it’s description assessment (e.g. “dd of UTI, 
pneumonia”), and plan action items (e.g. “trend WBC”). Text unrelated to these categories was 
left unlabelled. Action items were further broken down into eight different classes: medications, 
observations/labs,  imaging,  consults,  nutrition,  therapeutic  procedures,  other  diagnostic 
procedures  or  other.  Supplementary  Figure  2  shows  the  frequency  of  each  category.  An 
example of an annotated note is shown in Supplementary Figure 1.

We randomly selected 579 A&P sections from physician-written notes from the MIMIC-III ICU 
dataset, which contains more than 50K patient stays from the Beth-Israel Deaconess medical 
center ICU wards12. Selected notes include both admission and progress notes from the ICU 
wards.  Notes were sampled such that  each patient  was represented by  at  most  one note. 
Approximately  90% of  these notes were used for  training and 10% for  the test  set.  Unless 
indicated otherwise, all results are based on the test set. 

Labels were generated with two procedures: human raters and clinical heuristics. Each note in 
the training set was labeled by one rater, the test set notes were labeled by six labelers, with a 
single physician acting as the ground truth (see methods). 

Inter-rater agreement of the human raters measured as the Jaccard similarity was 0.77 (CI 0.75-
0.79) for span type and 0.62 (CI 0.6-0.64) for action item type (both span level micro average, 
see  Figure  1).  While  interrater  agreement  is  high  on  average,  there  are  differences  in 
performance compared to the ground truth with span level micro average F1 scores ranging 
from 0.62 to 0.93. In contrast to the training set, the validation set was labeled by the raters with 
the highest performance (compared to the ground truth) leading to a potentially higher quality. 
For action item type classification, the confusion matrix (Supplementary Figure 4) shows most 
disagreement was found in the less frequent labels (“other diagnostic procedures” and “other”). 
Notably, disagreement was semantically congruent - e.g. labeling medications as therapeutic 
procedures.  Qualitatively,  these  cases  mostly  involved  edge-cases  such  as  oxygen,  blood 
products, fluids etc. in which the labeling instructions dictated the use of “medication” but raters 
opted for therapeutic procedures in many cases.
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The clinical heuristic was implemented using regular expressions to capture a bulleted list of 
active problems, followed by a bulleted list action items (see methods, Supplementary Figure 1 
for examples). Importantly, the heuristic captures only the span type (problem title, description 
or action item). Action item type was not included in the clinical heuristic approach due to the 
lack of a simple heuristic to do so. 

The Model
We modeled the task of identifying the spans of active problem titles, descriptions and action 
items in the text as a sequence tagging task. The model consisted of a 2-layer bidirectional 
Long-short  term memory network (LSTM)13 with a conditional  random field (CRF) prediction 
head  on  top14.  For  each  token,  the  model  predicts  its  span  type  and  action  item  type  if 
applicable (see methods). 

Since human-labeled data is expensive to obtain in the clinical domain, we sought to assess 
whether  injecting  domain  knowledge  into  the  model  could  increase  data  efficiency  and 
potentially provide a boost in performance. Specifically, we focused on weak supervision and 
data augmentations.  Both of these are known techniques in machine learning for improving 
model performance and lowering data-requirements and were explored for NLP and other tasks, 
including in the medical domain15,16. 
To train the weakly supervised model, we used 25,000 notes that were labeled with the clinical  
heuristic described above. These notes were selected similarly to the human labeled notes, and 
belonged to a different set of patients, without overlap with notes already labeled by human 
raters. To implement data augmentations, we algorithmically restructured labeled assessment 
and plan sections  (either  human or  heuristically  labeled)  to contain  same-line  action  items, 
action items interleaved with descriptions and mixed bulleting (see examples in Supplementary 
Figure 5). 

The models were trained in two phases, a “pre-training” phase with or without weak supervision, 
and with or without augmentations, and a second phase on non-augmented human labeled data 
only (see methods). To be specific, at the first phase, 4 models were trained for the 4 possible 
combinations of  using weak supervision and/or data-augmentation.  The models trained with 
weak  supervision  were  pre-trained  on  the  25,000  random  notes  labeled  with  the  clinical 
heuristic. For a fair comparison, models trained solely on the human labeled data were trained 
for the same overall number of steps, with a similar early stopping policy (see methods). As a 
baseline,  we compared the performance of  our models to that  of  the clinical  heuristic.  This 
provides a basic rule-based baseline for this new task. 

All models reached significantly better performance than the baseline model, and approached 
the median rater in performance for span type (Table 1). Model loss patterns for span types are 
shown in Supplementary  Figure 6.  These loss patterns are qualitatively  similar  to the ones 
observed in the inter-rater comparison.
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Effect of training set size on model performance
We then studied model performance improvements when additional labeling is added as shown 
in Figure 2. Training with weak supervision and augmentations improved the performance on 
the span level  across training dataset  sizes,  with performance converging when training on 
hundreds  of  notes.  Importantly,  a  model  trained  on  25  notes  with  weak-supervision  and 
augmentations  (second  data-point  from  the  left  in  each  panel)  achieves  comparable 
performance on the span level to a model trained with the full training data of 481 notes without 
weak supervision and no augmentations. However this effect is less pronounced at the token 
level. Notably, action item type labels are unavailable for the weak supervision as they’re not 
labeled by the heuristic, leading to a similar performance in both cases. 

Generalization of performance across departments
Clinical models are often developed in a single center but deployed at other hospitals whose 
data distribution is unknown, making model generalization difficult to ascertain. To estimate this, 
we trained a series of models trained on a specific set of departments and tested them on 
different departments. We categorized notes by their respective service into two categories - 
medical or surgical (or other, see methods). The different services had a different distribution of 
spans (Supplementary Figure 3) and different typical note structures (see for example the notes 
in  Supplementary  Figure  1).  Surgical  notes  tended  to  be  formatted  in  a  system  oriented 
template, with roughly 30% of surgical notes having the exact same set of active problems. 
Descriptions and action items were commonly interleaved inline. Notes from medical services 
tended to be condition oriented with more variety in problem titles. Descriptions come mostly 
right after the problem title with a bulleted list of action items following (similar to the structure in 
the rule-based heuristic). We thus trained models on a single service and tested them on both 
services (Figure 3). Models trained with either augmentations or weak supervision tended to 
perform better both in-service and across-services. However, models trained on surgical notes 
and evaluated on medical notes had a significantly better performance on the span level when 
also trained with weak supervision. This may be attributed to the relatively high performance of 
the heuristic on notes from medical services.

Predictions Exploration
Structuring assessment and plan sections can uncover various aspects of patient care which 
are specified mostly or solely in the text. To address the potential utility of this structure, we 
generated predictions for all  141K physician notes in MIMIC-III,  for a total of 4.7M predicted 
spans. We then explored the associated action items and descriptions for a series of common 
problems across  (Table  2).  Qualitatively,  detected spans are  indeed  clinically  relevant.  For 
example, “cardiovascular” is associated with relevant medications (aspirin, beta blockers) and 
“respiratory failure” with relevant studies (chest x-ray, blood gases, cultures). Many of these 
spans may be difficult to associate with the problems with a more traditional relation-extraction 
approach  as  they  do  not  correspond  to  clear  entities  (e.g.  “avoid  nephrotoxins”)  or  are 
ambiguous (“is” - incentive spirometer, “p.t.” - physiotherapy and patient).
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Discussion

We  demonstrate  a  method  that  can  scalably  and  accurately  parse  unstructured  clinician 
assessment and plan sections into structured data-elements without  having to label  a large 
number  of  notes  by  leveraging  documentation  domain-knowledge  in  the  form  of  clinical 
heuristics  and  data-augmentation  techniques.   We also  release  a  dataset  of  professionally 
labeled  assessments  and  plans  for  the  clinical  community  to  improve  on  performance  of 
machine learning models on this task.

Assessment and plan sections contain the main points of clinical thinking regarding the patient’s 
state. This includes information which may be otherwise hard to decipher from structured data 
such as labs or medication orders (i.e. the intent to obtain data).  This task is inherently hard 
because documentation patterns are variable  across institutions,  departments and individual 
physicians.  Clinician  raters  themselves  had  many  disagreements  on  how  to  label  notes, 
requiring non-trivial  labeling  instructions (Supplementary Text  1).  Interestingly,  we found the 
loss patterns of the model to be qualitatively similar to those found by inter-rater disagreement.

To achieve this  performance,  we utilized  two approaches for  supplementing the model  with 
domain  expertise -  weak supervision derived from heuristics and data augmentations.  Both 
approaches  were previously  used  successfully  in  a  number  of  domains15 including  medical 
texts16.  These  approaches  present  an  inherent  time  trade-off  with  human  labeling. 
Supplementing with domain knowledge can be costly to develop, as the heuristics themselves 
are learnt from clinicians, while labeling time of medical experts may prove costly on its own. 
We show that supplementing the model with domain expertise can be beneficial for both the low 
data regime and across departments. This may prove useful when adapting a model for new 
hospital systems, generalizing to many new locations, where initial implementation is a one time 
cost unlike the recurring labeling needed. 

This work ties into the recent research results to structure various notes and note parts such as 
discharge  instructions11 and  imaging  reports10 to  facilitate  computational  understanding  of 
medical notes. Here we primarily focus on structuring progress in inpatient stays, however, a 
similar structure may be available for progress notes in the outpatient setting.

Our work has several limitations. A key finding of this work is that parsing the assessment and 
plan section itself  has subjective elements, as highlighted by inter-rater disagreements. This 
leads to a limitation of the released dataset in which training and validation data is only labeled 
with a single rater. As performance is measured only on the test set, it may be the case that the 
training  data  is  more  heavily  influenced  by  lower  quality  ratings  leading  to  subpar  model 
performance. As for the model, although the models presented in this paper may be improved 
further by utilizing recent advances in deep learning for natural language processing (e.g. by 
using transformers such as BERT17 or T518), the smaller models presented here are commonly 
used  and  can  be  more  easily  deployed  in  a  real-world  EHR.  Finally,  generalizing  across 
departments may not emulate generalization across locations properly. Some of the variance 
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across  notes  is  expected  to  arise  from  sources  other  than  department  practices  -  patient 
population,  condition  severity,  frequency  of  care,  EHR  system-specific  patterns  and  other 
unforeseen factors may all contribute to different documentation styles.

Future work could take advantage of the parsed assessment and plan to drive functionality to 
help clinicians understand a patient's trajectory and history faster.  For example, a temporal 
sequence of problems and their associated action items could be used, for example, to build 
timelines of patients’ trajectories of various conditions and treatments tried. Similarly, together 
with relation extraction, the extraction of problems and associated action items can be used to 
accurately build knowledge graphs across a population of patients. 

In conclusion, we present models and an associated clinician-annotated dataset for structuring 
assessment and plan sections in clinician notes. We show that excellent performance can be 
achieved with a limited number of human-labeled notes, and maintained across departments, by 
incorporation  of  domain  expertise  in  the  form  of  weak  supervision  with  clinically  inspired 
heuristics and curated domain-specific data augmentations.

Methods

Labeling and Data Collection
Notes  were  sampled  from  the  MIMIC-III12 note  events  table  and  filtered  according  to  the 
category column to keep only physician notes. Notes were further manually inspected by the 
authors, keeping only notes with at least one non-synthetically generated assessment and plan 
section, discarding 2 notes in total. In total 579 notes were sampled and divided into a golden 
set of 48 notes, a training set of 481 notes and a validation set of 50 notes. The notes were 
labeled by 6 residents and medical students according to the labeling instructions as described 
in the results (and presented fully in Supplementary Text 1). Specific guidance was put forth to 
distinguish  between  descriptions  and  action  items,  splitting  and  merging  spans  and 
distinguishing between classes of action items. 
Training and validation  set  notes were labeled by a single  rater  each.  The golden set  was 
labeled by all 6 raters with one of the raters (the primary author, rater id 1) acting as the ground 
truth. Rater 1 labeled the test set once before reviewing the other raters, which served as intra-
rater comparison, and once after, which served as the golden set. Raters followed the labeling 
instructions found in Supplementary Text 1. Raters were evaluated before rating by completing 
either a small sample of notes first (and receiving feedback) or using the standardized quiz 
found in the instructions. The labels underwent automatic normalization to capture entire word 
boundaries  and  remove  flanking  non-alphanumeric  characters.  Intra-rater  agreement  was 
measured  with  approximately  2  months  between  a  repeated  attempt.  Inter  and  Intra-rater 
agreement were calculated as the mean pairwise Jaccard index between raters.
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Service Attribution
Each note was associated with the service treating the patient at the time the note was written. 
Specifically,  the service table was used and matched with the notes table on admission id, 
taking the most recent service per admission for the time of the note. Services were broadly 
categorized as “Medical”, “Surgical”, and “Other”. “Medical” includes “MED” (internal medicine), 
“CMED”  (cardiology),  “NMED”  (neurology)  and  “OMED”  (orthopedic  medicine).  “Surgical” 
includes “SURG” (general surgery), “TRAUM” (trauma), “CSURG” (cardiac surgery), “NSURG” 
(neurosurgery),  “TSURG”  (thoracic  surgery),  “VSURG”  (vascular  surgery),  “ORTHO” 
(orthopedics), “ENT” (ear, nose and throat), “GU” (urology) and “GYN” (gynecology).

Injecting domain expertise
Domain expertise was captured in the models in two ways: (i) weak supervision on a clinical 
heuristic and (ii) data augmentations. The heuristic was implemented using regular expression 
to capture active problems and their  associated description and action items. This  heuristic 
captures bulleted or numbered lists of active problems containing a bulleted list of action items 
(full python implementation can be found in the code). The heuristic is oblivious to action item 
types. Spans annotated with this heuristic serve as both a baseline model and labels for training 
the model with weak supervision as described below.
Data augmentations were designed to capture inline action items, action items interleaved with 
descriptions  and  mixed  bulleting.  A&P  Sections  were  randomly  selected  to  undergo  data 
augmentations. Based on labels (heuristic or human labeled), sections were decomposed to the 
annotated  spans  and  reconstructed  according  to  the  augmentation  policy.  Sections  could 
undergo several separate sequences of augmentations which were all used as training data. 
Example augmentations are available in Supplementary Figure 5.

Data Generation
Human  labeled  notes  and  25,000  heuristic  labeled  notes  were  processed  to  generate  the 
model’s  train,  validation  and  test  sets.  The  25,000  heuristic  labeled  notes  were  sampled 
similarly to the human labeled notes. Importantly, these sets share no overlap on the note or 
patient level. Moreover, notes in both sets are sampled such that each patient represented in 
the sample has only one note overall. The training set includes both heuristic based and human 
labels,  the validation  set  and test  set  contain the rated validation  and ground truth labeled 
golden  set  exclusively  (i.e.  no  heuristic  labels).  The  notes  underwent  extraction  of  their 
assessment and plan sections, a white-space based tokenization keeping tabs and line-breaks, 
data  augmentation  (as  described  above)  and  conversion  into  TensorFlow  examples.  A&P 
sections  made  up  of  synthetically  generated  text  (e.g.  ICD  codes)  were  removed.  Data 
augmentation was randomly applied to assessment and plan sections to generate sections with 
unique characteristics such as inconsistent bulleting, non-bulleted action items and interleaved 
problem  descriptions  and  action  items  (see  Supplementary  Figure  5  for  examples).  Data 
augmentations were applied to both human labeled and heuristic labeled notes. Augmentations 
were randomly sampled to yield 2 augmented views per note on average (poisson distributed). 
Augmented views were fed to the model in addition to the original note.
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Model
The model  consists  of  a  multilayer  bidirectional  LSTM with  a  CRF head  on  top.  Token  id 
embeddings  were  initialized  from  Word2Vec  embeddings  trained  on  Wikipedia19 (link: 
https://tfhub.dev/google/Wiki-words-250-with-normalization/2).  The  model  is  trained  with  a 
sequence tagging objective  similar  to  named entity  recognition  models.  It  predicts  for  each 
token whether it  belongs to a span (problem title,  description or  action item) and for action 
items,  the  action  item  type  (medication,  observations/labs,  imaging,  consults,  nutrition, 
therapeutic  procedures,  other  diagnostic  procedures  or  other).  Span labels  are  encoded as 
IOB2, action items labels are encoded as categoricals. The model is then trained with a CRF 
negative log likelihood loss for both heads (span type and action item type). The model was 
implemented using the TensorFlow20 2  Keras API  and the TensorFlow model  garden21.  For 
inference, span types are taken from the Viterbi decoding of the span type CRF head, action 
item types are predicted as the maximal likelihood type across the predicted span calculated 
from the  logits  (equivalent  to  Viterbi  decoding  with  a  diagonal  transition  matrix).  For  more 
information see the source code.

All models were trained with the same hyperparameters and the same training regimen. Briefly, 
the hyperparameters are an embedding size of 250, an LSTM hidden dimension of 256 (per 
direction), a learning rate of 1e-3 with linear decay. The regimen consists of two phases, in the 
first  phase the models are pre-trained with either the weak supervision on heuristic derived 
labels or human labels, with or without augmentations for 2000 steps. For the second phase, 
the models are trained for 500 additional steps on labeled data without augmentations with a 
constant learning rate of 5e-4. In the second phase, early stopping is performed based on the 
macro average token level accuracy for both span and action item types.

Evaluation
Models and ratings were evaluated on the span, token and action item type levels. At the span 
level, spans were considered correct if any overlap is found between a predicted and ground 
truth  span.  Every  span  can  only  match  one  other  span,  the  largest  overlapping  span  is 
considered  the  match.  On  the  token  level,  every  non-space  token  is  considered  correct  if 
matching on the span type. For action item type, types are considered correct if spans match 
(via the span criterion) and the predicted action item type is the same as the ground truth. Then, 
precision, recall, Jaccard and F1 scores are calculated. 95% percentile confidence intervals for 
the metrics were calculated using the clustered bootstrap method, clustering on the note level.
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Data Availability
Annotations are available on Zenodo at:  https://doi.org/10.5281/zenodo.6413405. Annotations 
are available as a CSV containing a single annotated span per row. Each row contains the 
original note row id (from the MIMIC-III note event table), character indices of the span, span 
and action item type and a rater  unique id.  Annotation stratification is  denoted for  training, 
validation and the test set. The test set is further divided into ground truth and other raters.
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Tables and Figures

Table 1

Action Item Type
 (1063)

Span Level 
(2016)

Token Level 
(2016)

Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

Mean CI (95%) Mean CI (95%) Mean CI (95%) Mean CI (95%) Mean CI (95%) Mean CI (95%)

 Ratings 0.744 0.705 0.778 0.807 0.778 0.834 0.847 0.822 0.870 0.841 0.817 0.864 0.853 0.819 0.883 0.860 0.832 0.885

 Ratings + aug 0.757 0.726 0.787 0.806 0.782 0.830 0.866 0.842 0.888 0.862 0.836 0.885 0.862 0.832 0.888 0.872 0.845 0.895

 Pretrained 0.734 0.698 0.769 0.786 0.755 0.815 0.849 0.827 0.870 0.843 0.823 0.863 0.854 0.825 0.880 0.863 0.840 0.885

 Pretrained + aug 0.771 0.744 0.797 0.814 0.786 0.840 0.883 0.865 0.898 0.878 0.860 0.894 0.874 0.847 0.899 0.881 0.855 0.899

 Median Rater 0.842 0.820 0.861 0.885 0.864 0.902 0.911 0.898 0.924 0.906 0.891 0.919 0.910 0.892 0.927 0.916 0.900 0.932

 Heuristic - - - - - - 0.668 0.615 0.716 0.756 0.717 0.789 0.634 0.573 0.695 0.747 0.710 0.782

Table  1 -  Model  performance. Model  performance  as  F1  score  across  different  training 
regimens.  Aug  -  data  augmentations.  Macro-  and  micro-  denote  the simple  and  proportion 
weighted averages respectively.  CI  (95%) denotes the 95% percentile  bootstrap confidence 
interval clustered across the notes. Numbers in brackets indicate the total number of spans in 
the test set. See supplementary table 2 for span and action item type detail.
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Table 2

Problem Title  Common Action Items

“neurologic”
"neuro checks q: 4 hr" (9.7%) "dilaudid prn" (0.5%)

"percocet prn" (0.4%) “icp monitor” (0.36)

“respiratory failure”
"daily cxr" (0.6%) "vap bundle" (0.2%)

"f/u cultures" (0.2%) "continue mechanical ventilation" (0.3%)

“anemia”
"guaiac stools" (3.9%) "trend hct" (2.2%)

"continue ppi" (0.5%) "active type and screen" (1.3%)

“cardiovascular”
"aspirin" (11.6%) "beta-blocker" (7.4%)

"statins" (4.5%) "full anticoagulation" (1.6%)

“pulmonary”
"is" (12.8%) "trach" (2.5%)

“nebs” (0.5%) "cont ett (ventilator mode: cpap + ps)" (1.8%)

“infectious disease”
"check cultures" (13.0%) "periop abx" (0.6%)

"vanco" (0.4%) "sputum cultures today" (0.4%)

“consults”
"neuro surgery" (9.6%) "p.t" (8.6%)

"ct surgery" (8.2%) "neurology" (5.9%)

“ppx”
"ppi" (13.1%) "bowel regimen" (12.5%)

“pneumoboots" (8.0%) "heparin sq" (4.6%)

“acute renal failure”
"renally dose meds" (4.0%) "avoid nephrotoxins" (3.0%)

"trend cr" (2.0%) "f/u renal recs" (1.4%)

“diabetes”
"iss" (2.4%) "hiss" (1.4%)

"diabetic diet" (1.2%) "qid fingersticks" (1.2%)

Table 2 -  Common action items for common conditions. For each problem type (left column), 
common action items are presented (right columns). Percentage in brackets denote the percent 
of spans associated with the specified problem title mentioning this exact action item. Spans are 
presented “as-is” with no disambiguation or abbreviation expansion.
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Figure 1

Figure  1  -  interrater  agreement.  Interater  agreement  measured  as  the  average  pairwise 
Jaccard index across raters. Agreement is measured across span types (A) and action item 
types (B). Span type Jaccard is presented at the span (red) and token (blue) level. Confidence 
intervals shown are the 95% percentile bootstrap intervals clustered across notes. Macro- and 
Micro- averages denote the simple and proportion weighted averages respectively. 
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Figure 2

Figure 2 - Performance with limited data.  Model performance as micro-average F1 score 
across action item types (AI type, left), or span types at the span (middle) or token (right) level. 
Each dot represents the micro F1 score for the given model (by color) at the specific number of 
notes. Rightmost data points in all panels represent the full training data size (481 note). 95% 
percentile confidence intervals from clustered bootstrapping on the notes are represented as 
lighter  shaded  strips  of  the  same  color  as  their  respective  lines.  Heuristic  denotes  the 
performance of the clinical heuristic (not available for action item type type, see methods).
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Figure 3

Figure 3 - Generalization between departments.  Model performance as micro average F1 
scores trained on notes from one department (strip at the bottom) and evaluated on another 
(strip above). Model performance is compared when trained with or without weak supervision 
(pretraining) and with or without augmentations (abbreviated as aug). The clinical heuristic is 
presented for comparison (purple). Performance is measured for span type at the token level 
(right) and span level (middle) and for action item type (left, AI type). Error bars denote the 95% 
percentile confidence interval from clustered bootstrapping on the notes. Eval. on - evaluated 
on, Med - medical services, Surg - surgical services, AI type - action item type.
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