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Abstract

The transurethral resection of the prostate (TUR-P) is generally con-
sidered an option for benign prostatic diseases especially nodular hyper-
plasia patients who have moderate to severe urinary problems that
have not responded to medication. Importantly, incidental prostate can-
cer are diagnosed at the time of TUR-P for benign prostatic disease.
Since diagnosing a large number of cases containing TUR-P specimens
which are characterized by a very large volume of tissue fragments
by pathologists using a conventional microscope is time-consuming
and limited in terms of human resources. Thus, it is necessary to
develop new techniques which can rapidly and accurately screen large
numbers of TUR-P specimens. Computational pathology applications
which can assist pathologists in detecting prostate adenocarcinoma
from TUR-P whole slide images (WSIs) would be of great benefit
for routine histopathological workflow. In this study, we trained deep
learning models to classify TUR-P WSIs into prostate adenocarcinoma
and benign (non-neoplastic) lesions using transfer and weakly super-
vised learning. We evaluated the models on TUR-P, needle biopsy, and
The Cancer Genome Atlas (TCGA) public dataset test sets, achiev-
ing an ROC-AUC up to 0.984 in TUR-P test sets for adenocarcinoma.
The results demonstrate the high promising potential of deployment
in a practical TUR-P histopathological diagnostic workflow system.
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1 Introduction

According to the Global Cancer Statistics 2020, prostate cancer is the most
frequently diagnosed cancer in men in over one-half (112 of 185) of the countries
in the world and the second-most-frequent cancer and the fifth leading cause
of cancer death among men in 2020 with an estimated 1,414,259 new cases and
375,304 deaths worldwide Sung et al (2021). Histopathological confirmation
is necessary because early carcinomas are not able to be distinguished with
assurance from foci of nodular hyperplasia and inflammatory lesions.

Nodular hyperplasia (benign prostatic hyperplasia) is a common benign
disorder of the prostate which represents a nodular enlargement of the gland
caused by hyperplasia of both glandular and stromal components, resulting
in an increase in the weight of the prostate. The conventional treatment for
nodular hyperplasia is surgical and the transurethral resection of the prostate
(TUR-P) is one of the widely practiced surgical procedures, which is estimated
to perform about 7,864 cases annually in 2014 in Japan Takamori et al (2017).
TUR-P can be both diagnostic and therapeutic when patients have obstruc-
tive symptoms, high PSA, and negative prostate needle biopsies Dellavedova
et al (2010). In TUR-P, an electrical loop of resectoscope excises hyperplastic
prostate tissues to improve urine flow, resulting to produce many tiny tissue
fragments during the procedure. Therefore, there are many wide range of tissue
fragments in a single slide glass to be observed by pathologists. As compared to
conventional biopsy specimens (e.g., endoscopic biopsy from gastrointestinal
tracts), TUR-P specimens are characterized by a very large volume of tissues
and a large number of glass slides; therefore, histopathological diagnosis for
TUR-P specimen is one of the most tedious and error-prone tasks because
it is difficult to determine the orientation of the specimen as well as there
are strong tissue artifacts. Importantly, cancers especially prostate adenocar-
cinoma are detected incidentally around 5-17% of TUR-P specimens Jones
et al (2009); Zigeuner et al (2003); Yoo et al (2012); Sakamoto et al (2014);
Trpkov et al (2008); Dellavedova et al (2010); Otto et al (2014). Conventional
active treatment (surgery or radiotherapy) is indicated in T1a patients with
life expectancy longer than 10 years, and in the majority of T1b patients
Dellavedova et al (2010). Precised histopathological evaluation of cancer (ade-
nocarcinoma) in TUR-P specimen is very important because the presence of
cancer in more than 5% of the tissue fragments Epstein et al (1986); Van Andel
et al (1995) or high-grade cancer Andrén et al (2006); Egevad et al (2002) may
affect the choice of treatment. Thus, for TUR-P specimens, reporting both
the number of microscopic foci of carcinoma and the percentage of carcinoma-
tous involvement is recommended. All these factors and burdens mentioned
above highlight the benefit of establishing a histopathological screening system
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to detect prostate adenocarcinoma based on TUR-P specimens. Conventional
glass slides of TUR-P specimens can be digitized as whole slide images (WSIs)
which could great benefit from the application of computational histopathol-
ogy algorithms especially deep learning models to aid pathologists allowing the
potential of reducing the burden of time-consuming diagnosis and increasing
the appropriate detection rate of prostate adenocarcinoma in TUR-P WSIs as
part of a screening system.

In computational pathology, deep learning models have been widely applied
in histopathological cancer classification on WSIs, cancer cell detection and
segmentation, and the stratification of patient outcomes Yu et al (2016); Hou
et al (2016); Madabhushi and Lee (2016); Litjens et al (2016); Kraus et al
(2016); Korbar et al (2017); Luo et al (2017); Coudray et al (2018); Wei et al
(2019); Gertych et al (2019); Bejnordi et al (2017); Saltz et al (2018); Cam-
panella et al (2019); Iizuka et al (2020). Previous works have looked into
applying deep learning models for adenocarcinoma classification in stomach
Iizuka et al (2020); Kanavati and Tsuneki (2021b); Kanavati et al (2021a),
colon Iizuka et al (2020); Tsuneki and Kanavati (2021), lung Kanavati and
Tsuneki (2021b); Kanavati et al (2021b), and breast Kanavati and Tsuneki
(2021a); Kanavati et al (2022) histopathological specimen WSIs. In a previous
study, we trained a prostate adenocarcinoma classification model on needle
biopsy WSIs Tsuneki et al (2022) and evaluated the models on both needle
biopsy and TUR-P WSI test sets to confirm their application on different
types of specimens, achieving an ROC-AUC up to 0.978 in needle biopsy test
sets; however, the model under-performed on TUR-P WSIs. Therefore, in this
study, we trained deep learning models specifically for TUR-P WSIs. We eval-
uated the trained models on TUR-P, needle biopsy, and TCGA (The Cancer
Genome Atlas) public dataset test sets, achieving an ROC-AUC up to 0.984 in
TUR-P test sets, 0.913 in needle biopsy test sets, and 0.947 in TCGA public
dataset test sets. These findings suggest that deep learning models might be
very useful as routine histopathological diagnostic aids for inspecting TUR-P
WSIs to detect prostate adenocarcinoma precisely.

2 Materials and methods

2.1 Clinical cases and pathological records

Retrospectively, a total of 2,060 H&E (hematoxylin & eosin) stained
histopathological specimen slides of human prostate adenocarcinoma and
benign (non-neoplastic) lesions –1,560 TUR-P and 500 needle biopsy– were col-
lected from the surgical pathology files of total three hospitals: Shinyukuhashi,
Wajiro, and Shinkuki hospitals (Kamachi Group Hospitals, Fukuoka, Japan),
after histopathological review of all specimens by surgical pathologists. The
histopathological specimens were selected randomly to reflect a real clinical
settings as much as possible. Prior to the experimental procedures, each WSI
diagnosis was observed by at least two pathologists with the final checking
and verification performed by senior pathologists. All WSIs were scanned at

All rights reserved. No reuse allowed without permission. 
author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprint (which was not certified by peer review) is the21, 2022. 
this version posted April; https://doi.org/10.1101/2022.04.20.22274062doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.20.22274062


4 2 MATERIALS AND METHODS

a magnification of x20 using the same Leica Aperio AT2 Digital Whole Slide
Scanner (Leica Biosystems, Tokyo, Japan) and were saved as SVS file format
with JPEG2000 compression.

2.2 Dataset

Hospitals which provided histopathological specimen slides in the present study
were anonymised (e.g., Hospital-A, B, and C). Table 1 breaks down the dis-
tribution of training and validation sets of TUR-P WSIs from two domestic
hospitals (Hospital-A and B). Validation sets were selected randomly from the
training sets (Table 1). The test sets consisted of TUR-P, needle biopsy, and
TCGA (The Cancer Genome Atlas) public dataset WSIs (Table 2). The dis-
tribution of test sets from three domestic hospitals (Hospital-A, B, and C)
and TCGA public dataset was summarized in Table 2. The patients’ patho-
logical records were used to extract the WSIs’ pathological diagnoses and to
assign WSI labels. Training set WSIs were not annotated, and the training
algorithm only used the WSI diagnosis labels, meaning that the only informa-
tion available for the training was whether the WSI contained adenocarcinoma
or was benign (non-neoplastic lesion), but no information about the loca-
tion of the cancerous tissue lesions. The external prostate TCGA datasets are
publicly available through the Genomic Data Commons (GDC) Data Portal
(https://portal.gdc.cancer.gov/). We have confirmed that surgical pathologists
were able to diagnose test sets in Table 2 from visual inspection of the H&E
stained slide WSIs alone.

2.3 Deep learning models

We trained the models via transfer learning using the partial fine-tuning
approachKanavati and Tsuneki (2021c). This is an efficient fine-tuning
approach that consists of using the weights of an existing pre-trained model
and only fine-tuning the affine parameters of the batch normalization layers
and the final classification layer. For the model architecture, we used Effi-
cientNetB1Tan and Le (2019) starting with pre-trained weights on ImageNet.
Figure 1 shows an overview of the training method. The training methodol-
ogy that we used in the present study was exactly the same as reported in
our previous studies Kanavati and Tsuneki (2021b); Tsuneki et al (2022). For
completeness we repeat the methodology here.

We performed slide tiling by extracting square tiles from tissue regions of
the WSIs. We started by detecting the tissue regions in order to eliminate
most of the white background. We did this by performing a thresholding on a
grayscale version of the WSIs using Otsu’s method Otsu (1979). During predic-
tion, we performed the tiling of the tissue regions in a sliding window fashion,
using a fixed-size stride. During training, we initially performed random bal-
anced sampling of tiles extracted from the tissue regions, where we tried to
maintain an equal balance of each label in the training batch. To do so, we
placed the WSIs in a shuffled queue such that we looped over the labels in
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2.4 Software and statistical analysis 5

succession (i.e., we alternated between picking a WSI with a positive label and
a negative label). Once a WSI was selected, we randomly sampled batch size

num labels
tiles from each WSI to form a balanced batch.

To maintain the balance on the WSI, we oversampled from the WSIs to
ensure the model trained on tiles from all of the WSIs in each epoch. We then
switched to hard mining of tiles. To perform the hard mining, we alternated
between training and inference. During inference, the CNN was applied in a
sliding window fashion on all of the tissue regions in the WSI, and we then
selected the k tiles with the highest probability for being positive. This step
effectively selects the tiles that are most likely to be false positives when the
WSI is negative. The selected tiles were placed in a training subset, and once
that subset contained N tiles, the training was run. We used k = 8, N = 256,
and a batch size of 32.

To obtain a single prediction for the WSIs from the the tile predictions,
we took the maximum probability from all of the tiles. We used the Adam
optimizer Kingma and Ba (2014), with the binary cross-entropy as the loss
function, with the following parameters: beta1 = 0.9, beta2 = 0.999, a batch
size of 32, and a learning rate of 0.001 when fine-tuning. We used early stopping
by tracking the performance of the model on a validation set, and training
was stopped automatically when there was no further improvement on the
validation loss for 10 epochs. We chose the model with the lowest validation
loss as the final model.

2.4 Software and statistical analysis

The deep learning models were implemented and trained using TensorFlow
Abadi et al (2015). AUCs were calculated in python using the scikit-learn
package Pedregosa et al (2011) and plotted using matplotlib Hunter (2007).
The 95% CIs of the AUCs were estimated using the bootstrap method Efron
and Tibshirani (1994) with 1000 iterations.

The true positive rate (TPR) was computed as

TPR =
TP

TP + FN
(1)

and the false positive rate (FPR) was computed as

FPR =
FP

FP + TN
(2)

Where TP, FP, and TN represent true positive, false positive, and true neg-
ative, respectively. The ROC curve was computed by varying the probability
threshold from 0.0 to 1.0 and computing both the TPR and FPR at the given
threshold.
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6 3 RESULTS

2.5 Availability of data and material

The datasets generated during and/or analysed during the current study are
not publicly available due to specific institutional requirements governing pri-
vacy protection but are available from the corresponding author on reasonable
request. The datasets that support the findings of this study are available
from Kamachi Group Hospitals (Fukuoka, Japan), but restrictions apply to the
availability of these data, which were used under a data use agreement which
was made according to the Ethical Guidelines for Medical and Health Research
Involving Human Subjects as set by the Japanese Ministry of Health, Labour
and Welfare (Tokyo, Japan), and so are not publicly available. However, the
data are available from the authors upon reasonable request for private view-
ing and with permission from the corresponding medical institutions within
the terms of the data use agreement and if compliant with the ethical and
legal requirements as stipulated by the Japanese Ministry of Health, Labour
and Welfare.

2.6 Code availability

To train the classification model in this study we adapted the publicly avail-
able TensorFlow training script available at https://github.com/tensorflow/
models/tree/master/official/vision/image classification.

3 Results

3.1 Insufficient AUC performance of WSI prostate
adenocarcinoma evaluation on TUR-P WSIs using
existing series of adenocarcinoma classification
models

Prior to the training of prostate adenocarcinoma model using TUR-P WSIs,
we have demonstrated the existing adenocarcinoma classification models AUC
performances on TUR-P test sets (Table 2). Existing adenocarcinoma clas-
sification models were summarized in Table 3: (1) breast invasive ductal
carcinoma (IDC) classification model (Breast IDC (x10, 512)) Kanavati and
Tsuneki (2021a), (2) breast invasive ductal carcinoma and ductal carcinoma
in-situ (DCIS) classification model (Breast IDC, DCIS (x10, 224)) Kanavati
et al (2022), (3) colon adenocarcinoma (ADC) and adenoma (AD) classification
model (Colon ADC, AD (x10, 512)) Iizuka et al (2020), (4) colon poorly dif-
ferentiated adenocarcinoma classification model (transfer learning model from
stomach poorly differentiated adenocarcinoma classification model) (Colon
poorly ADC-1 (x20, 512)) Tsuneki and Kanavati (2021), (5) colon poorly differ-
entiated adenocarcinoma classification model (EfficientNetB1 trained model)
(Colon poorly ADC-2 (x20, 512)) Tsuneki and Kanavati (2021), (6) stomach
adenocarcinoma and adenoma classification model (Stomach ADC, AD (x10,
512)) Iizuka et al (2020), (7) stomach poorly differentiated adenocarcinoma
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3.2 High AUC performance of TUR-PWSI evaluation of prostate adenocarcinoma histopathology images7

classification model (Stomach poorly ADC (x20, 224)) Kanavati and Tsuneki
(2021b), (8) stomach signet ring cell carcinoma (SRCC) classification model
(Stomach SRCC (x10, 224)) Kanavati et al (2021a), (9) pancreas endoscopic
ultrasound guided fine needle aspiration (EUS-FNA) biopsy adenocarcinoma
classification model (Pancreas EUS-FNA ADC (x10, 224)) Naito et al (2021),
and (10) lung carcinoma classification model (Lung Carcinoma (x10, 512))
Kanavati et al (2020). Table 3 shows that Colon poorly ADC-2 (x20, 512) and
Lung Carcinoma (x10, 512) models exhibited both high ROC-AUC and low
log loss values as compared to other models. Thus, we have trained the models
based on the Colon poorly ADC-2 (x20, 512) and Lung Carcinoma (x10, 512)
models using TUR-P training sets (Table 1).

3.2 High AUC performance of TUR-P WSI evaluation of
prostate adenocarcinoma histopathology images

We have trained models using transfer learning (TL) and weakly supervised
learning approaches which could be used with weak labels (WSI labels) Kana-
vati et al (2020); Tsuneki et al (2022). At the same time, we trained using the
EfficientNetB1 convolutional neural network (CNN) architecture at magnifi-
cation x10 and x20. The models were applied in a sliding window fashion with
input tiles of 224x224 and 512x512 pixels and a stride of 256 (Fig. 1). To train
the deep learning models, we used a total of 79 adenocarcinoma and 941 benign
training set WSIs and 20 adenocarcinoma and 20 benign validation set WSIs
(Table 1). This resulted in four different models: (1) TL-colon poorly ADC-2
(x20, 512), (2) TL-lung carcinoma (x10, 512), (3) EfficientNetB1 (x10, 224),
and (4) EfficientNetB1 (x20, 512). We have evaluated four different trained
deep learning models on test sets from three different hospitals (Hospital-A-C)
and TCGA public datasets (Table 2). For each test set (TUR-P: Hospital-A-B,
TUR-P: Hospital-A, TUR-P: Hospital-B, public dataset: TCGA, and needle
biopsy: Hospital-A-C), we computed the ROC-AUC, log loss, accuracy, sensi-
tivity, and specificity and summarized in Table 4 & 5 and Fig. 2. The transfer
learning model (TL-colon poorly ADC-2 (x20, 512)) (Fig. 2A) from existing
colon poorly differentiated adenocarcinoma classification model (Colon poorly
ADC-2 (x20, 512)) Tsuneki and Kanavati (2021) trained using TUR-P training
sets have higher ROC-AUCs and lower log losses compared to the other models
(TL-lung carcinoma (x10, 512), EfficientNetB1 (x10, 224), and EfficientNetB1
(x20, 512)) (Table 4, Fig. 2). On the other hand, on the TUR-P hospital-B
test sets, both EfficientNetB1 (x10, 224) and EfficientNetB1 (x20, 512) mod-
els exhibited very high ROC-AUCs (0.924 - 0.973) and low log-losses (0.126 -
0.251) as compared to the other test sets (TUR-P Hospital-A, public dataset,
and needle biopsy) (Table 4 and Fig. 2C, D). Looking at heatmap images of the
same TUR-P WSI which were correctly predicted as prostate adenocarcinoma
using four different trained models, both EfficientNetB1 (x10, 224) and Effi-
cientNetB1 (x20, 512) models falsely predicted adenocarcinoma on the marked
blue-dots which pathologists marked when they performed diagnosis (Fig. 3C,
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8 3 RESULTS

D). In contrast, both TL-colon poorly ADC-2 (x20, 512) and TL-lung car-
cinoma (x10, 512) models precisely predicted adenocarcinoma (Fig. 3A, B).
The model (TL-colon poorly ADC-2 (x20, 512)) achieved highest ROC-AUC
of 0.984 (CI: 0.956 - 1.000) and lowest log loss of 0.127 (CI: 0.076 - 0.205)
for prostate adenocarcinoma classification in TUR-P hospital-A test sets and
also achieved high ROC-AUCs in public dataset (0.947, CI: 0.922 - 0.972) and
needle biopsy test sets (0.913, CI: 0.887 - 0.939) (Table 4). In all test sets,
the model ((TL-colon poorly ADC-2 (x20, 512)) achieved very high accuracy
(0.821 - 0.969), sensitivity (0.764 - 0.900), and specificity (0.884 - 0.992) (Table
5). As shown in Fig. 2 & 3 and Table 4 & 5, the model (TL-colon poorly ADC-
2 (x20, 512)) is fully applicable for prostate adenocarcinoma classification in
TUR-P WSIs as well as TCGA public WSI dataset and even needle biopsy
WSIs. Figures 4, 5, 6, 7, and 8 show representative WSIs of true-positive, true-
negative, false-positive, and false-negative, respectively from using the model
(TL-colon poorly ADC-2 (x20, 512)).

3.3 True positive prostate adenocarcinoma prediction of
TUR-P WSIs

Our model (TL-colon poorly ADC-2 (x20, 512)) satisfactorily predicted ade-
nocarcinoma in TUR-P WSIs (Fig. 4A, B). According to the histopathological
report and additional pathologist’s reviewing, in this WSI (Fig. 4A), there were
three tissue fragments (highlighted with yellow-triangles) with prostate adeno-
carcinoma cell infiltration (Fig. 4C, E, F, H, I, K). The heatmap image (Fig.
4B) shows true positive predictions in these fragments (yellow-triangles) (Fig.
4D, E, G, H, J, K) without false-positive predictions in other tissue fragments
which were histopathologically evaluated as nodular hyperplasia (benign pro-
static hyperplasia) without evidence of malignancy (Fig. 4A, B). Not only this
representative WSI (Fig. 4), our model (TL-colon poorly ADC-2 (x20, 512))
precisely predicted wide variety of prostate adenocarcinoma histopathological
features (Fig. 5): medium-sized, discrete and distinct neoplastic glands (Glea-
son pattern 3) (Fig. 5A, B); medium-sized discrete and distinct glands with
ill-formed glands (Gleason score 3+4) (Fig. 5C, D); ill-formed glands (Gleason
pattern 4) (Fig. 5E, F); and cribriform pattern (Gleason pattern 4) (Fig. 5G,
H).

3.4 True negative prostate adenocarcinoma prediction of
TUR-P WSIs

Our model (TL-colon poorly ADC-2 (x20, 512)) showed true negative pre-
dictions of prostate adenocarcinoma in TUR-P WSIs (Fig. 6A, B). In Fig.
6A, histopathologically, there were nodular hyperplasia (benign prostatic
hyperplasia) with chronic inflammation in all tissue fragments without evi-
dence of malignancy (Fig. 6A, C-F) which were not predicted as prostate
adenocarcinoma (Fig. 6B, C, E).
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3.5 False positive prostate adenocarcinoma prediction of TUR-P WSIs 9

Fig. 1: Schematic diagrams of training method overview. (A) shows a repre-
sentative zoomed-in example of a histopathological patch from a transurethral
resection of the prostate (TUR-P) whole slide image (WSI). During training
(B), we iteratively alternated between inference and training. During the infer-
ence step, the model weights were frozen and the model was used to select
tiles with the highest probability after applying it on the entire tissue regions
of each WSI. The top k tiles with the highest probabilities were then selected
from each WSI and placed into a queue. During training, the selected tiles
from multiple WSIs formed a training batch and were used to train the model.

3.5 False positive prostate adenocarcinoma prediction of
TUR-P WSIs

According to the histopathological reports and additional pathologist’s review-
ing, there were no prostate adenocarcinoma in these TUR-P WSIs (Fig. 7A, E,
H). Our model (TL-colon poorly ADC-2 (x20, 512)) showed false positive pre-
dictions of prostate adenocarcinoma (Fig. 7B-D, F-G, I-J). These false positive
tissue areas (Fig. 7B-D, F-G, I-J) showed xanthogranulomatous inflammation
(Fig. 7A, C, D), macrophagic infiltration (Fig. 7E, G), and squamous meta-
plasia with pseudo-koilocytosis (Fig. 7H, J), which could be the primary cause
of false positives due to its morphological similarity in adenocarcinoma cells.

3.6 False negative prostate adenocarcinoma prediction of
TUR-P WSIs

According to the histopathological report and additional pathologist’s review-
ing, in this TUR-P WSI (Fig. 8A), there were very small number of
adenocarcinoma cells infiltrating in a tissue fragment (Fig. 8C) where pathol-
ogists marked with blue-dots. However, our model (TL-colon poorly ADC-2
(x20, 512)) did not predict any prostate adenocarcinoma cells (Fig. 8B, C).
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10 3 RESULTS

Fig. 2: ROC curves with AUCs from four different trained deep learning
models (A-D) on the test sets: (A) transfer learning (TL) model from existing
colon poorly differentiated adenocarcinoma (ADC) classification model with
tile size 224 px and magnification at x20, (B) TL model from existing lung
carcinoma classification model with tile size 512 px and magnification at x10,
(C) EfficientNetB1 model with tile size 224 px and magnification at x10, and
(D) EfficientNetB1 model with tile size 512 px and magnification at x20.

Adenocarcinoma Benign Total

Training set
Hospital-A 59 222 281
Hospital-B 20 719 739

Validation set
Hospital-A 10 10 20
Hospital-B 10 10 20
total 99 961 1060

Table 1: Distribution of transuretheral resection of the prostate (TUR-P)
whole-slide images (WSIs) in the training and validation sets obtained from
two hospitals (A and B)
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Fig. 3: Comparison of adenocarcinoma prediction in transurethral resection
of the prostate (TUR-P) whole slide image (WSI) of four trained deep learning
models (A-D). In transfer learning (TL) models from colon poorly differenti-
ated adenocarcinoma (A) and lung carcinoma (B), the heatmap images show
true positive prediction of adenocarcinoma where pathologists marked sur-
rounding with blue-dots. In EfficientNetB1 models (C, D), the heatmap images
show false-positive prediction of adenocarcinoma on the marked blue-dots. The
heatmap uses the jet color map where blue indicates low probability and red
indicates high probability.

Adenocarcinoma Benign Total

TUR-P
Hospital-A-B 70 430 500
Hospital-A 40 120 160
Hospital-B 30 310 340

Public dataset TCGA 733 34 767
Needle biopsy Hospital-A-C 250 250 500

Table 2: Distribution of whole slide images (WSIs) in the transuretheral resec-
tion of the prostate (TUR-P), public dataset (TCGA), and needle biopsy test
sets obtained from three hospitals (A-C)

4 Discussion

In this study, we trained deep learning models for the classification of prostate
adenocarcinoma in TUR-P WSIs. Of the four models we trained (Table 4),
the best model (TL-colon poorly ADC-2 (x20, 512)) achieved ROC-AUCs in
the range of 0.896 - 0.984 on the TUR-P test sets. The best model (TL-colon
poorly ADC-2 (x20, 512)) also achieved high ROC-AUCs on needle biopsy
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Existing models ROC-AUC Log loss
Breast IDC (x10, 512) 0.737 [0.664 - 0.807] 1.428 [1.340 - 1.530]
Breast IDC, DCIS (x10, 224) 0.635 [0.565 - 0.720] 3.783 [3.624 - 3.929]
Colon ADC, AD (x10, 512) 0.608 [0.546 - 0.679] 3.812 [3.595 - 4.028]
Colon poorly ADC-1 (x20, 512) 0.780 [0.713 - 0.840] 0.863 [0.811 - 0.913]
Colon poorly ADC-2 (x20, 512) 0.771 [0.681 - 0.837] 0.859 [0.890 - 0.914]
Stomach ADC, AD (x10, 512) 0.762 [0.689 - 0.833] 3.133 [2.948 - 3.268]
Stomach poorly ADC (x20, 224) 0.617 [0.529 - 0.698] 1.588 [1.504 - 1.657]
Stomach SRCC (x10, 224) 0.670 [0.600 - 0.734] 0.549 [0.499 - 0.606]
Pancreas EUS-FNA ADC (x10, 224) 0.808 [0.746 - 0.888] 1.080 [1.031 - 1.142]
Lung Carcinoma (x10, 512) 0.737 [0.662 - 0.801] 0.357 [0.298 - 0.423]

Table 3: ROC-AUC and log loss results for adenocarcinoma classification
on transuretheral resection of the prostate (TUR-P) test sets (Hospital-A-B)
using existing adenocarcinoma classification models

TL-colon poorly ADC-2 (x20, 512)

ROC-AUC Log-loss

TUR-P
Hospital-A-B 0.947 [0.910 - 0.976] 0.191 [0.146 - 0.242]
Hospital-A 0.984 [0.956 - 1.000] 0.127 [0.076 - 0.205]
Hospital-B 0.896 [0.822 - 0.956] 0.221 [0.160 - 0.299]

Public dataset TCGA 0.947 [0.922 - 0.972] 0.335 [0.288 - 0.390]
Needle biopsy Hospital-A-C 0.913 [0.887 - 0.939] 0.587 [0.480 - 0.700]

TL-lung carcinoma (x10, 512)

ROC-AUC Log-loss

TUR-P
Hospital-A-B 0.892 [0.860 - 0.948] 0.328 [0.282 - 0.364]
Hospital-A 0.972 [0.917 - 0.998] 0.277 [0.217 - 0.364]
Hospital-B 0.785 [0.688 - 0.870] 0.351 [0.301 - 0.403]

Public dataset TCGA 0.878 [0.822 - 0.929] 0.258 [0.213 - 0.299]
Needle biopsy Hospital-A-C 0.826 [0.786 - 0.860] 0.808 [0.702 - 0.931]

EfficientNetB1 (x10, 224)

ROC-AUC Log-loss

TUR-P
Hospital-A-B 0.885 [0.829 - 0.927] 0.239 [0.181 - 0.298]
Hospital-A 0.837 [0.752 - 0.909] 0.479 [0.318 - 0.619]
Hospital-B 0.973 [0.916 - 1.000] 0.126 [0.092 - 0.168]

Public dataset TCGA 0.639 [0.563 - 0.716] 3.800 [3.613 - 3.977]
Needle biopsy Hospital-A-C 0.779 [0.736 - 0.822] 0.659 [0.552 - 0.769]

EfficientNetB1 (x20, 512)

ROC-AUC Log-loss

TUR-P
Hospital-A-B 0.840 [0.767 - 0.897] 0.315 [0.269 - 0.377]
Hospital-A 0.794 [0.681 - 0.872] 0.451 [0.323 - 0.601]
Hospital-B 0.924 [0.856 - 0.998] 0.251 [0.203 - 0.290]

Public dataset TCGA 0.533 [0.464 - 0.616] 2.611 [2.485 - 2.721]
Needle biopsy Hospital-A-C 0.655 [0.609 - 0.702] 1.785 [1.551 - 1.956]

Table 4: ROC-AUC and log loss results for adenocarcinoma classification on
the transuretheral resection of the prostate (TUR-P), public dataset (TCGA),
and needle biopsy test sets using trained models
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Fig. 4: A representative example of prostate adenocarcinoma true positive pre-
diction outputs on a whole slide image (WSI) from transurethral resection of
the prostate (TUR-P) test sets using the model (TL-colon poorly ADC-2 (x20,
512)). In the prostate adenocarcinoma WSI of TUR-P specimen (A), accord-
ing to the histopathological diagnostic report, adenocarcinoma cells infiltrated
in the three tissue fragments highlighted with yellow-triangles. The heatmap
image (B) shows true positive predictions of prostate adenocarcinoma cells (D,
G, J) which correspond respectively to H&E histopathology (C-E, F-H, and
I-K). The heatmap image (B) also shows no positive predictions (true nega-
tive predictions) in the tissue fragments without evidence of adenocarcinoma
infiltration (A). The heatmap uses the jet color map where blue indicates low
probability and red indicates high probability.

(0.913) and TCGA public dataset (0.947) test sets. The model (TL-lung car-
cinoma (x10, 512)) also achieved high ROC-AUCs in all test sets but lower
than the best one (TL-colon poorly ADC-2 (x20, 512)). The other two models
were trained using the EfficientNetB1 Tan and Le (2019) models starting with
pre-trained weights on ImageNet at different magnifications (x10 and x20)
and tile sizes (224x224 px, 512x512 px). The models based on EfficientNetB1
(EfficientNetB1 (x10, 224) & EfficientNetB1 (x20, 512)) achieved robust high
ROC-AUC values on TUR-P Hospital-B test sets as compared to other test
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Accuracy Sensitivity Specificity

TUR-P
Hospital-A-B 0.916 [0.892 - 0.938] 0.871 [0.794 - 0.951] 0.923 [0.897 - 0.945]
Hospital-A 0.969 [0.938 - 0.994] 0.900 [0.800 - 0.976] 0.992 [0.974 - 1.000]
Hospital-B 0.874 [0.841 - 0.909] 0.767 [0.613 - 0.906] 0.884 [0.848 - 0.922]

Public dataset TCGA 0.821 [0.793 - 0.849] 0.816 [0.786 - 0.843] 0.941 [0.852 - 1.000]
Needle biopsy Hospital-A-C 0.844 [0.812 - 0.874] 0.764 [0.710 - 0.813] 0.924 [0.886 - 0.956]

Table 5: Scores of accuracy, sensitivity, and specificity on the transuretheral
resection of the prostate (TUR-P), public dataset (TCGA), and needle biopsy
test sets using the best model (TL-colon poorly ADC-2 (x20, 512))

sets (Table 4). Based on the prediction heatmap images of prostate adenocarci-
noma, it was obvious that the models based on EfficientNetB1 (EfficientNetB1
(x10, 224) & EfficientNetB1 (x20, 512)) incorrectly predicted blue ink dots,
which pathologists had marked during diagnosis, as prostate adenocarcinoma
(Fig. 3). Based on this finding, we have looked over WSIs in TUR-P Hospital-
B test sets (Table 2) and most of adenocarcinoma positive WSIs (28 out of 30
WSIs) had ink dots on WSIs which were falsely predicted as adenocarcinoma.
On the other hand, transfer learning models (TL-colon poorly ADC-2 (x20,
512) & TL-lung carcinoma (x10, 512)) revealed no false positive predictions on
ink dots (Fig. 3); this is because those models had been trained on WSIs with
ink labelled as non-neoplastic. The best model (TL-colon poorly ADC-2 (x20,
512)) and the second best model (TL-lung carcinoma (x10, 512)) were trained
by the transfer learning approach from our existing colon poorly differentiated
adenocarcinoma classification model Tsuneki and Kanavati (2021) and lung
carcinoma classification model Kanavati et al (2020) based on the findings
of ROC-AUC and log loss values on TUR-P test sets (TUR-P Hospital-A-B)
using existing adenocarcinoma classification models (Table 3). We used the
partial fine-tuning approach Kanavati and Tsuneki (2021c) to train the models
faster, as there are less weights involved to tune. We used only 1,020 TUR-P
WSIs (adenocarcinoma: 79 WSIs, benign: 941 WSIs) (Table 1) without manual
annotations by pathologists Iizuka et al (2020); Naito et al (2021); Kanavati
et al (2022). We see that by specifically training on TUR-P WSIs, the mod-
els significantly improved prediction performance on TUR-P test set (Table
4) compared to the previous study Tsuneki et al (2022) that had lower ROC-
AUC (0.737 - 0.909) and higher log loss (3.269 - 4.672) values. The combination
of both models would be able to provide accurate prostate adenocarcinoma
classification on both needle biopsy Tsuneki et al (2022) and TUR-P WSIs in
routine histopathological diagnostic workflow.

Nodular hyperplasia (benign prostatic hyperplasia) is a common benign
disorder of the prostate as a histopathological diagnosis referring to the nodu-
lar enlargement of the gland caused by hyperplasia of both glandular and
stromal components within the prostatic transition zone and results in vary-
ing degrees of urinary obstruction, sometimes requiring surgical intervention
including TUR-P Lokeshwar et al (2019). Importantly, incidental prostate can-
cers are diagnosed at the time of TUR-P for benign prostatic disease Otto et al
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(2014). According to the literature search, cancers especially prostate adeno-
carcinoma are detected incidentally around 5-17% of TUR-P specimens Jones
et al (2009); Zigeuner et al (2003); Yoo et al (2012); Sakamoto et al (2014); Trp-
kov et al (2008); Dellavedova et al (2010); Otto et al (2014), meaning around
83-95% of TUR-P specimens are benign lesions; which is nearly identical to the
ratio of adenocarcinoma in the TUR-P test sets (Table 2). Therefore, the high
values of specificity (0.884 - 0.992) in the best model is noteworthy (Table 5).
Moreover, heatmap images revealed true-negative prediction perfectly on each
non-neoplastic fragment in both adenocarcinoma (Fig. 4) and benign (non-
neoplastic) (Fig. 6) WSIs. Thus, the heatmap images predicted by the best
model would provide great benefits for pathologists who have to report the
detail descriptions of many TUR-P specimens in routine clinical practices.

The best deep learning model established in the present study offers
promising results that indicate it could be beneficial as a screening aid for
pathologists prior to observing histopathology on glass slides or WSIs. At the
same time, the model could be used as a double-check tool to reduce the risk
of missed cancer foci (incidental adenocarcinoma in TUR-P specimens). The
most important advantage of using a fully automated computational tool is
that it can systematically handle large amounts of WSIs without potential bias
due to the fatigue commonly experienced by pathologists, which could drasti-
cally alleviate the heavy clinical burden of practical pathology diagnosis using
conventional microscopes.
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Fig. 5: Representative histopathological examples of prostate adenocarci-
noma true positive prediction outputs on whole slide images (WSIs) from
transurethral resection of the prostate (TUR-P) test sets using the model
(TL-colon poorly ADC-2 (x20, 512)). Depiction of prostate adenocarcinoma
histopathologies and corresponding heatmap images of adenocarcinoma pre-
diction outputs: (A, B) medium-sized, discrete and distinct neoplastic glands
(Gleason pattern 3), (C, D) medium-sized discrete and distinct glands with ill-
formed glands (Gleason score 3+4), (E, F) ill-formed glands (Gleason pattern
4), (G, H) cribriform pattern (Gleason pattern 4). The heatmap uses the jet
color map where blue indicates low probability and red indicates high proba-
bility.
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Fig. 6: Representative true negative prostate adenocarcinoma prediction out-
puts on a whole slide image (WSI) from transurethral resection of the prostate
(TUR-P) test sets using the model (TL-colon poorly ADC-2 (x20, 512)).
Histopathologically, in (A), there were nodular hyperplasia (benign prostatic
hyperplasia) with chronic inflammation without any evidence of malignancy
(C-E). The heatmap image (B, C, E) shows true negative prediction of prostate
adenocarcinoma. The heatmap uses the jet color map where blue indicates low
probability and red indicates high probability.
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Fig. 7: Representative examples of prostate adenocarcinoma false positive pre-
diction outputs on whole slide images (WSIs) from transurethral resection of
the prostate (TUR-P) test sets using the model (TL-colon poorly ADC-2 (x20,
512)). Histopathologically, (A, E, and H) have no evidence of adenocarcinoma
infiltration. The heatmap images (B, F, and I) exhibit false positive predic-
tions of prostate adenocarcinoma (C, D, G, and J) where the tissues consist of
xanthogranulomatous inflammation (C, D), macrophagic infiltration (G), and
squamous metaplasia with pseudo-koilocytosis (J), which are most likely the
primary cause of the false positive prediction due to its morphological simi-
larity to prostate adenocarcinoma cells. The heatmap uses the jet color map
where blue indicates low probability and red indicates high probability.
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Fig. 8: A representative example of prostate adenocarcinoma false negative
prediction output on a whole slide image (WSI) from transurethral resection
of the prostate (TUR-P) test sets using the model (TL-colon poorly ADC-2
(x20, 512)). According to the histopathological diagnostic report, this case (A)
has very small number of adenocarcinoma foci (cells) in (C) where patholo-
gists marked surrounding with blue-dots but not in other areas which consist
of nodular hyperplasia. The heatmap image (B) exhibited no positive adeno-
carcinoma prediction (C). The heatmap uses the jet color map where blue
indicates low probability and red indicates high probability.
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