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Abstract

Clinical decision support systems (CDSS) figures out as one of the most
promising technologies for data-centered and AI-prompted healthcare.
Its current developments are mainly guided by two disparate mindsets,
namely a machine learning- centered framework and a classical rule-based
framework. These respective approaches presents contrastive pros and
cons. In the present study we provide an analysis showing that these
two mindsets are actually related to each other, and straightforward algo-
rithms are feasible by combining current standards for machine learning
and classic decision tables algorithms. A theoretical analysis are pro-
vided, as well a computational implementation (in python). A real case
scenario on radiological immaging exam prescription is used to ilustrate
the successfully application of our results. Future work on benchmarking
the proposed algorithms embodied in a fully operational clinical decision
support system could extend our findings towards daily used systems.

Keywords—Artificial intelligence; machine learning; decision table; digital health;
health informatics.

1 Introduction

In the last decade, modern digital technology become pervasive in healthcare and
medical systems. In terms of intellectual historical evolution, the ongoing disruption
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by the emergence of the so called fourth scientific paradigm reverbered in advancing
health sciences, existing a long and apparent road of technological advances ahead [6,
8].

In this context, clinical decision support systems (CDSS) have transvased academic
circles to daily life, with large operational systems affecting thousand of patients and
professionals per day [7]. Today, CDSS is perceived by many authors as one of the
most promising concept among emergent technologies in healthcare [5, 2, 7, 1].

In practical terms, CDSS are implemented as a software, generally integrated as
a service in previously existing local systems [7]. The software is kept runing under
the rotinetely use of a local system. But, internally, prescription of medical exams are
processed by the CDSS and some type of signalization is shown to the user, sugesting
the best options given patient information [7].

There are different and specific modes of implementation and operationalization
of CDSS [4, 7]. Despite of that, they are built upon a same system architecture,
comprising [7]: (i) an interface layer, where the user inputs patient data, receive
prescription suggestions and queries are parsed; and (ii) the knowledge base, being
an algorithm capable of modeling expert knowledge regarding a specific problem or
intellectual domain.

The literature on the knowledge base component of CDSS discusses a variety of
algorithms, from explicit IF-ELSE rules to deep learning. Naturally, every approach to
knowledge modeling will have its pros and cons. But, in our interpretation, research
advances have largelly been internally biased for each one of the respective lines of
approach, with loosely interaction for theoretical synthesis and integrative develop-
ments. Interpretability of knowledge representation is a relevant example, with, on
one hand, classic IF-ELSE approaches having clearer representation of internal ex-
tructure (directaly affecting the interpretability of systems suggestions), but at a high
cost of implementation and maintainance, and, on the other hand, machine learning
approaches, having low (or very low) internal interpretability, but with a lesser cost
of implementation and maintainence and, importantly, with inherent uncertainity in
outputs [7].

Thus, in present study we provide an analysis showing that straightforward al-
gorithms are feasible, combining current standards in massive dataset formation for
machine learning and classic decision tables algorithms. We show that there are place
for mathematical theory bridging classic and modern approaches for knowledge rep-
resentation in CDSS and we ilustrate it providing ”white-box”, graph-based minimal
algorithms, with experimental results for real radiological imaging data.

2 The decision table formalism

Strictly speacking, a decision table is a table representing the exhaustive set of mutual
exclusive conditional expressions, within a predefined problem area (see [9]).

There are two fundamental sets for a decision table, C and A, namely the condition
set and the action set [9]. The condition set is defined as follows (definition (2.1)).

Definition 2.1. The Condition set, C, consists of n elements ci, 1 ≤ i ≤ n, which
are, in turn, formed by the tuple (c⟨S⟩, C⟨T ⟩)i, with c

⟨S⟩
i ∈ C⟨S⟩ and C

⟨T ⟩
i ∈ C⟨T ⟩, such

that

C = {ci | 1 ≤ i ≤ n} = {(c⟨S⟩, C⟨T ⟩)i | 1 ≤ i ≤ n},
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where C⟨S⟩ are the condition subjects, with each ith subject having a domain
C

⟨D⟩
i ∈ C⟨D⟩; C

⟨T ⟩
i ∈ C⟨T ⟩ is the set of possible logical states for the ith subject,

being stated in terms of C
⟨D⟩
i ∈ C⟨D⟩ and mapping to a one and only one item of the

cartesian product A⟨V ⟩ ×A⟨V ⟩ (which is definied bellow).

For a set C
⟨T ⟩
i , its condition states follows the definition below (definition (2.2)).

Definition 2.2. Each set of condition state, C
⟨T ⟩
(i)k

∈ C
⟨T ⟩
i , defines a subset C

⟨T ⟩∗
(i)k

,

such that C
⟨T ⟩∗
(i)k

⊂ C
⟨D⟩
i and

nk⋃
k=1

(
C

⟨T ⟩∗
(i)k

)
= C

⟨D⟩
i

nk⋂
k=1

(
C

⟨T ⟩∗
(i)k

)
= ∅

Regarding the action set, it is defined as follows (definition (2.3)).

Definition 2.3. Similarlly to the Condition set, the Action set, A, is formed of m
actions aj , 1 ≤ j ≤ m, being aj = (a⟨S⟩, A⟨V ⟩)j , with A

⟨V ⟩
j ∈ A⟨V ⟩ the set of possible

values for the jth action of A, and a
⟨S⟩
j ∈ A⟨S⟩ the jth action item, such that

A = {aj | 1 ≤ j ≤ m} = {(a⟨S⟩ ∈ A⟨S⟩, a⟨V ⟩ ∈ A⟨V ⟩)j | 1 ≤ j ≤ m}.

In order to illustrate such concepts in the context of the present paper, we provide
the following example.

Example. Consider a decision table in a simplifyied context of medical immage pre-
scription. The Condition set, in terms of C⟨S⟩ = {age, clinical indication}, C⟨D⟩ =
{{0, 1, 2, ...}, {Indication 1, Indication 2}}, C⟨T ⟩ = {{age ≤ 17 → children, age >
17 ∧ age ≤ 50 → adult, age > 50 → senior}, {Indication 1, Indication 2}}, and
C⟨T ⟩∗ = {{{1, 2, ..., 17}, {18, 19, ..., 50}, {51, 52, ...}}, {{Indication 1}, {Indication 2}}}
is defined as

C = {(age, {children, adult, senior}), (clinical indication, {Indication 1, Indication 2})}.

The Action set, in terms of A⟨S⟩ = {clinical exam} and A⟨V ⟩ = {exam 1, exam 2, exam 3}
is defined as

A = {(clinical exam, {exam 1, exam 2, exam 3})}.

Given a decision table for which these definitions completely holds, we got a deci-
sion table function, as stated by the following theorem (theorem (2.1)).

Theorem 2.1. (Decision table function) Considering the cartesian products C⟨R⟩ =

{(c⟨T ⟩
1 , c

⟨T ⟩
2 , . . . , c

⟨T ⟩
k ) | c⟨T ⟩

1 ∈ C
⟨T ⟩
1 , c

⟨T ⟩
2 ∈ C

⟨T ⟩
2 , . . . , c

⟨T ⟩
k ∈ C

⟨T ⟩
k } and A⟨R⟩ = {(a⟨V ⟩

1 , a
⟨V ⟩
2 , . . . , a

⟨V ⟩
k ) |

a
⟨V ⟩
1 ∈ A

⟨V ⟩
1 , a

⟨V ⟩
2 ∈ A

⟨V ⟩
2 , ..., a

⟨V ⟩
l ∈ A

⟨T ⟩
l }, there is such a function

FDT : C⟨R⟩ → A⟨R⟩,

mapping each action in A⟨R⟩ from one or more conditions in C⟨R⟩.
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Proof. Let X = {x | x ∈ C⟨R⟩} and Y = {y | y ∈ A⟨R⟩}. Consider a relation
R ⊂ {(x, y) | x ∈ X ∧ y ∈ Y}. As C⟨R⟩ is defined in terms of C⟨T ⟩, the definitions (2.1)
and (2.2) holds for any element or subset of C⟨R⟩. Thus

∀xa, xb ∈ X , ya, yb ∈ Y : xa = xb → R(xa) = R(xb) =⇒ ya = yb,

meaning that R is a function with domain X and image in Y. Consequently,
X ⊂ C⟨R⟩ and Y ⊂ A⟨R⟩ implies that FDT is a function.

Traditionally, a decision table is represented in a (row-driven) augmented matrix,
as follows (equations (1), (2) and (3)):

M(C) =

c(1,1) c(1,2) . . . c(1,o)
...

...
. . .

...
c(n,1) c(n,2) . . . c(n,o)

 (1)

M(A) =

a(1,1) a(1,2) . . . a(1,o)

...
...

. . .
...

a(m,1) a(m,2) . . . a(m,o)

 (2)

M(DT ) = (M(C)|M(A)) =



c(1,1) c(1,2) . . . c(1,o)
...

...
. . .

...
c(n,1) c(n,2) . . . c(n,o)

a(1,1) a(1,2) . . . a(1,o)

...
...

. . .
...

a(m,1) a(m,2) . . . a(m,o)


(3)

Here, c(i,l) ∈ C⟨T ⟩, with i ∈ {1, 2, ..., n} and l ∈ {1, 2, ..., o} refer to condition

state values for the ith condition subject and lth rule. The values a(j,l) ∈ A⟨V ⟩ with
j ∈ {1, 2, ...,m} and l ∈ {1, 2, ..., o}, refer to actions for the jth action subject and lth

rule.

3 Linking decision tables and statistical machine
learning datasets

Despite of both decision tables and machine learning be cirscunsribed whithin the
wide field of artificial intelligence, these subjects has been, conceptually and tempo-
rally, relatively far from each other. The decision table formalism were developed in
the age of symbolic approaches to artificial intelligence modelling. Machine learning,
on the other hand, emerged as a broad theoretical mindset, which became in vogue
in the recent decades, becaming the dominant paradigm for the current generation of
artificial intelligence researchers and practioners. Despite of such historical bias, math-
ematical formalisms in the machine learning field and the decision table formalism are
not disparate from each other, having place for theoretical synthesis and synergistic
developments.

By the current formalism of statistical learning theory for supervised learning, a
machine learning problem can be definied as follows (definition 3.1) (see [3]).
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Definition 3.1. A machine learning problem consists of finding a function capable
of mapping a random variable Y ∈ R from a vector of x ∈ X , with X ⊂ Rn. Such a
function, defined here as h(x) : X → Y , belongs to a hipothetical space of functions,
H, and can be computed by the means of minimizing a loss function L(h(.), S) with
respect to a parameterized hypothesis, h, and considering S, a collection of observed
instances of X and Y .

By definition, and as stated by the definition (3.1), a machine learning problem
explicitly depends on a collection of empirical observations. Thus, we state a more
specific definition for S, as follows (definition 3.2).

Definition 3.2. Let Z be the catesian productX×Y . A collection of empirical obser-
vations, S, is a statistical sample over the unknown probability distribution of Z, being
constituted by tuples (x ⟨observed⟩, y⟨observed⟩)i, 1 ≤ i ≤ o, with the vector x

⟨observed⟩
i ∈

X ⟨observed⟩, X ⟨observed⟩ = {(x(1,1), x(1,1), . . . , x(1,n)), . . . , (x(o,1), x(o,1), . . . , x(o,n)) |
x(.,1) ∈ X1 ∧ x(.,2) ∈ X2 ∧ · · · ∧ x(.,n) ∈ Xn}, observing that ∀Xi ⊂ X : ∪i(Xi) =

X ⟨observed⟩; and with y
⟨observed⟩
i ∈ Y ⟨observed⟩. S is parsed by a learning algorithm

which implements L(h(.), S) and is capable of returning h(.)S , which refers to a param-
eterized function regarding a particular sample dataset, S. Thus, the parameterization
found by the algorithm is fundamentally determined by the sample dataset.

In terms of tabular datasets, X ⟨observed⟩ and Y ⟨observed⟩ can be represented in a
matricial form, as shown below (equations (4) and (5)).

M(Xobserved) =

x(1,1) x(1,2) . . . x(1,n)

...
...

. . .
...

x(o,1) x(o,2) . . . x(o,n)

 (4)

M(Yobserved) =
(
y1 y2 . . . yo

)T
(5)

Thus, S can be represented by the augmented matrix given below (equation (6)).

M(S) =
(
M(Xobserved)|M(Yobserved)

)
=

x(1,1) x(1,2) . . . x(1,n) y1
...

...
. . .

...
...

x(o,1) x(o,2) . . . x(o,n) yo

 (6)

The matricial representation of decision tables is structuturally equivalent to such
matricial representation of S, MS , as stated by the theorem (3.1).

Theorem 3.1. (The equivalency theorem for M(DT ) and M(S)) A matricial represen-
tation of a decision table, M(DT ), given by equation (1), is equivalent to a matricial
representation of a statistical machine learning dataset, M(S), given by equation (4),
if M(DT ) is transposed, such as

MT
(DT ) ≡ M(S)

Proof. Considering definitions (2.1), (2.2) and (2.3), each one of the n subjects in

C⟨S⟩ = {c⟨S⟩
1 , c

⟨S⟩
2 , . . . , c

⟨S⟩
n } have a domain dom(c

⟨S⟩
i ) = C

⟨D⟩
i , C

⟨D⟩
i ⊂ {C⟨D⟩

1 , C
⟨D⟩
2 , . . . , C

⟨D⟩
n },

being assigned in a row-driven fashion in the matrix MC , given by equations (1) and
(3). Each column l in MC can be conveniently represented as a n-size tuple t l com-
posed by state values vi, 1 ≤ i ≤ n, each one row-wise assigned to its respective
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subjects, c
⟨S⟩
i ∈ C⟨S⟩. Clearly, the o-columns in MC is relative to the number of de-

cision rules embeded in a decision table and, in turn, informing the number of such
tuples, t l. Now, consider that each row in MS groups the values of the n features (or

traits, or variables, or dimensions) for each empirical observation, x
⟨observed⟩
i . Nec-

essarily, each feature, Xi, have a proper domain, dom(Xi) ⊂ R, and each vector

x
⟨observed⟩
i , being an empirical observation, by definition, can also be represented as a

tuple t l of observed state values vi, column-wise assigned to its respective feature Xi,
and showing that condition subjects are equivalent of features, or

∀X ⟨observed⟩ ⊂ X : X ⟨observed⟩ ⊆ C⟨S⟩ =⇒ C⟨S⟩ ≡ X .

Thus, any hypothetical subject, Ca, with its own domain dom(Ca), can have its
state value imputed in a tuple, tC , comprised of n state values, along other n−1 state
values for other subjects, such as Cb, Cc, Cd, . . . , Cz. An arbitrary number of such
tuples can be stacked either in a row-oriented fashion, forming a matrix M1, or in a
column-oriented fashion, forming a matrix M2, without any loss of generality. It can
be easilly seen that

M(1)
T −M(2) = 0

M(1)
T = M(2)

Naturally,

M(1) ≡ M(C) ∧M(2) ≡ M(Xobserved) =⇒ MT
(C) ≡ M(Xobserved)

The application of this same rationale for equations (2) and (5) is trivial, proving
the theorem (3.1).

Thus, any dataset as typically arranged in current machine learning practioning
is ready to be used for a decision table implementation, as long as it is in accordance
with definitions (2.1), (2.2 and (2.3)).

An interesting consequence of theorem (3.1) is stated by the following corollary.

Corollary 3.1. Given a hypothesis h ∈ H, any machine learning algorithm, in terms
of the definitions (3.1) and (3.2), can learn and furnish a computational representation
of any particular decision table function, as stated at theorem (2.1), provided that the
loss function tends to zero. This is expressed by

hS := argmin
h∈H

L(h(.), S) ∧ L(h(.), S) ≈ 0 =⇒ hS ≡ FDT

Proof. Let a dataset D be definied in terms of the equations (4), (5) and (6). Let a
function gError : Rn → R be an error function, i.e., a function able to compute an
arbitrary degree of correctedness for the output of functions fi ∈ F , being F a set of
particular functions. Now, consider a function fDT ∈ F , which is specified in terms of
the definitions (2.1), (2.2) and (2.3). Also, consider a function fML ∈ F , specified in
terms of definitions (3.1) and (3.2). By the definitions, we have gError(fDT , D) = 0,
i.e., when applying fDT to the dataset D. Also by the definitions, we have that, for
any situations in which L(fML, D) ≈ 0 is achievable, we have

gError(fML, D) = 0 = gError(fDT , D).

In this cases,
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fDT |= D =⇒ fML |= D

This result makes fDT and fML equivalent in the representation of D, or

fML ≡ fDT .

As fDT is defined is the same terms of FDT and fML is defined in the same terms
of h ∈ H, we got

∀h ∈ H : fML ≡ fDT ⇔ FDT ≡ h.

Corollary (3.1) pave the way for applying current machine learning algorithms
in computational representation of decision tables in a straightforward fashion. This
shows that, as we argued before, these are not rival formalisms, existing potential for
theoretical and practical synthesis. Despite of corollary (3.1), we would like to remark
that representing a decision table in terms of h ∈ H (see definition (3.1)) impels loss of
interpretability of internal decision structure, being contingent to algorithm features.

4 Flexible decision tables

In the previous section we have shown that decision tables have a good fit with ma-
chine learning datasets, making them adherent to the canonical structure for modern
datasets, widely used by machine learning practioners. Such result may help to bring
it closer to the most palatable algorithms routinely used for artificial intelligence mod-
elling.

However, as stated in the furnished definitions, only one output decision should
be expected for any inputted query in a decision table model. Unfortunatelly, it can
be too restrictive for many pratical applications. As an example, this is the case for
prescription of radiology image exams. Profissionals in this field commonly ends up
with more than only one well appropriate radiological immaging options for a same
patient condition. So, in order to make simpler algorithms really usefull and adequate
in suporting such cases, we should flexibilize decision table formalism.

Here we propose that a more flexible or generalizable background for decision
tables can be obtained through a minor changing in the basal definitions at decision
table formalism, as stated in the following definition (definition 4.1).

Definition 4.1. A decision table can be defined as a ordered triple (C⟨R⟩,A⟨R⟩, G(V,E)),
with C⟨R⟩ = C⟨T ⟩ × C⟨T ⟩, A⟨R⟩ = A⟨V ⟩ × A⟨V ⟩ and G(V,E) being a directed graph,
with vertices V ⊆ C⟨R⟩ ∪ A⟨R⟩ and edges E ⊆ C⟨R⟩ × A⟨R⟩, mapping from C⟨R⟩ to
A⟨R⟩. In such terms, a decision table consists in the binary relation, RDT , over sets
C⟨R⟩ and A⟨R⟩, being defined as

RDT = G ⊆ {(c, a) | c ∈ C⟨R⟩ ∧ a ∈ A⟨R⟩}

Theorem 4.1. (Flexible decision table) Given definition (4.1), FDT is a special case
of RDT .

Proof. The proof naturally emerge from the fact that FDT is a function and RDT is a
mathematical relation. So,

7
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∀FDT∀RDTP1(FDT ) ∧ P2(RDT ) =⇒ P3(FDT , RDT ),

being P1, P2 and P3 the predicate symbol for is a mathematical function, is a
mathematical relation and is a special case, respectivelly.

With the definition (4.1), we are generalizing definition (2.1) and, consequently, we
provide that FDT (see theorem (2.1)) naturally be a particular case of RDT (definition
(4.1) and theorem (4.1)). This is a subtle change from the classic definition of decision
tables, but with consequences making them more interesting for modern practical use,
such as decision support systems for radiology exam prescription.

Also, it is important to note that, in the terms of definition (4.1) and theorem (4.1),
any results obtained considering decision tables strictly as a mathematical function do
not apply to RDT . Here, the corollary (3.1) is the most relevant example.

Fortunately, in modeling a decision table as a mathematical relation and repre-
senting it as a graph object, we circunscribe our focal problem in the sound grounds
of graph theory. This is very convenient, because algorithms and computational tools
specific for such abstract objects are well developed and ”white box” models are fea-
sible. In the next sextion, we explore the simpler algorithms for computing RDT .

5 Algorithms

In this section, we provide algorithms for the decision table graphs, in accordance to
definition (4.1). It is assumed that the input dataset is structured in accordance to
definitions (3.1), (3.2) and (4.1), as well as the theorem (3.1).

Given the nature of the dataset for a flexible decision table, it is very convenient to
entirely load each vector of condition states and action values (i.e., the rows of M(S)),
representing it as a single computational object (e.g., a n-tuple). By our definition of
flexible decision table, such vectors constitute the paths of a graph G for the relation
RDT , thus the proper paths of the decision table.

The algorithm (1) shows that paths can be readly obtained from data arranged in
terms of equation (6), providing a straightforward computational representation of G
and, by definition, the relation RDT for a given decision table.

Algorithm 1 The Load data as graph paths algorithm

1: p← inputted string for CSV file path
2: q := string code for line break
3: c := string code for columns split
4: G := ∅
5: b← pointer for p
6: lraw ← read(b)
7: lrows ← split(lraw, q)
8: for each r ∈ S,∀S = {r | r ∈ lrows} do
9: t← split(r, c)

10: G ← G ∪ {t}
11: end for
12: return G

8
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In the context of algorithm (1), read is a method for obtaining data in computer
physical memmory through a pointer object, and split is a method to split a string
at specific positions (given by c). These methods are commonly provided on most of
currently used programming languages for artificial intelligence implementation (e.g.,
python).

Following, given a graph G, represented acconding to algorithm (1), querying for

actions, a⟨V ⟩ ∈ A⟨V ⟩, given a particular set of condition states, C
⟨T ⟩
i ∈ C⟨T ⟩, should

be possible. In algorithm (2), we show how a set of paths to actions, constrained to
inputted condition states, can be efficiently maped.

Algorithm 2 The Find paths algorithm

1: X ← set of items inputted by user
2: O := ∅
3: G := graph paths, or RDT

4: for each p ∈ G do
5: if X ⊆ P,∀P = {pi | pi ∈ p} then
6: O ← O ∪ {P}
7: end if
8: end for
9: return O

Finally, our representation of G, in order to achieve a straightforward represen-
tation of RDT , can easilly be rearranged into the classical representation for graph
objects. This is especially relevant for the treatment of decision tables within the
scope of long standing computational tools available for mathematical operations on
graphs. Thus, in algorithm (3) we show that an edge list is readily obtainable for G.

Algorithm 3 The From paths to edges algorithm

1: E := ∅
2: G := graph paths, or RDT

3: for each p ∈ G do
4: for each i ∈ N ,∀N = {i | 1 ≤ i ≤ |p| − 1} do
5: E ← E ∪ {(pi, pi+1)}
6: end for
7: end for
8: return O

It is easy to see that the temporal complexity of both algorithm (1) and al-
gorithm (2) is O(n). For algorithm (3), temporal complexity is O(n × m), being

m = |x ⟨observed⟩
i |.

6 Experiments

In order to subdue our theoretical arguments to the scrutiny of reality, in this section we
carry out an experiment exploring an application for a clinical decision support system.
Focusing on a medical radiological context, we compiled a decision support dataset for
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immaging exams for head and neck situations (see Supplementary Material). Our
data were obtained from Appropriateness Criteria of American College of radiology
(ACR), available online at https://acsearch.acr.org/list.

The algorithms (1), (2) and (3) were implemented in pure python programming
language (version 3.9). Complementarily, we used the package networkx (version 2.6.3)
to explore the output of algorithm (3).

Bellow, python coding for the mentioned algorithms are shown.

1 def load_graph_paths(file_path , drop_first_line=True , sep=’,’):

2 p = file_path

3 q = ’\n’

4 c = sep

5 G = set()

6 b = open(file_path)

7 l_raw = b.read()

8 b.close()

9 l_rows = l_raw.split(q)

10

11 for index , r in enumerate(l_rows):

12 # allowing drop CSV headers

13 if drop_first_line:

14 if index == 0:

15 continue

16 else:

17 pass

18 t = tuple(r.split(sep))

19 # cleaning accidental extra spaces

20 t = tuple([t_i.strip () for t_i in t])

21 G.add(t)

22

23 return(G)

Listing 1: Python implementation of algorithm (1).

1 def find_paths(X, graph):

2 # cleaning accidental extra spaces

3 X = set([ unidecode(i.strip().lower ()) for i in X])

4 O = set()

5 G = graph

6

7 for p in G:

8

9 # cleaning accidental extra spaces

10 p = tuple([ unidecode(p_i.strip ().lower())

11 for p_i in p])

12 if X.issubset(p):

13 O.add(p)

14

15 return O

Listing 2: Python implementation of algorithm (2).

1 def from_paths_to_edges(graph):

2 E = set()

3 G = graph

4

5 for p in G:

10
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6 for i in range(len(p) - 1):

7 E.add((p[i], p[i+1]))

8

9 return E

Listing 3: Python implementation of algorithm (3).

The complete implementation of our experiments is provided in Supplementary Material.
Bellow, we provide the main results.

Experiment 1: obtaining a representation of G for the
experimental dataset

Using the algorithm (1), implemented as the method load_graph_paths, the obtained
output is shown in listing (4).

1 {

2 (’Celulite ’,’Celulite orbitaria ’,’AngioRM de cranio ’,’

Geralmente Inadequado ’),

3 (’Celulite ’,’Celulite orbitaria ’,’AngioTC de cranio ’,’

Geralmente Inadequado ’),

4 (’Celulite ’, ’Celulite orbitaria ’, ’RM de cranio ’, ’Pode

ser adequado ’),

5 (’Celulite ’, ’Celulite orbitaria ’, ’RM de face’, ’Adequado ’

),

6 (’Celulite ’, ’Celulite orbitaria ’, ’RM de orbitas ’, ’

Adequado ’),

7

8 ...

9

10 (’Vertigem ’,’Vertigem persistente (vertigem central)’,’TC

de cranio ’,’Pode ser adequado ’)

11 }

Listing 4: Output for Experiment 1.

Experiment 2: maping paths to actions, given input con-
strains

Now, with the implementation find_paths for algorithm (2), the obtained output for
the query find_paths([’Vertigem’, ’Vertigem episodica(vertigem

periferica)’]) is shown in listing (5).

1 {

2 (’vertigem ’, ’vertigem episodica (vertigem periferica)’, ’

angiorm de cranio arterial ou venosa ’, ’geralmente inadequado ’)

,

3 (’vertigem ’, ’vertigem episodica (vertigem periferica)’, ’

angiotc de cranio arterial ou venosa ’, ’geralmente inadequado ’)

,

4 (’vertigem ’, ’vertigem episodica (vertigem periferica)’, ’

rm de cranio ’, ’geralmente inadequado ’),

5 (’vertigem ’, ’vertigem episodica (vertigem periferica)’, ’

rm de cranio e orelhas internas ’, ’adequado ’),

6 (’vertigem ’, ’vertigem episodica (vertigem periferica)’, ’

rm de orelhas internas ’, ’adequado ’),

11
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7 (’vertigem ’, ’vertigem episodica (vertigem periferica)’,

8 ’tc de cranio ’, ’geralmente inadequado ’),

9 (’vertigem ’, ’vertigem episodica (vertigem periferica)’, ’

tc dos ossos temporais ’, ’geralmente inadequado ’)

10 }

Listing 5: Output obtained for Experiment 2.

Experiment 3: obtaining canonical representation of graphs

With the implementation from_paths_to_edges for algorithm (3), the obtained output
is depicted on listing (6). This output were succefully parsed by networkx methods,
being a renderization of G provided in figure (6).

1 {

2 (’AngioRM de cranio ’, ’Geralmente Inadequado ’),

3 (’AngioRM de cranio arterial ou venosa ’, ’Geralmente

Inadequado ’),

4 (’AngioRM de pescoco ’, ’Adequado ’),

5 (’AngioRM de pescoco ’, ’Geralmente Inadequado ’),

6 (’AngioTC de cranio ’, ’Geralmente Inadequado ’),

7 (’AngioTC de cranio arterial ou venosa ’, ’Geralmente

Inadequado ’),

8 (’AngioTC de pescoco ’, ’Adequado ’),

9 (’AngioTC de pescoco ’, ’Geralmente Inadequado ’),

10

11 ...

12

13 (’Vertigem persistente (vertigem central)’, ’TC de cranio ’)

14 }

Listing 6: Output obtained for Experiment 3.

7 Conclusion

In this study we have explored an integrative approach bridging aspects of classical
decision tables and modern machine learning, yielding simpler and sound approach to
knowledge modeling for clinical decision support systems. We provide straightfoward
mathematical results and computational algorithms, enforcing that valuable theoreti-
cal and practical findings can be obtained by intersectioning well-maturated artificial
intelligence research and current machine learning formalisms. Through a python im-
plementation, a real case scenario is used to ilustrate the application of our results
in a knowledge modeling problem for medical radiology immaging exam prescription
based on guidelines data. Future work on benchmarking the proposed algorithms em-
bodied in a fully operational clinical decision support system could extend our findings
towards daily used systems.
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