1	Title: Characteristics of health-related quality of life and
2	related factors in patients with brain tumors treated with
3	rehabilitation therapy
4	
5	Short title: HRQOL in patients with brain tumors
6	
7	Authors
8	Takahiro Watanabe ^{1,2} [¶] *, Shinichi Noto ³ [¶] , Manabu Natsumeda ⁴ &, Shinji Kimura ¹ &,
9	Satoshi Tabata ¹ , Fumie Ikarashi ¹ , Mayuko Takano ¹ , Yoshihiro Tsukamoto ⁴ , Makoto
10	Oishi ⁴
11	
12	Affiliations
13	1 Rehabilitation Center, Niigata University Medical and Dental General Hospital,
14	Niigata, Japan
15	2 Major in Rehabilitation Sciences, Niigata University of Health and Welfare
16	Graduate School Niigata, Japan
17	3 Department of Rehabilitation, Niigata University of Health and Welfare, Niigata,
18	Japan

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

HRQOL in patients with brain tumors

- **19** 4 Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata,
- 20 Japan
- 21
- **22** Corresponding author
- 23 E-mail address: tw112051@yahoo.co.jp (TW)
- 24
- 25

26 Abstract

27 Background: Rehabilitation therapy during hospitalization is effective in improving 28 activities of daily living (ADL) and physical function in patients with brain tumors. 29 However, there are few studies on the effect of rehabilitation therapy on 30 health-related quality of life (HRQOL) in patients with brain tumors. Additionally, 31 the EuroQol-5Dimension-5Level (EQ-5D-5L) index score has not been reported as 32 an outcome. This study aimed to investigate the HRQOL of patients with brain 33 tumors who underwent rehabilitation therapy and investigated the factors affecting 34 the EQ-5D-5L index score from various perspectives, including various brain tumor 35 types, treatment methods, and recurrence. In addition, we examined the relationship 36 between the EQ-5D-5L index score, disease-specific HRQOL scale, and ADL.

HRQOL in patients with brain tumors

3

37	Methods: Patients with brain tumors who underwent treatment and rehabilitation at
38	Niigata University Medical & Dental Hospital were included in this cross-sectional
39	study. We used the EQ-5D-5L, European Organisation for Research and Treatment
40	of Cancer (EORTC) quality of life questionnaire core 30, and EORTC quality of life
41	questionnaire brain cancer module to evaluate HRQOL. ADL were assessed using
42	the functional independence measure (FIM). The relationship between each HRQOL
43	assessment score and the FIM was analyzed, and the influence of related factors was
44	assessed by multiple regression analysis.
45	Results: This study included 76 patients. The EQ-5D-5L index score was 0.689 for
46	all patients with brain tumors and 0.574 for those with glioblastomas, which was the
47	lowest value. There was a strong correlation between the EQ-5D-5L index score and
48	FIM (r = 0.627, p<0.001). In addition, the EQ-5D-5L index score was significantly
49	correlated with most of the items of the disease-specific HRQOL scale. Multiple
50	regression analysis revealed that glioblastoma histology (coefficient: -0.570, $p =$
51	0.024) and surgery (coefficient: 0.376, $p = 0.030$) were independent factors affecting
52	the EQ-5D-5L index score.
53	Conclusions: Patients with glioblastoma undergoing rehabilitation may have reduced

54 HRQOL, which was influenced by glioblastoma histology and surgery.

HRQOL in patients with brain tumors

55

56 Keywords: brain tumor, quality of life, activities of daily living, rehabilitation

57

58

59 Introduction

Brain tumors are broadly classified as primary and metastatic brain tumors (MBTs),
the latter of which are most commonly caused by the metastasis of lung cancer or
breast cancer. Primary brain tumors affect approximately 7 people per 100,000
population worldwide every year, and the incidence is on the rise [1]. The treatment
of brain tumors varies depending on the tumor category, generally consisting of
multidisciplinary treatment with surgery, radiation therapy, and chemotherapy [2].

There has been great progress in the treatment methods for brain tumors in recent years, which have prolonged the survival of patients with brain tumors. Nevertheless, in some malignant brain tumors, the prognosis remains poor even with the aforementioned treatments. In particular, glioblastoma recurs at 6 months to 1 year on average. The reported median overall survival (OS) in glioblastoma is >1.5 years, but the 5-year survival rate is still only 15% [2]. Similarly, the median OS for MBTs is 12.0 months, even for prostate cancer, which is considered to have the longest OS

HRQOL in patients with brain tumors

5

73 [3]. In patients with difficult-to-cure brain tumors and poor prognoses, it is important 74 to improve and maintain health-related quality of life (HRQOL), which is a $\mathbf{75}$ patient-reported outcome, as well as OS and progression-free survival. 76 The European Organisation for Research and Treatment of Cancer (EORTC) 77 quality of life questionnaire core 30 (QLQ-C30) and EORTC quality of life 78 questionnaire brain cancer module (BN20) are frequently used in the assessment of 79 HRQOL in patients with brain tumors [4,5]. These HRQOL scales are intended to 80 capture disease-specific psychosomatic functions and symptoms. In recent years, the 81 need for the economic evaluation of medical treatments has been increasing worldwide, 82 generating more interest in utility scales. The 83 EuroQol-5Dimension-5Level (EQ-5D-5L) is one of the most popular scales for 84 calculating the utility index [6], but only a few studies have employed this scale in 85 the evaluation of patients with brain tumors [7-9]. 86 Rehabilitation therapy during hospitalization is reportedly effective in improving 87 activities of daily living (ADL) and physical function in patients with brain tumors. 88 Studies comparing patients with brain tumors to those with stroke and cerebral

89 infarction with similar symptoms found comparable improvements in physical

90 function, ADL, and home discharge rates [10-13]. In addition, even in patients with

HRQOL in patients with brain tumors

6

91	glioblastomas and MBTs, who are considered to have poor prognoses, a significant
92	improvement in their total functional independence measure (FIM) score has been
93	reported after rehabilitation[14,15].
94	In contrast, there are few previous studies on the effect of rehabilitation therapy on
95	HRQOL in patients with brain tumors [16]. Furthermore, the efficacy of
96	rehabilitation therapy on HRQOL has not been examined in detail [17-20].
97	Additionally, the EQ-5D-5L index score has not been reported as an outcome. Thus,
98	the efficacy of rehabilitation therapy differs between patients with brain tumors and
99	those with stroke in terms of ADL and HRQOL, but the relationship between the two
100	has not been fully investigated. In addition to the impact of disease factors such as
101	brain tumor type and recurrence, few previous studies have analyzed the multifaceted
102	impact of treatments such as surgery, radiotherapy, and chemotherapy on HRQOL
103	before and after rehabilitation therapy.
104	Clarifying the characteristics of HRQOL, the relationship between HRQOL and
105	ADL, and the factors that affect HRQOL in patients with brain tumors at the time of
106	hospital discharge will provide useful information for implementing rehabilitation
107	therapy. Further, investigating the EQ-5D-5L index score of patients with brain
108	tumors may provide evidence for the cost-effectiveness of rehabilitation treatment in

HRQOL in patients with brain tumors

109	the future. In the present report, we investigated the effects of brain tumor type,
110	recurrence, and treatment on the EQ-5D-5L index score. In addition, this study aimed
111	to clarify the characteristics of HRQOL in different brain tumor types and its
112	relationship with ADL.
113	

114

115	Metho)ds
-----	-------	-----

116 Study design

117 This study uses a single-center cross-sectional study design. The design followed the

118 international recommendations for Strengthening the Reporting of Observational

119 Studies in Epidemiology [21]. This study was approved by the Niigata University

120 Ethical Review Committee (Approval No.: 2020-0380). The authors obtained written

121 informed consent from patients who were hospitalized between April and September

122 2021 and used an opt-out for subjects admitted between April 2016 and March 2021.

123

124 Patients

125 The participants comprised patients aged ≥20 years who were admitted to The
126 Niigata University Medical & Dental Hospital for the treatment of brain tumors

HRQOL in patients with brain tumors

8

127	between April 2016 and September 2021. The patients were also undergoing
128	physical and occupational therapy, or physical and occupational therapy with speech
129	therapy. The exclusion criteria were based on previous studies [19,22] and included:
130	those who scored <23 on the Mini Mental State Examination, those who had
131	difficulty answering the HRQOL questions due to aphasia or severe higher brain
132	dysfunction, and those who had difficulty answering the questions due to poor
133	general health.
134	

135 Assessment of general health and HRQOL

136 The FIM was used to assess ADL, and the Karnofsky performance status (KPS) was 137used to assess general health. HRQOL was assessed using the QLQ-C30, BN20, and 138 EQ-5D-5L. All parameters were assessed at the time of discharge. FIM and KPS 139 were assessed by the therapist in charge, whereas in principle, patients were required 140 to answer the HRQOL questions by themselves. The therapist in charge of the patient 141 was allowed to assist the patient in answering the questions if the patient had certain 142 limitations that impaired them from filling out the form. These limitations included 143reading impairment due to motor paralysis or visual field impairment caused by central nervous system disorders. Age, sex, brain tumor type, tumor location (right, 144

HRQOL in patients with brain tumors

9

145	left, other), surgery, radiotherapy, chemotherapy, first occurrence or recurrence, and
146	destination were extracted from the medical records. Brain tumors were classified
147	based on the results of pathological examination according to the WHO 2016
148	Pathological Classification of Brain Tumors [23]. Finally, based on previous studies
149	[15,22], the patients were classified into five groups: glioblastoma, grade III brain
150	tumors (WHO grade III), primary central nervous system lymphomas (PCNSLs),
151	MBTs, and grade I brain tumors (WHO grade I). The criteria used to determine
152	whether surgery was performed were based on a previous study [24] and excluded
153	biopsy from being considered a surgery. In order to examine the effect of treatment
154	during hospitalization, we did not include a history of previous surgery, radiotherapy,
155	or chemotherapy in patients with recurrence.

156

157 Measurements

158 FIM

The FIM is an assessment of ADL, consisting of a motor category for self-care tasks
(eating, grooming, bathing, dressing, toileting), sphincter control tasks (bladder
management, bowel management), transfer tasks (bed-to-chair transfer, toilet transfer,
tub or shower transfer), and locomotion tasks (walk or wheelchair, stairs), and a

HRQOL in patients with brain tumors

163	cognitive category for communication tasks (comprehension, expression) and social
164	cognition tasks (social interaction, problem solving, memory). Each task is scored on
165	a scale of 1 to 7 according to the level of independence, with 1 representing complete
166	assistance and 7 representing complete independence. The total score ranges from 18
167	to 126, with a higher score indicating a greater degree of independence.

- 168
- 169 QLQ-C30 and BN20

170 In this study, QLQ-C30 Japanese version (3rd edition) and BN20 were used for

171 evaluation. These are the HRQOL questionnaires developed by the EORTC, which

172 have been reported to be valid and reliable [4,5]. The QLQ-C30 is a disease-specific

173 HRQOL assessment scale for patients with cancer. It consists of five functional

174 scales (physical, role, cognitive, emotional functioning, and social functioning), nine

175 symptom scales (nausea and vomiting, fatigue, dyspnea, pain, insomnia, appetite loss,

176 constipation, diarrhea, and financial difficulties), and global health status.

177 The BN20 is a disease-specific measure of brain tumor symptoms. The BN20 is

178 divided into the following symptom scales: future uncertainty, visual disorder, motor

- 179 dysfunction, communication deficit, headache, seizure, drowsiness, hair loss, itchy
- 180 skin, weakness of legs, and loss of bladder control.

HRQOL in patients with brain tumors

181	The use of the above rating scales was approved by the EORTC Quality of Life
182	Group. The QLQ-C30 and BN20 subscales are scored from 0 to 100 according to the
183	scoring manual. A higher score on the QLQ-C30 functional scale and general health
184	indicates better health, while a lower score on the QLQ-C30 symptom scale and
185	BN20 indicates fewer complaints or better health.

186

187 EQ-5D-5L

188	The EQ-5D-5L is a generic preference-based measure of HRQOL developed by the
189	EuroQol Group. EQ-5D-5L consists of five dimensions related to mobility, self-care,
190	common activities, pain/discomfort, and anxiety/depression. Patients answer each
191	item on a scale of 1 to 5 (no problems, slight problems, moderate problems, severe
192	problems, and extreme problems). Initially developed by the EuroQol Group in 1987,
193	the EuroQol-5Dimension-3Level (EQ-5D-3L) index was a five-item, three-level
194	instrument. However, its sensitivity was insufficient, and a ceiling effect was
195	identified. As a result, the five-level EQ-5D-5L was released to overcome these
196	shortcomings [25]. In Japan, the EQ-5D-5L conversion table was completed in 2015,
197	and the EQ-5D-5L index score reflecting Japanese values can be calculated [6]. The
198	EQ -5D-5L utility index ranges from -0.025 to 1.00 (full health status).

HRQOL in patients with brain tumors

199

200 Statistical analysis

201	A one-way analysis of variance was performed to compare FIM total score, KPS, and
202	HRQOL among the glioblastoma, WHO grade III, PCNSL, MBT, and WHO grade I
203	groups. An unpaired t-test was used to compare the total FIM scores, KPS, and
204	HRQOL between the two groups of patients who did and did not undergo surgery,
205	radiotherapy, or chemotherapy, and those with first or recurrent disease. Pearson's
206	correlation analysis was used to investigate the relationship between the EQ-5D-5L
207	index score, FIM, and disease-specific HQOL scale. In accordance with Guilford's
208	Rule of Thumb [26], the criterion for the strength of correlation was set as follows: $ \mathbf{r} $
209	= 0-0.2 as "almost no correlation", 0.2-0.4 as "weak correlation", 0.4-0.7 as
210	"moderately correlated", and 0.7-1.0 as "strongly correlated". Finally, a multiple
211	regression analysis was performed to investigate the factors affecting the EQ-5D-5L
212	index score at the time of hospital discharge, with the EQ-5D-5L index score as the
213	dependent variable and age, sex, brain tumor type, surgery, radiotherapy,
214	chemotherapy, and newly diagnosed or recurrent disease as independent variables. In
215	this study, the forced imputation method of analysis was used to visually compare all
216	independent variables with one other. The independent variables were selected with

HRQOL in patients with brain tumors

217	reference to previous studies that used the HRQOL scale and FIM total score as
218	independent variables [15,27]. Categorical data were transformed into dummy
219	variables, and WHO grade I was used as the reference category for brain tumor type.
220	A P-value of <0.05 was regarded as being statistically significant, and all reported
221	P-values were two-tailed. All statistical procedures were conducted using SPSS for
222	Windows version 24.
223	
224	
225	Results
226	Patient characteristics
227	The patient characteristics are summarized in Table 1. The mean age of the patients
228	was 61.1 years, and 59% were male. In addition, 74% of all patients were newly

- 229 diagnosed, and 79% were discharged to home. The number of patients in each group
- was 21 in the glioblastoma group (27.6%), 10 in the WHO grade III group (13.2%),
- **231** 10 in the PCNSL group (13.2%), 9 in the MBT group (11.8%), and 26 in the WHO
- grade I group (34.2%). None of the 10 patients in the PCNSL group had undergone
- 233 surgical resection, whereas all patients in the MBT and WHO grade I groups had
- 234 undergone surgery. In addition, none of patients in the WHO Grade I group received

HRQOL in patients with brain tumors

14

235 radiotherapy or chemotherapy.

Table 1. Patient characteristics.

	All patients	Glioblastoma	WHO grade III	
	n = 76	n = 21	n = 10	
Sex, n (%)				
Male	45 (59)	15 (71)	6 (60)	
Female	31 (41)	6 (29)	4 (40)	
Age, years, mean \pm SD	61.1 ± 12.5	58.7 ± 10.8	55.6 ± 11.7	
Tumor histology, n			Anaplastic astrocytoma 4 Anaplastic oligodendroglioma 2 Anaplastic pleomorphic xanthoastrocytoma 2 anaplastic ependymoma 1 NOS 1	
Tumor location, n (%)				
Right	27 (35)	10 (48)	6 (60)	
Left	21 (28)	9 (43)	3 (30)	
Both/other	28 (37)	2 (9)	1 (10)	
Treatment, n (%)				
Surgical resection	59 (78)	17 (81)	7 (70)	
Radiation	34 (45)	15 (71)	7 (70)	
Chemotherapy	38 (50)	20 (95)	9 (90)	
Recurrence, n (%)				
Yes	20 (26)	8 (38)	5 (50)	
No	56 (74)	13 (62)	5 (50)	
Discharge disposition, n (%)				
Discharged home	60 (79)	16 (76)	7 (70)	
Transfer to a different hospital	16 (21)	5 (24)	3 (30)	
PCNSL: Primary central nervous sy	stem lymphoma	, MBT: Metastati	c brain tumor, SD: Standard deviation, NOS: Not c	ot

236

237

238 Comparison of assessment scores among brain tumor types

239 The assessment scores are summarized in Table 2. The FIM total score and KPS did

240 not differ significantly among the brain tumor types. In contrast, the EQ-5D-5L

241 index score (p = 0.048), emotional functioning (p = 0.015), financial difficulties (p = 0.048)

242 0.002), and future uncertainty (p = 0.014) significantly differed among the groups.

243 The EQ-5D-5L index score for all patients was 0.689±0.205. The glioblastoma group

HRQOL in patients with brain tumors

received the lowest score (0.574±0.229) and the WHO grade I group received the

highest score (0.762±0.135). In addition, the glioblastoma group received the lowest

246 score for emotional functioning and the highest scores for financial difficulties and

247 future uncertainty among all groups.

Table 2. Comparison of FIM and KPS with HRQOL in tumor classification.

	All patients	Glioblastoma	WHO grade III	PCNSL	
	n = 76	n = 21	n = 10	n = 10	
	Mean \pm SD	Mean \pm SD	Mean \pm SD	Mean ± SD	
FIM	115.3 ± 12.2	112.4 ± 15.8	116.6 ± 8.7	120.0 ± 8.8	
KPS	86.3 ± 13.5	84.8 ± 15.7	77.0 ± 12.5	92.0 ± 10.3	
EQ-5D-5L index score	0.689 ± 0.205	0.574 ± 0.229	0.655 ± 0.230	0.731 ± 0.116	
QLQ-C30 functional domains ^a					
Physical functioning	67.5 ± 27.7	61.0 ± 31.6	61.3 ± 35.7	69.3 ± 25.8	
Role functioning	56.4 ± 33.0	52.4 ± 28.5	53.3 ± 44.3	50.0 ± 31.4	
Cognitive functioning	68.0 ± 25.2	63.5 ± 19.4	63.3 ± 35.8	61.7 ± 29.4	
Emotional functioning	78.4 ± 16.1	68.7 ± 19.3	75.8 ± 12.1	82.5 ± 9.2	
Social functioning	66.9 ± 29.4	57.1 ± 28.2	60.0 ± 28.5	76.7 ± 23.8	
Global Health Status	52.3 ± 23.8	46.0 ± 24.2	48.3 ± 15.6	50.0 ± 27.5	
QLQ-C30 symptom domains ^a					
Nausea and vomiting	5.7 ± 14.5	3.2 ± 6.7	18.3 ± 30.9	5.0 ± 11.2	
Fatigue	40.3 ± 21.1	43.4 ± 12.6	46.7 ± 28.6	44.4 ± 18.1	
Dyspnea	18.9 ± 27.9	19.0 ± 30.9	13.3 ± 23.3	26.7 ± 34.4	
Pain	21.1 ± 21.3	30.2 ± 18.7	13.3 ± 17.2	18.3 ± 21.4	
Insomnia	29.8 ± 29.1	33.3 ± 33.3	26.7 ± 34.4	36.7 ± 36.7	
Appetite loss	21.1 ± 26.6	17.5 ± 22.7	20.0 ± 28.1	20.0 ± 23.3	
Constipation	28.5 ± 29.2	33.3 ± 29.8	30.0 ± 33.1	30.0 ± 29.2	
Diarrhea	10.1 ± 16.3	11.1 ± 16.1	3.3 ± 10.5	10.0 ± 16.1	
Financial difficulties	33.3 ± 31.3	55.6 ± 28.5	26.7 ± 34.4	36.7 ± 33.1	
BN20 symptom domains ^b					
Future uncertainty	34.3 ± 24.3	47.6 ± 24.0	36.7 ± 23.6	37.5 ± 26.7	
Visual disorder	17.5 ± 28.3	10.1 ± 17.9	15.6 ± 32.8	15.6 ± 30.6	
Motor dysfunction	23.4 ± 24.2	33.3 ± 27.2	28.9 ± 32.4	20.0 ± 30.5	
Communication deficit	17.8 ± 22.4	22.8 ± 26.2	12.2 ± 15.2	10.0 ± 11.0	
Headache	22.8 ± 23.9	19.0 ± 19.9	20.0 ± 23.3	16.7 ± 23.6	
Seizure	1.3 ± 6.5	1.6 ± 7.3	6.7 ± 14.1	0.0 ± 0.0	
Drowsiness	33.8 ± 28.5	36.5 ± 31.5	53.3 ± 28.1	26.7 ± 26.3	
Hair loss	25.0 ± 30.9	34.9 ± 37.2	36.7 ± 33.1	23.3 ± 31.6	
Itchy skin	18.0 ± 19.2	27.0 ± 22.7	20.0 ± 17.2	16.7 ± 17.6	
Weakness of legs	40.8 ± 30.1	44.4 ± 26.5	46.7 ± 32.2	46.7 ± 32.2	
Loss of bladder control	14.5 ± 23.9	14.3 ± 27.0	10.0 ± 16.1	13.3 ± 23.3	

SD: Standard deviation, PCNSL: Primary central nervous system lymphoma, MBT: Metastatic brain tumor, KPS: Karne measure.

^a In EORTC QLQ-C30, functional domains—higher scores are better; symptom domains—lower scores are better.

^b In EORTC BN20 symptom domains, lower scores are better.

P value <0.05 were written in boldface.

HRQOL in patients with brain tumors

248

249 Comparison of the different treatment groups and relapse250 and newly diagnosed groups

251The results of the comparisons of the different treatment groups and relapse and 252newly diagnosed groups are presented in Table 3. The role functioning score was 253significantly higher (p = 0.027) and the scores for fatigue (p = 0.030), future 254uncertainty (p = 0.025), and weakness of legs (p = 0.020) were significantly lower in 255the group that underwent surgery than in the group that did not undergo surgery. The 256 score for headache (p = 0.006) was significantly lower and the scores for hair loss (p = 0.001) and itchy skin (p = 0.002) were significantly higher in the group that 257258received radiotherapy than in the group that did not receive radiotherapy. The 259 EQ-5D-5L index (p = 0.029), emotional functioning (p = 0.027), and visual disorder 260 (p = 0.038) scores were significantly lower and the financial difficulties (p = 0.013), 261 future uncertainty (p = 0.044), hair loss (p = 0.018), and itchy skin (p = 0.002) scores 262 were significantly higher in the group that received chemotherapy than in the group 263 that did not receive chemotherapy. The KPS (p = 0.009), FIM total score (p = 0.048), 264EQ-5D-5L index score (p = 0.016), physical functioning score (p = 0.004), and role 265functioning score (p = 0.032) were significantly lower and the fatigue (p = 0.002),

HRQOL in patients with brain tumors

17

266	future uncertainty (p =	0.032), and d	lrowsiness (p =	0.033) we	ere significantly	higher
-----	-------------------------	---------------	-----------------	-----------	-------------------	--------

in the recurrence group than in the newly-diagnosed group.

268

Table 3. Comparison of FI	1, KPS and HRQOI	L with and without each	treatment and with and	without recurrence
---------------------------	-------------------------	-------------------------	------------------------	--------------------

	Surgical	resection	Radiation	n therapy	Chemot	h
	Yes	No	Yes	No	Yes	
	n = 59	n = 17	n = 34	n = 42	n = 38	
	Mean ± SD	Mean \pm SD	Mean \pm SD	Mean \pm SD	Mean \pm SD	
FIM	114.9 ± 12.9	16.5 ± 9.81	115.6 ± 10.5	115.0 ± 13.5	115.3 ± 13.2	
KPS	86.3 ± 13.6	86.5 ± 13.2	86.8 ± 10.7	86.0 ± 15.5	85.0 ± 14.3	
EQ-5D-5L index score	0.709 ± 0.209	0.620 ± 0.180	0.679 ± 0.198	0.697 ± 0.212	0.638 ± 0.215	
QLQ-C30 functional domains ^a						
Physical functioning	70.4 ± 25.5	57.6 ± 33.3	65.1 ± 30.0	69.5 ± 25.9	65.1 ± 30.8	
Role functioning	61.0 ± 32.0	40.2 ± 32.3	56.9 ± 30.7	56.0 ± 35.1	54.8 ± 31.7	
Cognitive functioning	71.5 ± 22.5	55.9 ± 30.6	63.7 ± 29.1	71.4 ± 21.2	63.6 ± 26.8	
Emotional functioning	79.5 ± 15.0	74.5 ± 19.4	76.5 ± 13.7	80.0 ± 17.9	74.3 ± 16.3	
Social functioning	66.9 ± 29.8	66.7 ± 28.9	65.7 ± 28.4	67.9 ± 30.4	61.8 ± 27.6	
Global Health Status	53.4 ± 23.8	48.5 ± 24.3	51.2 ± 24.0	53.2 ± 23.9	49.8 ± 22.0	
QLQ-C30 symptom domains ^a						
Nausea and vomiting	4.2 ± 9.6	10.8 ± 25.0	6.9 ± 18.4	4.8 ± 10.6	7.9 ± 18.1	
Fatigue	37.3 ± 20.1	51.0 ± 21.9	43.1 ± 22.4	38.1 ± 20.1	42.1 ± 18.8	
Dyspnea	16.4 ± 25.0	27.5 ± 35.8	12.7 ± 23.2	23.8 ± 30.6	19.3 ± 29.6	
Pain	21.2 ± 21.6	20.6 ± 20.9	21.1 ± 23.7	21.0 ± 19.5	23.2 ± 20.3	
Insomnia	27.7 ± 24.9	37.3 ± 40.6	29.4 ± 28.1	30.2 ± 30.2	32.5 ± 34.2	
Appetite loss	20.3 ± 26.3	23.5 ± 28.3	21.6 ± 29.5	20.6 ± 24.4	19.3 ± 24.1	
Constipation	26.6 ± 26.8	35.3 ± 36.3	27.4 ± 30.1	29.4 ± 28.7	30.7 ± 30.4	
Diarrhea	10.7 ± 16.9	7.8 ± 14.6	11.8 ± 18.1	8.7 ± 14.8	10.5 ± 15.7	
Financial difficulties	31.1 ± 30.2	41.2 ± 34.4	35.3 ± 28.4	31.7 ± 33.7	42.1 ± 30.7	
BN20 symptom domains ^b						
Future uncertainty	30.5 ± 22.4	47.5 ± 26.6	37.3 ± 21.6	31.9 ± 26.2	39.9 ± 21.2	
Visual disorder	16.6 ± 27.2	20.9 ± 32.6	17.0 ± 30.6	18.0 ± 26.7	10.8 ± 21.4	
Motor dysfunction	19.2 ± 17.4	37.9 ± 36.9	26.1 ± 27.5	21.2 ± 21.2	26.9 ± 26.7	
Communication deficit	18.3 ± 21.9	16.3 ± 24.9	20.3 ± 24.1	15.9 ± 21.1	17.3 ± 21.9	
Headache	23.7 ± 24.0	19.6 ± 23.7	14.7 ± 20.4	29.4 ± 24.6	18.4 ± 21.5	
Seizure	1.1 ± 6.1	2.0 ± 8.1	0.0 ± 0.0	2.4 ± 8.7	1.8 ± 7.5	
Drowsiness	30.5 ± 25.7	45.1 ± 35.2	33.3 ± 30.7	34.1 ± 27.0	36.8 ± 30.8	
Hair loss	23.7 ± 31.0	29.4 ± 30.9	38.2 ± 34.0	14.3 ± 23.4	33.3 ± 35.5	
Itchy skin	17.5 ± 17.9	19.6 ± 23.7	25.5 ± 18.5	11.9 ± 17.8	24.6 ± 20.0	
Weakness of legs	36.2 ± 28.6	56.9 ± 30.7	48.0 ± 28.7	34.9 ± 30.3	43.9 ± 28.1	
Loss of bladder control	13.6 ± 22.4	17.6 ± 29.1	13.7 ± 21.9	15.1 ± 25.7	11.4 ± 22.3	

SD: Standard deviation, KPS: Karnofsky performance status, FIM: Functional independence measure.

^a In EORTC QLQ-C30, functional domains—higher scores are better; symptom domains—lower scores are better.

^b In EORTC BN20 symptom domains, lower scores are better.

P value <0.05 were written in boldface.

HRQOL in patients with brain tumors

$\mathbf{270}$

271 Correlations among the EQ-5D-5L index score, FIM, and

272 disease-specific HRQOL scale

273 The correlations among the EQ-5D-5L index score, FIM, and disease-specific

- 274 HRQOL scale are shown in Table 4. There was a strong correlation between the
- **275** EQ-5D-5L index score and FIM (r = 0.627, p<0.001). Furthermore, the EQ-5D-5L
- 276 index score and the disease-specific HRQOL scale showed significant correlations

277 for all items with the exception of headache, hair loss, and itchy skin. In particular,

278 strong correlations were observed with physical functioning (r = 0.723, p<0.001). In

- 279 contrast, only physical functioning (r = 0.610, p < 0.001) and dyspnea (r = -0.433,
- 280 p<0.001) showed more than a moderate correlation between FIM and the
- **281** disease-specific HRQOL measure.

Table 4. Correlation between EQ-5D-5L index score, FIM, and disease-specific HQOL scale.

	FIM	EQ-5D-5L index score
	Pearson's r	Pearson's r
EQ-5D-5L index score	0.627**	
QLQ-C30 functional domains ^a		
Physical functioning	0.610**	0.723**
Role functioning	0.325**	0.602**
Cognitive functioning	0.354**	0.584**
Emotional functioning	0.213	0.651**
Social functioning	0.171	0.482**
Global Health Status	0.129	0.430**
QLQ-C30 symptom domains ^a		
Nausea and vomiting	-0.098	-0.228*
Fatigue	-0.331**	-0.669**
Dyspnea	-0.433**	-0.496**
Pain	-0.281*	-0.533**
Insomnia	-0.184	-0.400**
Appetite loss	-0.139	-0.412**

HRQOL in patients with brain tumors

19

Constipation	-0.110	-0.274*
Diarrhea	-0.157	-0.249*
Financial difficulties	-0.077	-0.406**
BN20 symptom domains ^b		
Future uncertainty	-0.174	-0.566**
Visual disorder	-0.142	-0.256*
Motor dysfunction	-0.095	-0.448**
Communication deficit	-0.145	-0.374**
Headache	0.115	0.003
Seizure	0.073	-0.231*
Drowsiness	-0.180	-0.524**
Hair loss	0.124	-0.141
Itchy skin	0.081	-0.030
Weakness of legs	0.017	-0.273*
Loss of bladder control	-0.265*	-0.377**
FIM: Functional independence m	easure	

^a In EORTC QLQ-C30, functional domains—higher scores are better; symptom domains—lower scores are better.
 ^b In EORTC BN20 symptom domains, lower scores are better.

Pearson's r $\geq |0.400|$ were written in boldface.

**p <0.01, *p <0.05.

282

283 Multiple regression analysis for 5EQ-5D-5L index score

284 Multiple regression analysis was performed on the 5EQ-5D-5L index score, with age,

285 sex, brain tumor type, surgery, radiotherapy, chemotherapy, and first occurrence or

286 recurrence as independent variables (Table 5). Glioblastoma (standard partial

287 regression coefficient: -0.570, p = 0.024) and surgery (standard partial regression

288 coefficient: 0.376, p = 0.030) were identified as factors affecting the EQ-5D-5L

289 index score.

Table 5. Multiple regression analysis with EQ-5D-5L index score as the dependent variable.

	В	β	95% Confidence interval		P value
			Lower	Upper	
Intercept	0.684		0.341	1.027	<0.001**
Age	-0.002	-0.109	-0.005	0.002	0.339
Sex					
Female (ref)					
Male	-0.012	-0.028	-0.083	0.106	0.807
Tumor histology					

HRQOL in patients with brain tumors

20

	1	1	I	1	1
WHO grade I (ref)					
Glioblastoma	-0.259	-0.570	-0.484	-0.035	0.024*
WHO grade III	-0.151	-0.250	-0.388	0.086	0.209
PCNSL	-0.087	-0.144	-0.165	0.339	0.495
MBT	-0.115	-0.183	-0.296	0.065	0.201
Surgical resection					
No (ref)					
Yes	0.183	0.376	0.018	0.348	0.030*
Radiation therapy					
No (ref)					
Yes	0.097	0.236	-0.033	0.227	0.142
Chemotherapy					
No (ref)					
Yes	0.057	0.139	-0.124	0.238	0.534
Recurrence					
No (ref)					
Yes	-0.085	-0.183	-0.194	0.025	0.126

B: Partial regression coefficient, β: Standardized regression coefficient, PCNSL: Primary central nervous system lymphoma, MBT: Metastatic brain tumor. Adjusted R2: 0.188. **p <0.01, *p <0.05.

290

291

Discussion 292

This study aimed to investigate the effects of brain tumor type, recurrence, and 293

- 294 treatment on the EQ-5D-5L index score and to clarify the characteristics of HRQOL
- 295 in different brain tumor types and its relationship with ADL.
- 296 The mean EQ-5D-5L index score at the time of hospital discharge for all patients
- with brain tumors in this study was 0.689±0.205 (mean age 61.1 years). The WHO 297
- 298 grade I group had the highest score of 0.762±0.135 (mean age 61.8 years) and the
- glioblastoma group had the lowest score of 0.574±0.229 (mean age 58.7 years). In 299

HRQOL in patients with brain tumors

300	Japan, the EQ-5D-5L index score for patients with brain tumors has not been
301	reported previously, and in other countries, Wagner et al [7] reported a mean index
302	score of 0.72 in 3-month postoperative patients with benign meningiomas. The
303	EQ-5D-5L index score of the WHO grade I group in this study was comparable,
304	although simple comparison is difficult because the EQ-5D-5L index score is
305	calculated using a country-specific conversion table. However, the mean EQ-5D-5L
306	index score of the general population in Japan was reported to be 0.936 in the 50s
307	and 0.911 in the 60s [28]. In the case of patients with various types of outpatient
308	cancers aside from brain tumors, the reported value was 0.827 [29]. In addition, the
309	mean score was 0.52 (mean age 57 years) in stroke patients, who are expected to
310	present with similar functional impairment [30]. The EQ-5D-5L index score of the
311	brain tumor patients in this study was lower than that of the general population and
312	patients with other cancers, although the results should be interpreted with caution
313	regarding the different effects of the time of assessment, age, and disease.
314	Furthermore, the values were similar between the current glioblastoma group and
315	previous reports of stroke. In the present study, there were significant differences in
316	emotional functioning, financial difficulties, and future uncertainty among brain
317	tumor types. In addition, the glioblastoma group showed the lowest values for all

HRQOL in patients with brain tumors

22

318	scales. Budrukkar et al [22] reported that the Global Health Status of the QLQ-C30
319	was significantly lower in the high-grade glioma (HGG) group than in the low-grade
320	glioma (LGG) group. In a study of glioma patients treated with rehabilitation therapy
321	during hospitalization, Umezaki et al [27] found that the HGG group had fewer
322	complaints of QLQ-C30 constipation and more complaints of BN-20 hair loss and
323	itchy skin than did the LGG group. These previous studies and the current results
324	differed in the items that showed significant differences. This may have been due to
325	the differences in the brain tumor type and the individuality of the hospitals in the
326	study area. However, it is interesting to note that in the present study, the scores of
327	the HRQOL items reflecting psychological aspects were lower in the glioblastoma
328	group than in the other groups. Glioblastomas carry a poorer prognosis than other
329	brain tumors, aside from MBTs, and may cause psychological problems. Indeed,
330	patients with glioblastoma have been reported to have more depressive symptoms
331	than patients with gastric, urological, breast, and lung cancers [31]. Further, most
332	brain tumors classified as WHO grade I can be treated with surgery alone, but brain
333	tumors classified as WHO grade II or higher often require radiation therapy or
334	chemotherapy in addition to surgery. Moreover, these treatments may be continued
335	after hospital discharge. These factors may be related to the emotional functioning,

HRQOL in patients with brain tumors

336	financial difficulties, and future uncertainty scores of the glioblastoma group.
337	However, within the scope of this study, we have not been able to examine the above
338	points, and they are only inferred.
339	
340	A previous study in acute stroke patients reported a significant correlation between
341	the EQ-5D-5L index score and FIM motor items [32] and Barthel index [33]. In
342	contrast, a previous study of patients with brain tumors reported no correlation
343	between the total FIM score at discharge and the Functional Assessment of Cancer
344	Therapy-Brain (FACT-Br), a disease-specific HRQOL scale [18]. In the present
345	study, we also found a significant correlation between the FIM and EQ-5D-5L index
346	score. However, in the FIM total score and disease-specific HRQOL scale, the items
347	that showed significant correlations were limited to those related to physical function.
348	This finding was similar to those of previous studies, although the HRQOL scale
349	used was different. However, our results are noteworthy in that the EQ-5D-5L index
350	score and the disease-specific HRQOL scale showed significant correlations for all
351	items with the exception of headache, hair loss, and itchy skin on the BN20. Hirose
352	et al [29] reported a correlation between changes in adverse events and EQ-5D-5L
353	index scores in patients with cancer. In addition, the EQ-5D-3L index score of

HRQOL in patients with brain tumors

 $\mathbf{24}$

354	patients with brain tumors is reportedly associated with the emotional well-being
355	item of the FACT-Br [34] and anxiety and depression symptoms [35]. The
356	correlations between EQ-5D-5L index scores and the QLQ-C30 and BN20 in this
357	study were similar to those in previous studies, although the target diseases and
358	HRQOL assessment scales were different. Coomans et al [24] reported the impact of
359	HRQOL on OS in patients with gliomas, but the added value was low, indicating the
360	limitations of using HRQOL as a prognostic indicator of OS. However, Edelstein et
361	al [31] stated that the limitation of activity and participation due to glioblastoma is a
362	factor that interferes with subjective well-being and mentioned the possibility of
363	rehabilitation therapy to improve HRQOL. Similarly, in addition to training to
364	improve ADL as indicated by the HRQOL assessment, the importance of
365	rehabilitation treatment for patients with brain tumors, which is largely affected by
366	individual complaints, is demonstrated in this study.

367

368 Furthermore, we investigated the influence of factors such as brain tumor type,
369 surgery, radiotherapy, chemotherapy, and recurrence on the EQ-5D-5L index score.
370 The results of multiple regression analysis showed that glioblastoma and surgery
371 were the most influential factors. It has been reported that surgery in patients with

HRQOL in patients with brain tumors

25

372 brain tumors prolongs survival and improves EQ-5D-3L index scores more in 373 patients who undergo tumorectomy than in those who undergo biopsy [36,37]. 374 Furthermore, tumorectomy has been suggested to improve HRQOL by providing a 375 mass effect and improvement in hydrocephalus [22]. These previous findings support 376 the results of the present study that surgery was a factor in improving the EO-5D-5L index score. Vera et al [38] investigated the effect of different brain tumor 377 378 classifications on the EQ-5D-3L index score in patients with gliomas who were 379 undergoing outpatient treatment. After dividing the patients into two groups, grade 380 II/III and grade IV, we reported that the grade of the brain tumor was not a factor 381 affecting the EQ-5D-3L index score. Similar results were also reported in a study of 382 postoperative HGG and LGG patients [39]. In the present study, glioblastoma reduced the EQ-5D-5L index score, and this finding differed from those of previous 383 384 studies. However, these previous studies were limited to the glioma population. In 385 our study, we used the EQ-5D-5L index and further divided the brain tumor 386 classifications into five groups, which we believe is a new finding.

387

388 Limitations

389 There are several limitations to this study. First, this study was conducted at a single

HRQOL in patients with brain tumors

390	institution and was limited to patients with brain tumors who underwent
391	rehabilitation treatment. In addition, patients with poor general health, cognitive
392	decline, or aphasia were excluded. Therefore, the results are not generalizable to all
393	patients with brain tumors. In addition, because this was a cross-sectional study, we
394	were not able to compare the findings before and after rehabilitation treatment, nor
395	were we able to examine changes after hospital discharge.
396	Second, brain tumor type may affect the choice of treatment for newly diagnosed and
397	recurrent brain tumors. In the PCNSL group, the main treatment was chemotherapy
398	and radiation therapy without radical surgical resection. For patients with other
399	tumor types, it is important to removing as much tumor as possible, but complete
400	tumor resection cannot be performed if the tumor is located in the brainstem or
401	similar areas, or if the disease is intractable, including distant recurrence. Thus, the
402	group of patients who did not undergo surgery may have included more
403	difficult-to-treat cases, which may have influenced the results. Third, previous
404	studies have reported that a history of epilepsy and impaired cognitive function [40],
405	as well as tumor location and size [41], affect HRQOL, but we were unable to
406	examine their effects in this study. In addition, the late effects of radiotherapy and
407	chemotherapy may have affected HRQOL after the study. Since brain tumors are rare,

HRQOL in patients with brain tumors

408	there is a need to evaluate a greater number of cases by conducting multicenter
409	studies. Furthermore, in the present study, the analysis was only performed at
410	discharge after rehabilitation therapy. We are currently conducting continuous
411	surveys before and after rehabilitation treatment and after discharge from the hospital
412	in order to longitudinally understand the effect of rehabilitation on ADL and
413	HRQOL.

414

415 Conclusion

416 This study investigated the HRQOL of patients with brain tumors who underwent 417 rehabilitation therapy and investigated the factors affecting the EQ-5D-5L index 418 score from various perspectives, including various brain tumor types, treatment 419 methods, and recurrence. In addition, we examined the relationship between the 420 EQ-5D-5L index score, disease-specific HRQOL scale, and FIM total score. The 421 EQ-5D-5L index score of the patients in this study was lower than that of the general 422 adult population. In addition, the glioblastoma group had the lowest EQ-5D-5L index 423 score among all brain tumor types. In addition, the EQ-5D-5L index score was 424 significantly correlated with most of the items of the disease-specific HRQOL scale 425in addition to the total FIM score. Multiple regression analysis revealed that

glioblastoma and surgery were factors that significantly influenced the EQ-5D-5L

HRQOL in patients with brain tumors

427	ind	ex score. The results of our study may provide useful information for the
428	reh	abilitation of patients with brain tumors.
429		
430	A	cknowledgments
431	We	would like to express our sincere gratitude to the patients who cooperated in this
432	stu	dy, and to the Department of Neurosurgery and Rehabilitation Medicine and
433	the	rapists at The Niigata University Medical & Dental Hospital.
434		
435	R	eferences
436	1.	Khan F, Amatya B, Ng L, Drummond K, Galea M. Multidisciplinary
437		rehabilitation after primary brain tumour treatment. Cochrane Database Syst Rev.
438		2015(8):CD009509. doi:10.1002/14651858.CD009509.pub3
439	2.	Nagane M. Diagnosis and Treatment for Malignant Brain Tumors. Article in
440		Japanese. Jpn J Rehabil Med. 2019;56(8):602-8. doi:10.2490/jjrmc.56.602
441	3.	Cagney DN, Martin AM, Catalano PJ, Redig AJ, Lin NU, Lee EQ, et al.
442		Incidence and prognosis of patients with brain metastases at diagnosis of
443		systemic malignancy: a population-based study. Neuro Oncol.

HRQOL in patients with brain tumors

29

444 2017;19(11):1511-21. doi:10.1093/neuonc/nox077

- 445 4. Aaronson NK, Ahmedzai S, Bergman B, Bullinger M, Cull A, Duez NJ, et al.
- 446 The European Organization for Research and Treatment of Cancer QLQ-C30: a
- 447 quality-of-life instrument for use in international clinical trials in oncology. J
- 448 Natl Cancer Inst. 1993;85(5):365-76. doi:10.1093/jnci/85.5.365
- 449 5. Taphoorn MJ, Claassens L, Aaronson NK, Coens C, Mauer M, Osoba D, et al.
- 450 An international validation study of the EORTC brain cancer module (EORTC
- 451 QLQ-BN20) for assessing health-related quality of life and symptoms in brain
- **452** cancer patients. Eur J Cancer. 2010;46(6):1033-40.
- **453** doi:10.1016/j.ejca.2010.01.012
- 454 6. Ikeda S, Shiroiwa T, Igarashi A. Developing a Japanese version of the
 455 EO-5D-5L value set. 2015;64:47-55.
- 456 7. Wagner A, Shiban Y, Lange N, Joerger AK, Hoffmann U, Meyer B, et al. The
- 457 relevant psychological burden of having a benign brain tumor: a prospective
- 458 study of patients undergoing surgical treatment of cranial meningiomas. J
- 459 Neurosurg. 2019;131(6):1840-7. doi:10.3171/2018.8.JNS181343
- 460 8. Rahman MA, Brekke J, Arnesen V, Hannisdal MH, Navarro AG, Waha A, et al.
- 461 Sequential bortezomib and temozolomide treatment promotes immunological

HRQOL in patients with brain tumors

462		responses in glioblastoma patients with positive clinical outcomes: A phase 1B
463		study. Immun Inflamm Dis. 2020;8(3):342-59. doi:10.1002/iid3.315
464	9.	Tanaka S, Sato I, Takahashi M, Armstrong TS, Cleeland CS, Mendoza TR, et al.
465		Validation study of the Japanese version of MD Anderson Symptom Inventory
466		for Brain Tumor module. Jpn J Clin Oncol. 2020;50(7):787-93.
467		doi:10.1093/jjco/hyaa036
468	10.	Huang ME, Cifu DX, Keyser-Marcus L. Functional outcome after brain tumor
469		and acute stroke: a comparative analysis. Arch Phys Med Rehabil.
470		1998;79(11):1386-90. doi:10.1016/s0003-9993(98)90232-5
471	11.	Geler-Kulcu D, Gulsen G, Buyukbaba E, Ozkan D. Functional recovery of
472		patients with brain tumor or acute stroke after rehabilitation: a comparative study.
473		J Clin Neurosci. 2009;16(1):74-8. doi:10.1016/j.jocn.2008.04.014
474	12.	O'Dell MW, Barr K, Spanier D, Warnick RE. Functional outcome of inpatient
475		rehabilitation in persons with brain tumors. Arch Phys Med Rehabil.
476		1998;79(12):1530-4. doi:10.1016/s0003-9993(98)90414-2
477	13.	Huang ME, Cifu DX, Keyser-Marcus L. Functional outcomes in patients with
478		brain tumor after inpatient rehabilitation: comparison with traumatic brain injury.
479		Am J Phys Med Rehabil. 2000;79(4):327-35.

HRQOL in patients with brain tumors

480 doi:10.1097/00002060-200007000-00003

- 481 14. Roberts PS, Nuño M, Sherman D, Asher A, Wertheimer J, Riggs RV, et al. The
- 482 impact of inpatient rehabilitation on function and survival of newly diagnosed
- **483** patients with glioblastoma. PM R. 2014;6(6):514-21.
- **484** doi:10.1016/j.pmrj.2013.12.007
- 485 15. Tang V, Rathbone M, Park Dorsay J, Jiang S, Harvey D. Rehabilitation in
- **486** primary and metastatic brain tumours: impact of functional outcomes on survival.

487 J Neurol. 2008;255(6):820-7. doi:10.1007/s00415-008-0695-z

488 16. Hansen A, Rosenbek Minet LK, Søgaard K, Jarden JO. The effect of an

489 interdisciplinary rehabilitation intervention comparing HRQoL, symptom burden

490 and physical function among patients with primary glioma: an RCT study

491 protocol. BMJ Open. 2014;4(10):e005490. doi:10.1136/bmjopen-2014-005490

- 492 17. Khan F, Amatya B, Drummond K, Galea M. Effectiveness of integrated
- 493 multidisciplinary rehabilitation in primary brain cancer survivors in an
- 494 Australian community cohort: a controlled clinical trial. J Rehabil Med.
- **495** 2014;46(8):754-60. doi:10.2340/16501977-1840
- 496 18. Huang ME, Wartella JE, Kreutzer JS. Functional outcomes and quality of life in497 patients with brain tumors: a preliminary report. Arch Phys Med Rehabil.

HRQOL in patients with brain tumors

498 2001;82(11):1540-6. doi:10.1053/apmr.2001.26613

499	19. Hansen A, Pedersen CB, Jarden JO, Bei	er D, Minet LR, Søgaard K.
500	Effectiveness of Physical Therapy- and	Occupational Therapy-Based
501	Rehabilitation in People Who Have Gliom	a and Are Undergoing Active
502	Anticancer Treatment: Single-Blind, Randomi	zed Controlled Trial. Phys Ther.
503	2020;100(3):564-74. doi:10.1093/ptj/pzz180	
504	20. McCarty S, Eickmeyer SM, Kocherginsky M, H	Keeshin S, Shahpar S, Semik P, et
505	al. Health-Related Quality of Life and Ca	ncer-Related Symptoms During
506	Interdisciplinary Outpatient Rehabilitation for	· Malignant Brain Tumor. Am J
507	Phys Med Rehabil. 2017;96(12):852-60. doi:10	.1097/PHM.000000000000756
508	21. von Elm E, Altman DG, Egger M, Pocock SJ,	Gøtzsche PC, Vandenbroucke JP,
509	et al. The Strengthening the Reporting of Obser	rvational Studies in Epidemiology
510	(STROBE) statement: guidelines for reporting	ng observational studies. J Clin
511	Epidemiol. 2008;61(4):344-9. doi:10.1016/j.jcl	inepi.2007.11.008
512	22. Budrukkar A, Jalali R, Dutta D, Sarin R, Devle	ekar R, Parab S, et al. Prospective
513	assessment of quality of life in adult patient	ts with primary brain tumors in
514	routine neurooncology practice. J	Neurooncol. 2009;95(3):413-9.
515	doi:10.1007/s11060-009-9939-8	

HRQOL in patients with brain tumors

33

516	23. Board. WCoTE. World Health Organization Classification of Tumours of the
517	Central Nervous System. 2021.

- 518 24. Coomans M, Dirven L, K Aaronson N, Baumert BG, van den Bent M,
- 519 Bottomley A, et al. The added value of health-related quality of life as a
- 520 prognostic indicator of overall survival and progression-free survival in glioma
- 521 patients: a meta-analysis based on individual patient data from randomised
- 522 controlled trials. Eur J Cancer. 2019;116:190-8. doi:10.1016/j.ejca.2019.05.012
- 523 25. Herdman M, Gudex C, Lloyd A, Janssen M, Kind P, Parkin D, et al.
- 524 Development and preliminary testing of the new five-level version of EQ-5D
- **525** (EQ-5D-5L). Qual Life Res. 2011;20(10):1727-36.
- **526** doi:10.1007/s11136-011-9903-x
- 527 26. Guilford JP. Fundamental statistics in psychology and education. 1950.
- 528 27. Umezaki S, Shinoda Y, Mukasa A, Tanaka S, Takayanagi S, Oka H, et al.
- 529 Factors associated with health-related quality of life in patients with glioma:
- 530 impact of symptoms and implications for rehabilitation. Jpn J Clin Oncol.
- **531** 2020;50(9):990-8. doi:10.1093/jjco/hyaa068
- 532 28. Shiroiwa T, Fukuda T, Ikeda S, Igarashi A, Noto S, Saito S, et al. Japanese
- 533 population norms for preference-based measures: EQ-5D-3L, EQ-5D-5L, and

HRQOL in patients with brain tumors

34

534		SF-6D. Qual Life Res. 2016;25(3):707-19. doi:10.1007/s11136-015-1108-2
535	29.	Hirose C, Fujii H, Iihara H, Ishihara M, Nawa-Nishigaki M, Kato-Hayashi H, et
536		al. Real-world data of the association between quality of life using the EuroQol 5
537		Dimension 5 Level utility value and adverse events for outpatient cancer
538		chemotherapy. Support Care Cancer. 2020;28(12):5943-52.
539		doi:10.1007/s00520-020-05443-8
540	30.	Izumi R, Noto S, Ikeda S, Fukuda T, Shiroiwa T, Igarashi A. Comparison of
541		three utility measures in stroke patients using item response theory analysis.
542		Niigata journal of health and welfare. 2013;13(1):1-12.
543	31.	Edelstein K, Coate L, Massey C, Jewitt NC, Mason WP, Devins GM. Illness
544		intrusiveness and subjective well-being in patients with glioblastoma. J
545		Neurooncol. 2016;126(1):127-35.doi:10.1007/s11060-015-1943-6
546	32.	Takane K, Hirasawa N, Hayashi S, Igarashi T, Miyata K. Relationship between
547		Health-related Quality of Life, Physical Function and Activities of Daily Living
548		in Acute Stroke Patients Discharged to Home. Article in Japanese. Rigakuryoho
549		Kagaku 34(5): 661–5, 2019.
550	33.	Golicki D, Niewada M, Buczek J, Karlińska A, Kobayashi A, Janssen MF, et al.
551		Validity of EQ-5D-5L in stroke. Qual Life Res. 2015;24(4):845-50.

HRQOL in patients with brain tumors

35

552 doi:10.1007/s11136-014-0834-1

- 553 34. O'Kane GM, Su J, Tse BC, Tam V, Tse T, Lu L, et al. The Impact of Brain
- 554 Metastases and Associated Neurocognitive Aspects on Health Utility Scores in
- 555 EGFR Mutated and ALK Rearranged NSCLC: A Real World Evidence Analysis.
- **556** Oncologist. 2019;24(7):e501-e9. doi:10.1634/theoncologist.2018-0544
- 557 35. Rogers JL, Vera E, Acquaye A, Briceno N, Jammula V, King AL, et al. Living
- 558 with a central nervous system (CNS) tumor: findings on long-term survivorship
- from the NIH Natural History Study. Neurooncol Pract. 2021;8(4):460-74.
- **560** doi:10.1093/nop/npab022
- 561 36. Jakola AS, Unsgård G, Myrmel KS, Kloster R, Torp SH, Sagberg LM, et al.
- 562 Surgical strategies in low-grade gliomas and implications for long-term quality

563 of life. J Clin Neurosci. 2014;21(8):1304-9. doi:10.1016/j.jocn.2013.11.027

- 564 37. Sagberg LM, Solheim O, Jakola AS. Quality of survival the 1st year with
- 565 glioblastoma: a longitudinal study of patient-reported quality of life. J Neurosurg.
- **566** 2016;124(4):989-97. doi:10.3171/2015.4.JNS15194
- 567 38. Vera E, Acquaye AA, Mendoza TR, Gilbert MR, Armstrong TS. Relationship
- between symptom burden and health status: analysis of the MDASI-BT and
- 569 EQ-5D. Neurooncol Pract. 2018;5(1):56-63. doi:10.1093/nop/npx010

HRQOL in patients with brain tumors

570	39. Jakola AS, Unsgård G, Solheim O. Quality of life in patients with intracranial
571	gliomas: the impact of modern image-guided surgery. J Neurosurg.
572	2011;114(6):1622-30. doi:10.3171/2011.1.JNS101657
573	40. Aaronson NK, Taphoorn MJ, Heimans JJ, Postma TJ, Gundy CM, Beute GN, et
574	al. Compromised health-related quality of life in patients with low-grade glioma.
575	J Clin Oncol. 2011;29(33):4430-5. doi:10.1200/JCO.2011.35.5750
576	41. Salo J, Niemelä A, Joukamaa M, Koivukangas J. Effect of brain tumour

- 577 laterality on patients' perceived quality of life. J Neurol Neurosurg Psychiatry.
- **578** 2002;72(3):373-7. doi:10.1136/jnnp.72.3.373