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Abstract

Sex differences in the size of specific brain structures have been extensively studied but careful and reproducible statistical hypothesis testing to
identify them produced overall small effect sizes and differences brains of males and females. On the other hand, multivariate statistical or machine
learning methods that analyse MR images of the whole brain have reported respectable accuracies for the task of distinguishing males from females.
However, most existing studies lacked a careful control for brain volume differences between sexes and, if done, their accuracy often declined to 70%
or below. This raises questions on the relevance of accuracies achieved without careful control of overall volume. Also the potential applicability is
uncertain insofar as the robustness of methods had rarely been tested or they suffered from poor accuracy when applied on a different cohort.

We examined how accurately sex can be classified with multivariate methods from gray matter properties of the human brain when correcting
for overall brain volume. We also tested, how robust machine learning classifiers are when predicting cross-cohort, i.e. when they are used on a
different cohort than they were trained on. Further, we studied how their accuracy depends on the size of the training set. MRI data was used from
two population based data sets of 3308 mostly older adults from the Study of Health in Pomerania (SHIP) and 1113 mostly younger adults from the
Human Connectome Project (HCP), respectively. Our new open source program BraiNN is based on a 3D convolutional neural network and was
compared with a simple logistic regression approach.

When using the gold standard method of matching male and female participants for total intracranial volume, BraiNN achieved 86% accuracy
when predicting sex on the same (SHIP) cohort and 73% accuracy when cross-predicting on the HCP cohort. Logistic regression achieved an accuracy
>90% on the SHIP cohort, but required a large number of training examples to perform well and did not generalize well across cohorts. On the other
hand, BraiNN lost less than 2% accuracy when the cohort size was reduced from 3308 to 1274.

1. Introduction
Brains of men and women are essentially similarly struc-

tured, exhibiting only small differences in regional cortical
and subcortical volumes, cortical thickness, and white mat-
ter (Eliot et al., 2021) and belonging to the same population
rather than two different ones (Joel and Fausto-Sterling,
2016; Joel, 2021). Nevertheless, large cohort studies (Lotze
et al., 2019; Raznahan et al., 2011; Ritchie et al., 2018;
Williams et al., 2021) and meta-analyses (Ruigrok et al.,
2014; Sacher et al., 2013) confirmed sex differences in global
and regional brain volumes, and even if effect sizes were
small, this does not mean that these differences are mean-
ingless (Funder and Ozer, 2019). Using multivariate statis-
tical approaches, more subtle neuroanatomical sex differ-
ences can be uncovered (Sepehrband et al., 2018). Thereby
methodological issues are crucial, such as the correction for
overall brain size (Sanchis-Segura et al., 2020).

We here seek differences in the brains of males and
females from themachine learning viewpoint (sometimes re-
ferred to as multivariate analysis) rather the statistical view-
point. This means we primarily seek accurate predictions
rather than reliable and simply interpretable differences. The
addressed task is sex classification, i.e. to predict whether
an MR image was taken from a man or woman. Previous
studies reported that brains of males and females can be
differentiated with an accuracy of 69% to 96% using voxel
pattern analyses (Anderson et al., 2019; Brennan et al., 2021;
Chekroud et al., 2016; Kurth et al., 2021; Feis et al., 2013).

However, a large caveat to those accuracy numbers is
that to our knowledge no large study on sex classification
followed the gold-standard approach to correct for sex-
specific average brain size differences by matching men and
women of the same overall brain volume. The study ofWang

et al. (2012) did so but had a sample of only 35 women and
35 men. Luders et al. (2009) used a volume-matched data set
as well, but did not predict the sex.

The men’s average total intracranial volume (TIV) is
larger than the women’s, by about 12% according to Ruigrok
et al. (2014). As is well-known and as we quantify below for
our data sets, TIV therefore allows a fairly good discrimina-
tion between men and women. Sanchis-Segura et al. (2020)
reported on their data set with a narrow age range that a sex
prediction accuracy of remarkable 84% can be achieved us-
ing total intracranial volume (TIV) alone. To uncover subtle
differences between brains of males and females, however,
the total size difference is irrelevant, the overall brain size a
nuisance variable and should be corrected for in order to find
relevant and direct sex differences (Luders et al., 2009). Liu
et al. (2014) argue that the popular normalization practice
of dividing regional volumes by overall brain volume is not
properly correcting for overall volume. They instead argue
for a non-linear correction term, chose a power-law fitted
to the data (’power-corrected proportions’). Many studies,
such as ours, apply a non-linear spacial normalization of raw
input in order to measure the volumes in a reference grid
of voxels. This mapping is complex and it is not transparent
howmuch information about the overall volume the different
preprocessing procedures leave in the normalized data that
could render the accuracies of different machine learning
programs incomparable. Moreover, many studies do not de-
scribe such input normalization by overall brain volume and
it must therefore be assumed that it has not been accounted
for. In such a case the reported accuracy values have very
limited relevance to the question we pose. For example, the
recent studies of Xin et al. (2019) and Luo et al. (2019) have
reported accuracies of 93% and 96.7% but have not described
a correction for overall brain volume. Eliot et al. (2021)
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summarize in their review that 8 out of 12 studies on sex
prediction did not correct for brain size. Three further studies
reported a decline in accuracy to 60%-70% when brain size
was controlled for with normalization (Eliot et al., 2021).

Two recent articles specifically studied the influence of
a variety of TIV-adjustment methods when searching sex-
specific regional differences (Sanchis-Segura et al., 2019) or
when predicting sex using multivariate methods (Sanchis-
Segura et al., 2020). The former study found that the TIV-
adjustment method has a strong influence on the outcomes.
In the later study, when no correction for TIV was per-
formed, sex could be reliably predicted with >80% ac-
curacy. However, after controlling TIV variation with the
power-corrected proportions method, the prediction accu-
racy dropped to about 60%. Sanchis-Segura et al. (2020)
even conclude that multivariate sex differences in gray mat-
ter volumes are largely dependent on male–female differ-
ences in TIV, a claim we dispute here using what Sanchis-
Segura et al. (2019) refer to as the “only undisputed method
to completely remove head-size variation”, a TIV-matched
subsample.

Even a highly accurate sex classifying model or program
is of limited relevance if it only performs well on the very
same population of examples that it was trained on. Overfit-
ting problems are usually accounted for by cross-validation
or by partitioning example sets into training, validation and
test sets. A little studied question is the robustness of a
classifier, when the distribution of input data to be clas-
sified is different from the one the classifier was trained
on. Such generalizability is important for any method that
would eventually be applied clinically. Naturally, a possible
loss in accuracy when predicting cross-cohort could vary
widely with the dissimilarity of used scanners, in silico
data preprocessing methods, and population differences, in
particular with respect to age and provenience. Anderson
et al. (2019) tested a weak form of generalizability using
two cohorts. They studied a cohort of prisoners and a co-
hort of non-incarcerated people and obtained similar results
on each. However, they trained in each case on the same
data set they evaluated on and did not report any cross-
cohort prediction accuracies. With regards to cross-cohort
experiments, Eliot et al. (2021) found that “thus far, the only
two [sex/gender] prediction studies to test their algorithms
on external populations both found their accuracy to drop
to near chance levels”. Joel et al. (2018) measured cross-
data set performance on test cohorts from three geographical
locations different from the one of the training set. The
cross-cohort accuracies were between 71% and 86%. More
recently, Sanchis-Segura et al. (2020) performed a cross-
cohort (external) validation, when they trained on a subset of
narrow age range from the HCP and used the trained models
to predict on their own data set with similar age distribution.
Thereby, logistic regression and a simple artificial neural
network achieved accuracies of 62% and 57% only. The
development of robust methods that perform well cross-
cohort has been challenging.

In this work we demonstrate that sex can indeed be pre-
dicted with high accuracy from high resolution T1-weighted
MR imaging, even when the effect of the total brain size
is completely removed by matching males and females by
TIV. We also introduce a certain 3D convolutional neural
network, BraiNN, that is more accurate than logistic regres-
sion when the training cohort is smaller as well as more
robust when predicting cross-cohort. In addition, we break
down the importance of individual regions of interest (ROIs)
for our multivariate classifier to test which brain areas are
contributing most to the discriminatory power. BraiNN is
open source and available from http://github.com/mabl3/

BraiNN.

2. Methods
2.1. Characterization of data basis

In this study, we used two data sets from two different
cohorts, the Human Connectome Project (HCP) and the
Study of Health of Pomerania (SHIP). The SHIP data set
includes data from the SHIP-2 and the SHIP-TREND-0
cohorts. Both cohorts include participants from the region
of West Pomerania, Germany. SHIP-2 examinations were
conducted from 2008 to 2012 and for SHIP-TREND-0 from
2008 to 2011 (Völzke et al., 2011). Both SHIP cohorts were
pooled together, resulting in a data set of 3308 MRI scans.
Participants ages ranged from 21 to 90 years with a mean
of 53 years and an almost balanced sex (48.7% self-reported
‘male’ and 51.3% self-reported ‘female’). The overall mean
TIV was 1545 ml (978 - 2311 ml), with 1646 ml for male
and 1450 ml for female brains. The average TIV of men was
13.5% larger than that of women, matching approximately
the aforementioned finding. The SHIP data set was primarily
used for training and evaluation of the models.

To assess cross-population performance of the models,
we used the HCP S1200 data set of the Human Connectome
Project (Van Essen et al., 2013). The HCP data set contains
1113 T1w MRI scans, acquired from 2012 to 2015 on
healthy young adults of age 22 – 37 (mean 29) and a near-
balanced sex (with 45.5% self-reported males and 54.5%
self-reported females). The overall mean TIV was 1441 ml
(1017 – 1960 ml), with 1553 ml for male and 15.3% more
than the 1347 ml for female brains. See Figure 1 for an
illustration of data set properties.

The primary feature to be assessed by our proposed
model was the voxel-wise gray matter volume (GMV) of
high resolution T1-weighted anatomical MRI scans. For this
purpose, tissue segmentation was performed using the SPM
and CAT12 toolboxes running on the MATLAB platform.
The following software versions were used: SHIP cohort
data SPM v6225, CAT12 v1073; HCP cohort data SPM
v7487, CAT12 v1450. At first, a spatial adaptive non-local
means (SANLM) denoising filter (Manjón et al., 2010) im-
proved signal-to-noise ratio, which was followed by internal
resampling to properly accommodate low-resolution images
and anisotropic spatial resolutions. The data were then bias-
corrected and affine-registered to further improve the out-
comes of the following steps, followed by the standard SPM
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Figure 1: Data set properties age and TIV (vol) in male and female groups of both data sets. A) Age distribution in female and
male samples in the SHIP data set. B) TIV distribution in female and male samples in the SHIP data set. C) Age distribution in
female and male samples in the HCP data set. D) TIV distribution in female and male samples in the HCP data set.

“unified segmentation” (Ashburner and Friston, 2005). This
acted as a starting point for the refinement stage. After skull-
stripping, the brain was then parcellated into the left and
right hemisphere, subcortical areas, and the cerebellum. Fur-
thermore, local white matter hyperintensities were detected
to be later accounted for during the spatial normalization.
Subsequently, a local intensity transformation of all tissue
classes was performed, which is particularly helpful to re-
duce the effects of higher gray matter intensities in the motor
cortex, basal ganglia, or occipital lobe before the final adap-
tive maximum a posteriori (AMAP) segmentation. This final
AMAP segmentation step (Rajapakse et al., 1997), which
is independent of a priori information of the tissue proba-
bilities, was then refined by applying a partial volume esti-
mation (Tohka et al., 2004), which effectively estimates the
fractional content for each tissue type per voxel, encoded as
a probability value between 0 and 1 for each tissue type. As a
last default step, the gray matter (GM) tissue segments were
spatially normalized to a common reference space (MNI152
NLIN 6th generation) using DARTEL (Ashburner, 2007)
registrations. For the HCP cohort prior to spatial normal-
ization a cohort-specific template was calculated using the
DARTEL template creation procedure of SPM. The spatially
normalized GM images were modulated in a way, that each
voxel encodes the local GMV prior to spatial normaliza-
tion. As a spatial non-linear normalization removes most of
the volume differences to the common template, the local
volumetric changes due to this transformation have to be
encoded. For this purpose the Jacobian determinant of the
local transformations were used to modulate each voxel
intensity, which afterwards encode dilation and contraction
during that transformation to the common template space.
As a result, after spatial normalization, the sum

∑

j xj of

all voxel values of an individual equals his or her total gray
matter volume up to small errors in the scale of 1 cm3.
Further, then every voxel coordinate of each participant’s
GM tissue segment point to the equal anatomical location,
enabling the statistical comparison of location and GMV.

Afterwards, a reference template based mask of GM
tissue probability (thresholded to 0.5 and binarised) was
applied to each single image to retain highly probable GM
voxels only. Then, each single image was standardized with
a Z-score normalization

x̃j = (xj − �)∕�, (1)

where � and � are the mean and standard deviation of
voxel values in the image. Training and classification was
performed on the final preprocessed images x̃.

Z-score normalization was important not only as a way
of feature scaling for the machine learning algorithms, it also
removed the correlation of the sum of voxel values in each
image with the TIV. Before Z-score normalization, the voxel
sum and TIV showed a positive correlation with Pearson’s
correlation coefficient r = 0.645 (see Supplementary Figure
1). Through Z-score normalization, the voxel values in each
image sum up to zero, which removes this correlation and is
another important measure to rid our data from the nuisance
variable TIV.

2.2. Machine learning classifiers
We compared two models for sex prediction, a con-

volutional neural network (CNN) and logistic regression.
Both models are parametrized functions that take as input
an image of dimension m = 121 × 145 × 121 and output
a ’femaleness’ score z and a ’femaleness’ probability p =
�(z) ∈ [0, 1] (see Figure 5), where � is the logistic sigmoid
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Figure 2: Illustration of BraiNN's architecture. The layer dimensions are written above the layers, the pooling and �lter dimensions
in orange. The �rst layer is the input image, a 121 × 145 × 121 voxel MRI scan with one gray value per voxel. It is followed by a
6 × 6 × 6 max pooling (same stride), resulting in a 20 × 24 × 20 layer. To this, a 7 × 7 × 7 convolution with 32 �lters is applied,
yielding a 32× 14× 18× 14 layer. This is again max-pooled with 2× 2× 2 (stride 'same'), resulting in a 32× 7× 9× 7 layer. This is
�attened and fully connected to a 128 unit dense layer (left arrow). A dropout layer (not shown) with rate 0.5 is applied before
the �nal dense layer (right arrow). The last layer outputs a single unit � the femaleness probability.

function, i.e. p = 1∕(1 + exp(−z)). We classify a brain
as female if and only if p > 0.5 or equivalently if the
femaleness score is positive (z > 0) and otherwise as male.
The accuracy is computed as the percentage of samples,
where the predicted and actual sex agree.

The CNN, that is the basis of our BraiNN model, uses at
its core the eponymous 3-dimensional convolutional layer.
Further it uses pooling layers, a dropout layer for regulariza-
tion and two fully-connected (‘dense’) neural network layers
as depicted and detailed in Figure 2. The initial pooling
layer was added to reduce the number of model parameters.
We tried different pooling sizes and found that 6 × 6 × 6
pooling works well and with negligible impact onmodel per-
formance (data not shown). The dropout rate in the dropout
layer was 0.5. The activation function for the convolution and
the 128 unit dense layer was PReLU (parametrized rectified
linear unit). The second dense layer (the output layer) had a
single unit with sigmoid activation function. In total, BraiNN
has 1, 930, 625 parameters (or “weights”).

Logistic regression (here abbreviated as LogReg) uses
one weight wj for each input voxel x̃j as well as a bias
parameterw0. It computes the femaleness score very simply
as

z = w0 +w1x̃1 +⋯ +wmx̃m

and therefore requires to train m + 1 = 2, 122, 946 parame-
ters. As training criterion, the cross entropy error was mini-
mized. The models were implemented using the TensorFlow
framework (Abadi et al., 2015). Training used a stochastic
gradient descent algorithm (Adam optimizer, learning rate
0.0001).

The BraiNN and LogReg parameters were estimated on
the SHIP data set during a 5 × 5-fold cross-validation as
described in the next section. BraiNN was trained for 100
epochs on the complete cohort data set and for 200 epochs
on the matched data set, LogReg was trained for 30 epochs
in both cases.

2.3. Cross validation
We used k × l-fold cross-validation with k = l = 5

for training, validation and evaluation. For this, the SHIP
data set was randomly and under the uniform distribution
split into five equally sized subsets. We then performed 5
“outer” training rounds, each time with a different one of
the five subsets held back as a test set. The respectively
remaining four subsets were combined to use for training. In
each of the “outer” training rounds, we performed a nested
cross validation by again randomly splitting the training data
into 5 equally sized subsets. Again, five “inner” training
rounds were performed, while holding back each time a
different one of the five inner subsets as a validation set.
The respectively four remaining inner subsets ((4∕5)2 =
64% of the data) were combined to the actual training set.
We then trained the model on the training set, using the
validation set during training to monitor and control the
training process. When the loss on the validation set did
not decrease significantly (i.e. by more than 0.0001) for
more than four epochs, the learning rate was reduced by
multiplying it with 0.75. The model weights were stored
each time the validation loss reached a new minimum. After
training was finished, the model performance was evaluated
on the test set. For this, the weights from the point of the
lowest validation loss during training were used. At each
training round, it is ensured that the test and validation data
were not used for parameter estimation and that the test
data was never seen during the training procedure. This
way, we trained the model 25 times on different random
splits of the data set, and report the average performance
of the single models on their respective test data as result.
Performing cross-validation reduces random effects where a
single split of the data into training, validation and test set
works particularly good or bad and gives a more confident
estimate of how well the model will perform on upcoming
new data.
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2.4. Human expert classification
We challenged an experienced MRI-researcher and neu-

rologist (author Martin Lotze) to compete against BraiNN
in classifying the sex based on a subset of MRI scans. We
randomly sampled 100 scans from the SHIP data set. He
was allowed to look at the original complete MRI scans but
sex information was withheld. We trained BraiNN on the
remaining 3208 SHIP images and let it classify the same
100 images as Martin Lotze. BraiNN was only shown pre-
processed images as before. The human expert principally
had an advantage as the preprocessing for BraiNN removed
helpful information such as TIV, head shape and the size of
the ventricular system.

2.5. Correction for TIV sex differences through
matching

It is well known that brain size, and for that matter body
height, correlate with sex (Ruigrok et al., 2014). In fact, the
self-reported sex in our SHIP data set can be classified with
80.7% accuracy when simply classifying any scan below a
TIV threshold of 1551.91 ml as female and otherwise as
male. Accuracies up to about 80% are therefore trivially
achievable and irrelevant unless some correction for brain
volume is performed.

Although the MRI scans are normalized for gray matter
volume and should only encode local volume differences,
we performed experiments on matched data sets to make
sure the model does not benefit even from remains of global
brain volume information. For this, the samples of the SHIP
data set were grouped by sex and by TIV in steps of 10 ml.
For each volume group, the larger of both sex subgroups
was identified and a random sample of the same size as the
smaller subgroup was taken. This way, we created a reduced
‘matched’ data set of 1274 images in which both sexes have
virtually the same TIV distribution, shown in Figure 3, and
cannot be distinguished based on that parameter any more.

Since the matched data set is much smaller than the
complete cohort data set (39%), a reduced performance of
a parameter rich model is to be expected simply from the
fact that fewer training images were available. To assess
this effect, we also created a reduced data set by randomly
sampling 1274 images from the complete SHIP data set
and trained our models on this reduced data set. To reduce
stochastic effects, we repeated the random sub-sampling
five times. Each time, training was performed with 5-fold
cross validation. Here, the data is again randomly split into
five equally sized subsets. Then, in five training rounds,
each time a different subset is held back as test set and the
remaining subsets are combined into the training set. This
time, no validation sets are created for use during training.
This way, the models were also trained 25 times on the
reduced data set.

2.6. Regions of interest
To investigate the contributions of certain brain regions

to the accuracy of sex prediction, we performed occlusion
experiments respecting prior neuroanatomical knowledge.

Figure 3: Distribution of TIV (vol, in cm3) in female and male
MR images in the volume-matched data set.

For this purpose we created 17 different binary regions
of interest (ROI), compiled from 136 labels of the Neu-
romorphometrics atlas (provided by Neuromorphometrics,
Inc. under academic subscription) as included in SPM12
and saved in the same dimensions as the MRI images.
See Figure 7 for the list of regions and supplementary
file Neuromorphometrics_Derived_ROIs.xlsx for an exhaustive
overview. In one experimental setting (‘only ROI’), we
applied each ROI mask to each input image in a way that
only the respective brain region was left in the image, and
the remaining voxels were set to zero. In a second setting
(‘masked ROI’), we did the opposite, i.e. only setting the
corresponding ROI voxels to zero and leaving the remaining
image voxels unchanged. Thus, in the ‘only ROI’ setting,
the classification results indicate how well the models per-
form on just small regions of the brain, and the ‘masked
ROI’ classification results indicate, how much the models
rely on a brain region. We use the area under the receiver
operation characteristics curve (AUC) to evaluate the model
performances. In the ‘only ROI’ results, a high AUC for
one or more ROIs could indicate that the respective regions
are sufficiently different between the sexes. In the ‘masked
ROI’ results, a much worse performance compared to the
models that used the whole brain images would mean that
the respective region was key to successful classification and
thus could also indicate that the remaining regions are of low
information about the sex.

3. Results
3.1. Performance using complete cohorts

First we compared the two machine learning classifiers
BraiNN and LogReg with each other using all – and there-
fore unmatched – data of the complete SHIP cohort as
described in Section 2.3. Recall, that the spatial non-linear
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Table 1

Mean accuracies of BraiNN and LogReg model in di�erent
training scenarios ('Training Data'). In the 'Complete SHIP'
case, the entire SHIP data set was used for training (see
Section 2). For 'Matched SHIP', the modi�ed SHIP data
set with equal TIV distributions for males and females was
used (Section 2.5). In the 'Reduced SHIP' scenario, randomly
sampled subsets of the entire SHIP data set were used with the
same size as the 'Matched SHIP' data set. 'SHIP Accuracy'
denotes the fraction of correctly classi�ed MRI scans from
the respectively held-back test data. 'HCP Accuracy' is cross-
cohort and denotes the fraction of correctly classi�ed MRI
scans from the entire HCP data set after training on SHIP
data only.

Training Data Model SHIP Accuracy HCP Accuracy

Complete SHIP LogReg 94.59% 69.83%
BraiNN 89.78% 83.11%

Matched SHIP LogReg 90.91% 71.45%
BraiNN 86.15% 73.34%

Reduced SHIP LogReg 92.87% 65.26%
BraiNN 88.40% 80.60%

normalization described in Section 2.1 is supposed to control
for overall brain size already. The average performances are
shown in Table 1. LogReg performed better on the SHIP
test data with 94.59% accuracy, but BraiNN also got a high
accuracy of 89.78%. This is also mirrored in the area under
the receiver operation characteristic curve (AUC). LogReg
had an AUC of 0.988, BraiNN of 0.962 on the SHIP test
data. Supplementary Figure 2 shows these ROC curves on
the left.

The LogReg accuracy is just under the maximum re-
ported accuracy we found in the literature: Feis et al. (2013)
had reported a sex classification accuracy of 96%, achieved
with a support vector machine. However, their study did not
describe any control for overall brain size, indicating this
comparison may not be fair. Further, their data set contained
only n = 67 + 55 individuals, suggesting a relatively low
precision of the accuracy estimate.

3.2. On volume-matched participants
In order to ensure that possible undetected remains of

global brain volume information in the data do not distort the
models, we then used the matched SHIP data set described
in Section 2.5 for training of a LogReg and BraiNN. Both
methods were evaluated using 5 × 5-fold cross-validation.
As can be seen from the results in Table 1, LogReg still
performed better on the SHIP test data with an accuracy of
90.91% compared to BraiNNwith 86.15%. TheAUCs for the
matched data set show the same trend as with the complete
cohort data set. LogReg has an AUC of 0.969, BraiNN of
0.930. See the left side of Figure 4 for the ROC curves.

The distribution of the femaleness score z and female-
ness probability p output by BraiNN for the test images
is shown in Figure 5. The femaleness score distribution
for male images peaks at around -3 to -4 and for female
images at around +3 to +4, both distributions appear to be

approximately normal distributed. BraiNN is correctly and
confidently predicting the sex of the majority of test images.
There are few extreme cases of women classified as very
likely male and vice versa. However, the shape of Figure 5A
does not suggest that there is a substantial fraction of label
errors, in which case either distribution would be expected to
have a second mode. The femaleness probability is correctly
close to 0 or 1 for most images and the default classifier
threshold of 0.5 appears to be a reasonable choice in this
setting.

Previously, Wang et al. (2012) had performed sex clas-
sification on a volume-matched data set of only 35 male
and 35 female subjects. Their support vector machine had as
input combined structural MRI and resting-state fMRI data
and obtained a mean classification accuracy of 89%. Our
similar accuracy confirms the result that even with a careful
gold-standard control for brain volume the sexes can be
distinguished quite accurately. Furthermore, our much larger
data set of 1274 images allows for more precise estimates of
the accuracy and we here used only part of the input features
that Wang et al. (2012) had used.

3.3. Influence of training cohort size
Using a volume-matched subset in Section 3.2 reduced

the prediction accuracy of both studied methods with respect
to using the complete SHIP cohort in Section 3.1. As hypoth-
esized, this could be a consequence of what is sometimes
called feature leakage in the machine learning domain. This
could be the case if at least partial information from the total
brain volume is still represented in the complete cohort data
set, even though some normalization method was applied.
On the other hand, smaller training sets also generally lead
to less accurate models, when their number of parameters is
large. To assess the impact of the latter, i.e. of the reduced
number of training images, we also trained the models on
randomly sampled subsets from the SHIP data set. As one
of the subset sizes we chose the size of the matched data set,
1274, in order to make comparisons that allow to disentangle
the two expected causes for said difference.

Figure 6 shows the accuracies of our methods as a
function of cohort size. Note that with the cross-validation
we use, a larger cohort size both allows a better parameter
training and a more precise evaluation of the accuracy.

In comparison, the performance on the randomly re-
duced data set of the same size of the matched data set was
92.87% accuracy for LogReg and 88.40% for BraiNN on
the SHIP test data. Thus, less than half of the lost percent
points from the whole data set training to the matched data
set training can be explained by the reduced training set
size. If we subtract the losses due to a smaller (random
subset) cohort size from the losses due to using a volume-
matched data set, we obtain estimates of the effect of feature
leakage: For BraiNN, an estimated (89.78−86.15)−(89.78−
88.4) = 2.25 percent points and for LogReg an estimated
(94.59 − 90.91) − (94.59 − 92.87) = 1.96 percent points of
the loss in accuracy when using a volume-matched data set
rather than a normalization approach can be attributed to an
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Figure 4: Receiver operation characteristic (ROC) curves for BraiNN (CNN) and LogReg on the matched SHIP data set. The
ROC curves of each single training run are shown in blue, the black curves are the respective averaged ROC curves. The mean
area under the curve (AUC) is shown in the bottom right of the plots. A) ROC and AUC for BraiNN, trained on the matched
SHIP data set when predicting the SHIP test data. B) ROC and AUC for BraiNN, trained on the matched SHIP data set when
predicting the HCP data set. C) ROC and AUC for LogReg, trained on the matched SHIP data set when predicting the SHIP
test data. D) ROC and AUC for LogReg, trained on the matched SHIP data set when predicting the HCP data set.

incomplete accounting for TIV. This confirms quantitatively
that matching for TIV is the gold standard for removing the
influence of body size on brain comparisons between males
and females. Naturally, if not done with matching, the choice
of a brain-size normalization procedure may have a large
influence on sex predictability (Sanchis-Segura et al., 2020).

The leftmost data points in Figure 6 show the accuracy
for a data set size of 347, which is the number of children of
which Kurth et al. (2021) classified their sex using relevance
vector regression (RVR) following a principal component
analysis (PCA). On their data set Kurth et al. achieved a
classification accuracy of 80.4%. When we downsample our
data set to the same size in order to correct for advantages
from our larger data set, BraiNN achieves an accuracy of
82.8%. This suggests that our convolutional neural network

is competitive with or better than the approach of Kurth et al.
(2021).

The solid curves crossing each other in Figure 6 show
also very prominently that BraiNN is more accurate than Lo-
gReg on smaller data sets below roughly 1000 participants.
Logistic regression, as performed by us, looses accuracy
very quickly when the cohort size is small and – although
better for large cohorts – would likely be noncompetitive for
many of the cohort sizes from the relevant literature.

3.4. Cross cohort prediction
A major concern for translation of machine learning

(ML) methods to clinical use is their robustness with re-
spect to differences in machines, protocols, preprocessing
software and practices. A ML method could perform better
than a human expert when applied to data from the same
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Figure 5: Distribution of femaleness score and femaleness probability from BraiNN on SHIP test images after training on the
matched SHIP data set. A) Distribution of the femaleness score, red bars depict the frequency (y axis) of the score (x axis) for
female scans, blue for male scans. A score below 0 leads to classi�cation of the image as male, otherwise as female. B) Distribution
of the femaleness probability. Scans with a femaleness probability above 0.5 are classi�ed as female.

Figure 6: In�uence of the data set size (347, 1274, 2291 and 3308) on the model accuracies. The smaller sized data sets were
randomly sampled from the complete cohort data set and training was performed as described in Section 2.5.

distribution as the data it was trained on but perform poorly
and much worse than an expert when applied to data, say,
from a different machine. In order to study the robustness
of our methods we used a second data set with data from
the Human Connectome Project (HCP), which is unrelated
to the SHIP cohort and its age distribution is narrower and
with a much smaller mean. This allows to assess how well
the trained models generalize to new images from a different
scanner and population. We then performed within-data set
and between-data set experiments. In the first, SHIP images
were used both for training and performance evaluation,
in the later, SHIP images were used for training and HCP
data for performance evaluation. In both cases 5 × 5-fold
cross-validation was performed. Table 1 shows the results
for logistic regression and our CNN.

As expected, in a cross-cohort prediction the accuracy
drops for both methods compared to the within-cohort re-
sults (Table 1). When training on the complete SHIP cohort
and predicting on HCP, the LogReg performance steeply
dropped to 69.83% accuracy (AUC 0.919, see right side of
Supplementary Figure 2). In the cross-cohort predictions,

BraiNN retained a higher accuracy of 83.11% (AUC 0.927).
When trained on the volume-matched SHIP data set, the
accuracies on the HCP cohort were 71.45% for LogReg and
73.34% for BraiNN (AUC 0.829 and 0.843, respectively, see
right side of Figure 4).

The training set size had a smaller impact when training
cross-cohort, presumably as the performance is overall lower
and a good fit to the training cohort is not necessarily an
advantage (Figure 6). BraiNN is consistently more accurate
than LogReg by about 15 percent points, e.g. the HCP
performance dropped to 65.26% for LogReg and 80.60%
for BraiNN when trained on a random subset of size 1274
of the SHIP data set. Overall these experiments in which
BraiNN always performed more accurately than LogReg
suggest that our BraiNN convolutional neural network is
more robust than logistic regression towards the changes
in the data set distribution stemming from changes in the
scanner, its software and the population.
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3.5. Regions of interest
Weperformed the ROI experiments on both the complete

cohort and matched SHIP data set. We observed overall the
same effects in both cases and will therefore only describe
the matched data set results in more detail. The other results
can be found in the Supplementary Material. Note that in
some experiments we found a poor model accuracy but a
rather high AUC. For example, using only the cerebellum for
training resulted in an accuracy of 0.483 for LogReg when
using the default classifier threshold of 0.5 (see Section 2.2),
while the AUC was 0.824. Here we observed a tendency
to predict values close to zero for both males and females
(not shown). With a classifier threshold of 0.5, this then
leads to almost every image being predicted as male and
thus the poor accuracy. However, the high AUC indicates
that LogReg was indeed able to accurately predict the test
data with a better suited classifier threshold. We thus here
compare the ROIs based on the more meaningful AUC
measure rather than the accuracies.

The first experimental setting ‘only ROI’, where only
one region is ’visible’ to the classifier, revealed that for
both models any of the investigated single brain regions are
enough to classify brains with an AUC of at least 0.620.
While slightly better than random guessing, this is a poor
performance compared to the whole brain images, where
LogReg and BraiNN achieve 0.969 and 0.930, respectively.
However, some single ROIs performed quite well on their
own. Especially the cerebellum showed the highest AUC
for both models with 0.943 and 0.849 for LogReg and
BraiNN, respectively. When classifying the HCP data set,
the cerebellum also performed best with an AUC of 0.824
and 0.759 for LogReg and BraiNN (whole brain images:
0.829 (LogReg) and 0.843 (BraiNN)). See Figure 7 for a
bar plot comparing the AUC of the “whole brain” images
and the single ROIs for both models. Supplementary Figure
3 shows a bar plot of the model performances on the HCP
data set. The exact values are shown in Supplementary Table
2. Other regions with an AUC > 0.8 (LogReg, BraiNN)
were temporal gyri (0.850, 0.808) and occipital lobe (0.849,
0.801).

The second experimental setting (‘maskedROI’) showed
for both models and both training data sets only slight
differences in model AUC, i.e. leaving out any ROI could be
compensated by the models and performed almost as good
as when the whole brain was input. See the Supplementary
Material for bar plots illustrating the different AUCs for
“whole brain” images and images withmasked ROIs for both
models and both training data sets, and the performances on
the cross cohort data (Suplementary Figures 2, 4 and 6). The
exact values are shown in Supplementary Tables 3 and 4.

3.6. Machine versus human expert
Of the 100 test scans given both to BraiNN and Martin

Lotze, BraiNN correctly classified 87 scans and ML cor-
rectly classified 62 scans. 36 images were correctly classified
by the program and not by the expert, whereas 11 images

Table 2

ROI based accuracy (AUC) of correct sex recognition from
the BraiNN model, trained and tested on the volume-matched
SHIP data set. Without any restricting to ROIs ('whole
brain' at bottom) BraiNN achieved an AUC of 0.93. When
restricting BraiNN for instance on the cerebellar ROI an AUC
of about 0.85 was reached. Interestingly, those areas with
best di�erentiation performance were remarkably congruent
to those which showed highest sex-di�erences in conventional
VBM-comparisons (see Cohen's d in last column averaged over
both hemispheres and selected from both comparisons (GMV:
�women>men� and �men> women�) from (Lotze et al., 2019).

BraiNN
Cohen's DROI SHIP

AUC

Cerebellum/ 0.85
Anterior cerebellar hem. 0.33 m>w

Temporal gyri/ 0.81
Superior temporal sulcus 0.27 w>m

Occipital lobe 0.80 0.29 m>w

Thalamus 0.77 0.21 w>m

Frontal pole 0.77 0.34 w>m

Amygdala Hippocampus 0.76 0.43 m>w

Frontal gyri/ 0.75
dlPFC: BA45 0.32 w>m

Medial temporal lobe/ 0.72
Parahippocampal gyrus 0.53 m>w

Paracentral gyri 0.72 0.27 m>w

Medial frontal lobe 0.71 0.32 w>m

Lateral parietal lobe 0.70 0.25 w>m

Fusiforme gyri 0.70 0.36 m>w

Basalganglia/ 0.67
Putamen 0.32 m>w

Insula/ 0.66
posterior insula 0.28 w>m

Medial parietal lobe 0.66 -

Temporal pole 0.66 0.33 m>w

Brainstem 0.62 -

Whole brain 0.93

were correctly classified by the human and not by the pro-
gram, 51 were correctly predicted by both. BraiNN is more
accurate at sex classification than this expert (p < 0.0004,
two-sided sign test).

4. Discussion
We examined the questionwhether two same-size brains,

one of a male and one of a female, are distinguishable
from magnetic resonance images and how the sex classifi-
cation accuracy of a machine learning model depends on the
method, the cohort size and whether the method’s param-
eters were estimated on the same or a different cohort. The
extent to which the brains of men and women differ had been
studied extensively and discussed controversially. Recently,
it has been argued that the human brain is not sexually
dimorphic (Eliot et al., 2021), that the sex differences can
largely be attributed to male-female differences in TIV and
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Figure 7: AUC of LogReg and BraiNN for SHIP images of �whole brain� or only a certain ROI. The volume-matched SHIP data
set was used for training.

that TIV-adjustment methods can be ineffective and influ-
ence much the results (Sanchis-Segura et al., 2020). Anal-
yses in the MRI domain of machine learning applications
are also impeded by the fact that one team of researchers
does (can) not reproduce the results of another team of
researchers. Comparisons become inconclusive, e.g. when
another cohort is used, other scanners, other TIV-adjustment
methods as well as other classification methods and if the
respective program’s code, version and calling parameters
are not available.

We found that indeed same-size brains of men and
women can be distinguished with high accuracy. At least an
accuracy of about 91% can be achieved on a data set where
males and females of the same TIV were matched. Thereby,
the differences between the sexes cannot be explained away
by differences in overall volume. In our large data set of 1274
volume-matched participants this accuracy also cannot be
explained by chance. Therefore, the information to distin-
guish the brains of men and women is contained somehow
in their MR images. Our methods achieve a better accuracy
than a human expert but have the disadvantage that they do
not intrinsically explain their decision.

We tried to order the relative importance of different
regions of the brain for sex discrimination with our arti-
ficial neural network BraiNN by occluding ROIs as input
to BraiNN during prediction and also during training. We
found that cerebellum, temporal gyri and occipital lobe are
contributing most to the discriminatory power. Interestingly,
these have been the areas exhibiting larger GMV in males
than in females in a previous paper (Table 2, Lotze et al.
(2019)) and have been connected to sensorimotor (cerebellar
hemispheres), (higher) visual recognition and perception
(fusiform gyrus and occipital lobe) but also to cognitive
processing (STS, temporal pole). However, the differences

between brains of females and males are likely not restricted
to size differences of certain regions of interest but more
complex. None of the regions are by themselves neces-
sary for discrimination and nearly the same accuracy can
be achieved when each region is occluded versus when
the whole brain is visible. We believe that more advanced
methods for explainable artificial intelligence are required
to assist an expert in interpreting sex differences beyond
mere regional size differences, to explain why a particular
brain belongs to the predicted class and to fill the gap
of unexplained differences that statistical methods of per-
region GMV leave.

We show how the classification accuracy increases with
the size of the data set available for training. In particular
for smaller cohorts, say of 1000 participants or below, much
accuracy is lost. This means that some of the true sex differ-
ences may not be uncoverable in studies on smaller cohorts.
This also means that comparisons between methods should
take different data set sizes into account. Correcting for the
accuracy lost due a training set size reduction when going
from a complete cohort to a volume-matched subset, we find
that indeed – and despite our best effort – our complete co-
hort data set appeared to suffer from feature leakage, where
our preprocessing with spacial and Z-Score normalization
did not succeed to fully remove the information from the
nuisance variable TIV.

An ultimate goal may be that a machine learning method
can produce valuable information from an MRI scan, with-
out requiring that thousands of other individuals from the
same population have been scanned before on the same
machine. Toward that goal we studied the loss in accuracy
that is obtained when training on one cohort and evaluating
on another cohort. Interestingly, the method that is more
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accurate on the same cohort (logistic regression) is less accu-
rate when applied cross-cohort. The BraiNN convolutional
neural network appears to be more robust with respect to
the change of scanner and population, even though both
methods have roughly the same number of parameters, about
two million. After training on the complete SHIP cohort,
BraiNN achieves an accuracy of 83.1% when predicting
on the HCP cohort compared to 89.8% (cross-validated)
when predicting on SHIP itself. Although this indicates
that a convolutional neural network may generalize better
than logistic regression, such results are likely sensitive
to distributional differences between the cohorts and the
generalizability would ideally be tested using scans from
many or heterogeneous sources.

Previously, machine learning methods have been com-
pared against humans for the medical image classification
task. Schaffter et al. (2020) reported results on the Digital
Mammography DREAM challenge where mammogram im-
ages were to be classified: Will the woman be diagnosed
with breast cancer in the 12 months after taking the image
or not? The competing automatic methods from 2017 were
still substantially less accurate than a particular radiologist.
In the broader ImageNet challenge, however, where photos
from everyday life were to be classified into one of 1000
categories, the best machine learning method achieved near-
human performance in 2015 (Russakovsky et al., 2015): The
GoogLeNet convolutional neural network achieved a top-5
error of 6.8%, better than one human annotator, but yet worse
than another (5.1%). The top-5 error rate is the percentage
of images where the true class is among five predicted
classes. Since, automatic methods have improved steadily
and significantly and automatic methods have lowered the
top-5 error rate for the ImageNet data to about 1.2% (Pham
et al., 2021). It can be expected that ongoing improvements
to ML methods of computer vision will translate to higher
accuracies in classifying MR images as well.

Limitations of the study. The ROIs we chose for the oc-
clusion experiments are rather coarse. Further examinations
could possibly improve interpretability by using a finer par-
tition of the brain or a ’searchlight’ approach (Weaverdyck
et al., 2020). Another limitation is that the sex attribute
was self-reported and not complemented by sex-specific
measurements, such as those of testosterone or oestrogen.
We carefully excluded the information that brain size holds
on sex. Also, male and female individuals had very similar
age distributions in the SHIP cohort. Furthermore, the broad
differentiation of ROI-specific recognition rates are an ar-
gument that neuroanatomy is indeed the factor modulating
correct classification. However, another limitation is that
we cannot exclude the possibility that some other further
attribute of individuals – unknown to us or unrecognized
– correlates with sex, is detectable in MR images but is
irrelevant to the question how male and female brains differ
principally.

5. Conclusions
The current study set out to investigate if sex can be

predicted from gray matter volumes when total brain size
is completely removed by matching males and females by
total intracranial volume. In a large data set, we were able
to achieve high classification rates also when evaluated on
another cohort. Machine learning is able to find differences
between brains of males and females that may not appear
when using statistical models. Our convolutional neural net-
work BraiNN achieves a comparably good accuracy already
with a few hundred training images.
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