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2 

Abstract 1 

We aimed to construct a prediction model based on computed tomography (CT) radiomics 2 
features to classify COVID-19 patients into severe-, moderate-, mild-, and non-pneumonic. A 3 
total of 1110 patients were studied from a publicly available dataset with 4-class severity 4 
scoring performed by a radiologist (based on CT images and clinical features). CT scans were 5 
preprocessed with bin discretization and resized, followed by segmentation of the entire lung 6 
and extraction of radiomics features. We utilized two feature selection algorithms, namely 7 
Bagging Random Forest (BRF) and Multivariate Adaptive Regression Splines (MARS), each 8 
coupled to a classifier, namely multinomial logistic regression (MLR), to construct multiclass 9 
classification models. Subsequently, 10-fold cross-validation with bootstrapping (n=1000) 10 
was performed to validate the classification results. The performance of multi-class models 11 
was assessed using precision, recall, F1-score, and accuracy based on the 4×4 confusion 12 
matrices. In addition, the areas under the receiver operating characteristic (ROC) curve 13 
(AUCs) for multi-class classifications were calculated and compared for both models using 14 
“multiROC” and “pROC” R packages. Using BRF, 19 radiomics features were selected, 9 15 
from first-order, 6 from GLCM, 1 from GLDM, 1 from shape, 1 from NGTDM, and 1 from 16 
GLSZM radiomics features. Ten features were selected using the MARS algorithm, namely 2 17 
from first-order, 1 from GLDM, 2 from GLRLM, 2 from GLSZM, and 3 from GLCM 18 
features. The Mean Absolute Deviation and Median from first-order, Small Area Emphasis 19 
from GLSZM, and Correlation from GLCM features were selected by both BRF and MARS 20 
algorithms. Except for the Inverse Variance feature from GLCM, all selected features by BRF 21 
or MARS were significantly associated with four-class outcomes as assessed within MLR 22 
(All p-values<0.05). BRF+MLR and MARS+MLR resulted in pseudo-R2 prediction 23 
performances of 0.295 and 0.256, respectively. Meanwhile, there were no significant 24 
differences between the feature selection models when using a likelihood ratio test (p-value 25 
=0.319). Based on confusion matrices for BRF+MLR and MARS+MLR algorithms, the 26 
precision was 0.861 and 0.825, the recall was 0.844 and 0.793, whereas the accuracy was 27 
0.933 and 0.922, respectively. AUCs (95% CI)) for multi-class classification were 0.823 28 
(0.795-0.852) and 0.816 (0.788-0.844) for BRF+MLR and MARS+MLR algorithms, 29 
respectively. Our models based on the utilization of radiomics features, coupled with machine 30 
learning, were able to accurately classify patients according to the severity of pneumonia, thus 31 
highlighting the potential of this emerging paradigm in the prognostication and management 32 
of COVID-19 patients. 33 

Keywords: COVID-19, Pneumonia, Radiomics, Machine Learning, Computed Tomography, 34 
High-Dimensional Data. 35 
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INTRODUCTION 1 

The highly contagious SARS-CoV-2 virus has led to significant morbidity and mortality 2 

worldwide 1. Pneumonia is regarded as one of the main complications of COVID-19 disease, 3 

which can lead to lethal conditions while escalating the cost of healthcare 2. The most popular 4 

diagnostic test considered as the gold standard for coronavirus disease is the reverse 5 

transcription polymerase chain reaction (RT-PCR) assay 3. While highly specific, RT-PCR 6 

has shown low sensitivity, as studies have reported significant false-negatives in patients who 7 

had abnormalities in their chest CT images confirmed with secondary follow-up RT-PCR to 8 

be positive for COVID-19 4. 9 

CT aids in the diagnosis and management of COVID-19 patients and could be potentially 10 

used as an outcome/survival prediction tool, towards enhanced treatment planning 5-7. CT 11 

scanning has been utilized as a highly sensitive tool for COVID-19 diagnosis 8 since it is fast 12 

and generates quantifiable features (e.g., the extent to which lung lobes are involved) and non-13 

quantifiable features (e.g., ground-glass opacities and their laterality) to assess COVID-19 14 

pneumonia, besides the enhanced sensitivity compared to RT-PCR 9. 15 

Severity can be defined as an index that depicts the effects of a disease on mortality, 16 

morbidity, and comorbidities 10 and has the potential to help physicians manage the patients 17 

more decently whether in patients with cancer or with non-cancer diseases 11,12. A number of 18 

severity scoring systems have been proposed to quantify disease advancement in patients, 19 

including general assessments (e.g., APACHE score) and disease-specific ones (e.g., Child-20 

Pugh score) 13. Several conventional scoring systems have been proposed for COVID-19 21 

severity assessment 14. These include the usage of patient clinical, comorbidity, and laboratory 22 

data, which are all helpful in constructing predictive models for severity assessment in 23 

COVID-19 15. 24 

There has also been a growing interest in using imaging data of patients, such as thoracic 25 

CT images. For example, a study by Sanders et al. 16 computed the score of CT images in 26 

patients with cystic fibrosis and evaluated the prognostic ability. A promising line of research 27 

that emerged recently reported on the CT severity index and its correlation with acute 28 

pancreatitis severity 17-19. The COVID-19 Reporting and Data System (CO-RADS) was 29 

suggested for standardized visual assessment of COVID-19 pneumonia to enhance agreement 30 

between radiologists 20. This system includes features for the diagnosis of COVID-19 and 31 

consists of a 5-point scale for categorizing patient CT images. In addition, other guidelines 32 

aiming to reach consensus when interpreting COVID-19 suspected chest CT images were 33 

proposed 21. These guidelines are mostly based on visual assessment of images; e.g. the 34 
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amount to which lung lobes are involved, the volume of which is infected, and anatomical 1 

assessments. 2 

 Francone et al. 22 reported a study on the correlation between CT score and the severity of 3 

coronavirus disease. Zhao et al. 23 also conducted research on the measurement of the extent 4 

to which lung lobes are infected and evaluation in COVID-19 patients' prognosis. Li et al. 24 5 

also confirmed the association between chest CT score and COVID-19 pneumonia severity. 6 

At the same time, most scoring systems involve visual assessment and hence are time-7 

consuming 23,24. In this regard, medical image analysis using machine learning and radiomics 8 

has been applied to quantify features to tackle these main challenges 25-35. 9 

The field of radiomics opens pathways for the study of normal tissues, cancer, and many 10 

other diseases, including potentially the newly emerging COVID-19 disease 6,7,29,36-40. 11 

Specifically, Xie et al. 41 evaluated the potential of a radiomics framework to diagnose 12 

COVID-19 from CT images. Di et al. 42 also studied whether radiomics features can help to 13 

distinguish between pneumonia of COVID-19 and that of other viral/bacterial causes. A 14 

number of studies reported on the application of radiomics analysis to CT images towards 15 

COVID-19 classification and prognostication43. Homayounieh et al. 44 assessed the prognostic 16 

power of CT-based radiomics features to determine severe and non-severe cases. In another 17 

study, Li et al. 45 proposed a radiomics model based on CT images and classified patients 18 

based on the criticality of their disease. A recent study by Yip et al. 46 applied a robust 19 

radiomics model to CT images to predict the severity of COVID-19 disease in patients. All 20 

above models pursued binary task performance, which reduced multiclass classification to 21 

two class approaches. However, in the real clinical triage situation, scoring systems consist of 22 

multi-class datasets. In the present study, involving a large cohort of patients, we aimed to 23 

construct a CT radiomics-based multi-class classification model to predict the severity of 24 

COVID-19 pneumonia. 25 

 26 

 27 

 28 

 29 

 30 

 31 
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MATERIALS AND METHODS 1 

Data Description  2 

Figure 1 presents the different steps performed in this study. All experiments were performed 3 

in accordance with relevant guidelines and regulations. 4 

Datasets and Segmentation 5 

This study is based on the MosMed Dataset (mosmed.ai) consisting of 1110 patient CT scans, 6 

also utilized in other efforts 46,47. Ethics approval and consent to participate were not needed 7 

since the study was preformed on open access online dataset. The patients were referred to the 8 

Municipal Hospital in Moscow, Russia, and were classified based on clinical and visual CT 9 

findings as follows. 10 

In the zero class, the patient has neither clinical symptoms (e.g. fever) nor CT findings in 11 

favor of any kind of pneumonia (Class 0, non-pneumonic). The 1st class contains patients who 12 

have a low-temperature fever (t < 38 °C) in addition to a mild increase in respiratory rate (RR 13 

<20) while showing none or < 25% ground-glass opacity (GGO) involvement (Class 1, 14 

COVID-19 with mild severity). Patients in the 2nd class have a higher body temperature (t > 15 

38.5 °C) with a RR of 20-30, while CT scan shows 25-50% involvement of lung parenchyma 16 

(Class 2, COVID-19 with moderate severity). Patients in the 3rd class have high body 17 

temperature and RR of 30 or more, with CT findings of 50% to diffuse involvement in 18 

addition to organ failure and shock signs ( Class 3, severe COVID-19). Each of the classes, 19 

namely 0, 1, 2, and 3, included 254, 684, 125, and 47 patients, respectively. The median age 20 

was 47 (ranging from 18 to 97), and 42% of patients were female. Figure 2 shows an example 21 

of representative CT images for each class. 22 

All CT images were automatically segmented using a deep learning-based algorithm for 23 

whole lung segmentation 48,49. After whole-lung 3D segmentation, all images were reviewed 24 

and modified to ensure correct 3D-volume lung segmentation. 25 

 26 
Image Preprocessing and Feature Extraction 27 

All images were resized to isotropic voxel size 1×1×1 mm3 and image intensity was 28 

discretized by 64-gray level binning, followed by feature extraction. The extracted features 29 

from the whole-lung segmented regions, totalling 110, included shape (n=16), intensity 30 

(n=19), and texture features, namely second-order texture of gray-level co-occurrence matrix 31 

(GLCM, n=24), and high-order features, namely gray-level size-zone matrix (GLSZM, n=16), 32 
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neighbouring gray tone difference matrix (NGTDM, n=5), gray-level run-length matrix 1 

(GLRLM, n=16) and gray-level dependence matrix (GLDM, n=14). Radiomics feature 2 

extraction was performed using the Pyradiomics Python library 50, which is compliant with 3 

the Image Biomarker Standardization Initiative (IBSI) 51. 4 

Feature Selection and Classification and Evaluation 5 

In this study, we used two different feature selection algorithms, including Bagging Random 6 

Forests (BRF) 52 and Multivariate Adaptive Regression Splines (MARS) 53. BRF and MARS 7 

algorithms were implemented in "VSURF" and "earth" R packages, respectively. For 8 

multiclass classification, we implemented multinomial logistic regression using the "mnlogit" 9 

R package. The MLR model fitness indices included p-value of the Wald test (corrected for 10 

false-discovery rate via Benjamini and Hochberg method), pseudo R2 (goodness of fit criteria 11 

in a logistic regression model), as well as coefficient and Standard of Error (SE). In the MLR 12 

model, class 0 served as a reference class whereas statistical comparison between two models 13 

(the two feature selectors) was performed by the Likelihood Ratio Test. Ten-fold cross-14 

validation with bootstrapping (n=1000) was used to validate model performance. We report 15 

precision, recall, F1-score, and accuracy for different class for each model. In addition, the 16 

areas under the receiver operating characteristic (ROC) curve (AUCs) for multi-class 17 

classification models were calculated and compared for both models using “multiROC” and 18 

“pROC” R packages, respectively. 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 
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RESULTS 1 

Table 1 summarizes the selected features and their importance value (IV) by BRF and MARS 2 

for multiclass classification. Nineteen radiomics features were selected by BRF, including 9 3 

from first-order, 6 from GLCM, one from GLDM, one from shape, one from NGTDM, and 4 

one from GLSZM. Among these features, Mean Absolute Deviation (IV: 80%), Robust Mean 5 

Absolute Deviation (IV: 72%) and kurtosis (IV: 70%) features from first-order, and 6 

Correlation (IV: 75%), and Cluster Tendency (IV: 73%) features from GLCM were selected 7 

as the most important ones. In the MARS algorithm, 10 features were selected with high IVs, 8 

including 2 from first-order, 1 from GLDM, 2 from GLRLM, 2 from GLSZM, and 3 from 9 

GLCM. The highest IV was achieved by Gray Level Variance from GLDM (IV: 94%), Zone 10 

Entropy from GLSZM (IV: 93%), and Small Area Emphasis from GLSZM (IV: 83%). Mean 11 

Absolute Deviation and Median from first-order features, Small Area Emphasis from 12 

GLSZM, and Correlation from GLCM, were selected by both BRF and MARS algorithms. 13 

Figure 3 depicts the feature map of different radiomics features in different classes. Figure 4 14 

represents the feature selection process for multi-class classification by BRF and MARS. 15 

Table 2 summarizes the adjusted p-value (by Benjamini and Hochberg method) of the 16 

Wald test and coefficient (standard of error) for selected features by BRF and MARS 17 

algorithms. Except for Inverse Variance from GLCM, all selected features yielded a 18 

significant p-value (<0.05). BRF+MLR and MARS+MLR resulted in pseudo R2 values of 19 

0.295 and 0.256, respectively. However, there were no significant differences between both 20 

models when using a likelihood ratio test (p-value =0.319). 21 

Table 3 summarizes classification power indices (SD), including Precision, Recall, F1-22 

score, Accuracy, and AUC via multinomial logistic regression with 1000 bootstrapping 23 

samples for each model. In terms of F1-score, classes 2 and 3 resulted in the lowest precision 24 

(mean (sd)) in BRF+MLR (0.798 (0.106)) and MARS+MLR (0.752 (0.099)), whereas four-25 

class mean F1-scores were 0.847 and 0.805 for BRF+MLR and MARS+MLR algorithms, 26 

respectively. The mean precision was 0.861 and 0.825, whereas the mean recall was 0.844 27 

and 0.793 for BRF+MLR and MARS+MLR algorithms, respectively. BRF+MLR and 28 

MARS+MLR algorithms achieved an accuracy of 0.933 and 0.922, respectively, in four-class 29 

classification. AUCs (95% CI) for multi-class classification were 0.823 (0.795-0.852) and 30 

0.816 (0.788-0.844) for BRF+MLR and MARS+MLR algorithms, respectively. Figure 5 31 

depicts the ROC curves for our four-class classification method. 32 

 33 
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DISCUSSION 1 

In the current study, we constructed a CT radiomics-based model to predict the severity of 2 

COVID-19 patients in a large cohort of patients. To this end, we extracted radiomics features 3 

from whole lung segmentations and selected high-importance features utilizing two different 4 

algorithms, namely BRF and MARS. The selected features were then fed to a multinomial 5 

logistic regression classifier for multiclass severity scoring. We achieved 0.823 (95% CI: 6 

0.795-0.852) and 0.816 (95% CI: 0.788-0.844) for AUC, and 0.933 and 0.922 for accuracy in 7 

BRF- and MARS-selected features, respectively. 8 

We used an automatic model 48 to segment chest CT images for two reasons. First, most 9 

CT scans performed in the COVID-19 pandemic era are low-dose. In addition, these scans are 10 

acquired with a high pitch. Hence, it is difficult for radiologists to find and follow lung 11 

fissures to manually detect or segment the anatomical lobes. As such, we used our previously 12 

constructed deep learning model to fully segment the entire lung of each patient.  13 

Yip et al. 46 conducted a study on the same dataset utilized in this work, aiming to evaluate 14 

some radiomics features towards severity class prediction in patients. They included all 1110 15 

patient CT scans and extracted 107 radiomics features. The maximum relevance minimum 16 

redundancy (MRMR) and recursive feature elimination (RFE) algorithms were exploited for 17 

feature selection and analysis of the selected features using univariate and multivariate 18 

approaches using a logistic regression model to classify as accurately as possible. In their 19 

study, the patients were categorized into three severity categories, namely mild, moderate, and 20 

severe, to perform two-class classification tasks (mild vs. severe and moderate vs. severe) by 21 

splitting the data into training (60%) and test (40%) sets. The authors obtained an AUC of 22 

0.65 in differentiating between moderate and severe cases, while their model performed better 23 

(AUC = 0.85) in distinguishing mild vs. severe forms of COVID-19 disease. In this work, we 24 

reached an overall AUC of 0.823. In our study and the one by Yip et al. 46, feature extractions 25 

were performed using Pyradiomics 50 as applied to the entire lung. Interestingly, there were 26 

some commonly selected features arrived at via feature selection in both studies, including 27 

Small Area Emphasis from GLSZM, Correlation and Informational Measure of Correlation 28 

from GLCM, and Median and Mean Absolute Deviation from first-order features. These 29 

selected features in both studies could potentially be used as predictors as they provide 30 

information about the intensity and heterogeneity of the lung in COVID-19 patients. 31 

A noticeable advantage of the study by Yip et al. 46 was the use of a second radiologist 32 

observer who classified patients’ images into mild, moderate, and severe classes without 33 
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paying attention to the default classification of the dataset provider. This method helped to 1 

observe the prediction power of the models in both “provider” and “radiologist” datasets. In 2 

addition, they split the dataset into training and test sets. In contrast, we applied the 3 

bootstrapping technique to estimate and ensure the reproducibility of our results. In addition, 4 

the study by Yip et al. 46 may have reduced generalizability as it only predicts mild versus 5 

severe, and moderate versus severe disease, having reduced multiclass classification into two-6 

class approaches. In the real clinical triage situation, the radiologist may benefit from a 7 

multiclass classification scheme for enhanced patient management, as provided by our study. 8 

 Homayounieh et al. 54 included 315 patients in their study and extracted CT-based 9 

radiomics features from the lung to show that radiomics can predict patients’ outcome 10 

(inpatient vs. outpatient management) with an AUC of 0.84 while the radiologist assessment 11 

alone achieved an AUC of 0.69. Feature extraction was performed by applying the different 12 

preprocessing algorithms on images, with classification performed using logistic regression. 13 

They reported that adding clinical variables to the radiomics model can notably improve the 14 

predictability of a model for patient outcome prediction (AUC improved from 0.75 to 0.84). 15 

Another study conducted by Wei et al. 55 evaluated the predictive ability of two models (one 16 

CT texture-based and one clinical) for determining the severity of each of the 81 COVID-19 17 

patients. They showed that CT texture features could modestly predict whether the patient has 18 

common COVID-19 pneumonia or a severe one with an AUC of 0.93, which is comparable to 19 

that of the clinical-only model (AUC = 0.95). They also observed that several texture features 20 

had a moderate correlation with the clinical variables of patients.  21 

Chaganti et al. 56 studied Ground Glass Opacity (GGO) and consolidations that appear on a 22 

CT image of COVID-19 patients in an attempt to propose an automated method for 23 

segmenting and quantifying COVID-19 lesions. Their proposed method calculated the 24 

percentage of opacity and lung severity score using deep learning algorithms and was able to 25 

predict the severity with a decent performance. However, Chaganti et al. 56 proposed a 26 

method trained only on the mentioned abnormalities and had a limited performance in other 27 

abnormalities quantification. Even with improving segmentation algorithms, this method 28 

would be limited because of the highly heterogeneous nature of COVID-19 pneumonia in 29 

addition to ignoring the shape and texture of segmented lesions. Moreover, providing accurate 30 

lobe segmentation of COVID-19 patients would be challenging from typical low-dose and 31 

high pitch chest CT scans. In the current and previous studies 44,46,55, radiomics features, as 32 

extracted from the entire lung (less challenging segmentation task for deep learning 33 

algorithms), were evaluated to provide fast and robust severity scoring in COVID-19 patients. 34 
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In this work, chest CT was used for assessment. At the same time, there are few studies on 1 

other modalities such as chest X-ray radiography in prognostication and outcome prediction 2 

evaluation of COVID-19 patients. For example, Bae and colleagues 57 utilized radiomics 3 

features and modeled them on chest X-rays of 514 patients and found out that their radiomics- 4 

and deep learning-based model can accurately predict mortality and the need for mechanical 5 

ventilation in patients (AUCs = 0.93 and 0.90, respectively). Providing a severity score using 6 

chest X-rays is a valuable venue to explore. Yet, such work requires extensive comparisons 7 

with CT-based frameworks to assess the relative value of each modality for different tasks. 8 

This study suffered from a few limitations, including the fact that our model was trained on 9 

single-center data. At the same time, we evaluated our models using a 10-fold cross-validation 10 

and bootstrapping technique to evaluate the repeatability and robustness of our results. In any 11 

case, further research should be conducted on multicentric data and patient images with 12 

multiple observers for improved training of the models and enhanced generalizability. 13 

 14 

Conclusion 15 

We evaluated high-dimensional multinomial multiclass severity scoring of pneumonia using 16 

CT radiomics features and machine learning algorithms. We applied two feature selectors 17 

(BRF and MARS) coupled to one classifier (multiclass logistic regression model) on a large 18 

cohort of COVID-19 patients. Our radiomics model was validated to depict accurate 19 

classification of patients according to multi-class pneumonia severity assessment criteria, 20 

highlighting the potential of this emerging paradigm in the assessment and management of 21 

COVID-19 patients. 22 
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 1 

Abbreviations 2 

CT: Computed Tomography 3 

COVID-19: Coronavirus disease 2019 4 

AUC: Area under the receiver operating characteristic curve 5 

BRF: Bagging Random Forest 6 

FS: Feature Selection 7 

GGO: Ground Glass Opacity 8 

IBSI: The Image Biomarker Standardization Initiative 9 

MARS: Multivariate Adaptive Regression Splines 10 

MLR: Multinomial Logistic Regression 11 

RT-PCR: Reverse transcription polymerase chain reaction 12 

GLCM: Gray-Level Co-Occurrence Matrix  13 

GLSZM: Gray-Level Size-Zone Matrix  14 

NGTDM: Neighbouring Gray Tone Difference Matrix  15 

GLRLM: Gray-Level Run-Length Matrix  16 

GLDM: Gray-Level Dependence Matrix  17 
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Table 1. Selected features by Bagging Random Forests (BRF) (“VSURF” R package) and multivariate adaptive regression splines (MARS) (“earth” R 
package) for multi-class classification 

Feature Selection 
Algorithm Selected Variables Feature type Importance Value 

 
Bagging Random Forests  

 

First Order Mean Absolute Deviation 80% 
GLCM Correlation 75% 
GLCM Cluster Tendency 73% 

First Order Robust Mean Absolute Deviation 72% 
First Order Variance 70% 
First Order Interquartile Range 71% 
First Order Kurtosis 72% 
First Order Skewness 71% 

GLDM Dependence Entropy 68% 
First Order Median 48% 
First Order Entropy 69% 

GLCM Sum Entropy 67% 
GLCM Inverse Variance 42% 
GLCM Joint Entropy 66% 

First Order Uniformity 63% 
GLCM Contrast 62% 
Shape Major Axis Length 30% 

NGTDM Contrast 60% 
GLSZM Small Area Emphasis 50% 

Multivariate Adaptive 
Regression Splines 

First Order Mean Absolute Deviation 22% 
GLDM Gray Level Variance    94% 

GLRLM Gray Level Non Uniformity 57% 
GLRLM Short Run Emphasis 70% 
GLSZM Small Area Emphasis 83% 

First Order Median 24% 
GLCM Imc1 46% 
GLSZM Zone Entropy 86% 
GLCM Correlation 38% 
GLCM Difference Entropy 40% 
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Table 2. Model fitness indices for application of multinomial logistic regression (MLR) (“mnlogit” R package) to selected features.  

Feature Selection 
Algorithm 

Feature 
type 

 
Adj. P-value Coefficient  

(SE) 

Pseudo R2 

for logistic 
regression 

 
Bagging Random 

Forests  
 

First order Mean Absolute Deviation 0.001 0.066 (0.007) 

0.295 

GLCM Correlation 0.001 14.3 (1.85) 
GLCM Cluster Tendency 0.002 0.20 (0.024) 

First Order Robust Mean Absolute Deviation 0.001 0.093 (0.10) 
First Order Variance 0.001 17×10-4(2×10-5) 
First Order Interquartile Range 0.001 0.042 (0.0047) 
First Order Kurtosis 0.002 -0.35 (0.042) 
First Order Skewness 0.001 -2.44 (0.269) 

GLDM Dependence Entropy 0.001 4.58 (0.585) 
First order Median 0.002 0.022 (0.0031) 
First order Entropy 0.001 4.43 (0.495) 

GLCM Sum Entropy 0.001 4.14 (0.461) 
GLCM Inverse Variance 0.790 -2.17 (8.15) 
GLCM Joint Entropy 0.001 2.42 (0.270) 

First Order Uniformity 0.001 -21.8 (2.60) 
GLCM Contrast 0.002 1.18 (0.136) 
Shape Major Axis Length 0.005 -0.012 (0.016) 

NGTDM Contrast 0.028 171.4 (20.60) 
GLSZM Small Area Emphasis 0.031 -50.2 (7.71) 

Multivariate 
Adaptive Regression 

Splines 

First Order Mean Absolute Deviation 0.001 0.066 (0.007) 

0.256 

GLDM Gray Level Variance    <0.001 0.705 (0.082) 
GLRLM Gray Level Non Uniformity <0.001 -0.006 (8×10-6) 
GLRLM Short Run Emphasis <0.001 42.2 (4.90) 
GLSZM Small Area Emphasis 0.001 -50.2 (7.0) 

First Order Median 0.001 0.022 (0.003) 
GLCM Imc1 0.001 -44.8 (6.82) 
GLSZM Zone Entropy 0.001 6.3 (0.76) 
GLCM Correlation 0.001 14.3 (1.85) 
GLCM Difference Entropy 0.001 8.7 (0.98) 

P-value by Wald chi-square test; Adj. P-value: P-value adjusted by Benjamini and Hochberg false discovery (FDR) correctioin method; class 1 as a reference 
class; SE= Standard of Error; statistical comparison between two models showed non-significant difference by Likelihood Ratio Test: P-value=0.319.  
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Table 3.  Classification performance indices by multinomial logistic regression with 1000 bootstrapping samples based feature selection. SD 
is shown in brackets. 

Feature Selection 
Algorithm 

Class Precision  Recall  F1-score  Accuracy  
AUC (95% CI) 

Bagging Random 
Forests  

 

Class 1 0.743 
(0.078) 

0.948 
(0.093) 

0.833 
(0.099) 

0.912 
(0.098) 

0.823 (0.795-
0.852) 

Class 2 0.926 
(0.022) 

0.861 
(0.017) 

0.892 
(0.017) 

0.872 
(0.015) 

Class 3 0.866 
(0.101) 

0.739 
(0.099) 

0.798 
(0.106) 

0.958 
(0.110) 

Class 4 0.906 
(0.10) 

0.829 
(0.097) 

0.866 
(0.096) 

0.989 
(0.104) 

Average/total 0.861 0.844 0.847 0.933 

Multivariate Adaptive 
Regression Splines 

Class 1 0.732 
(0.095) 

0.862 
(0.101) 

0.792 
(0.081) 

0.895 
(0.126) 

0.816 (0.788-
0.844) 

Class 2 0.901 
(0.019) 

0.865 
(0.014) 

0.883 
(0.026) 

0.859 
(0.017) 

Class 3 0.824 
(0.079) 

0.764 
(0.111) 

0.793 
(0.091) 

0.955 
(0.123) 

Class 4 0.842 
(0.112) 

0.680 
(0.108) 

0.752 
(0.099) 

0.980 
(0.106) 

Average/total 0.825 0.793 0.805 0.922 
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Figure 1: Different steps of current study. GGO : ground glass opacities, T: Temperature,  
RR: Respiratory Rate, SpO2: Peripheral Capillary Oxygen Saturation, PaO2: Partial Pressure 
of Oxygen. FiO2=Fraction of Inspired Oxygen.  
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Figure 2:  Example of patient CT images for different class.
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Figure 3: Example of selected features (Median feature from First Order, Contrast feature 
form NGDTM and GLV features from GLDM) in different class cases. 
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Figure 4: Feature selection process for multi-class classification by (a) Bagging Random 
Forests (number of selected features=19), and (b) Multivariate Adaptive Regression Splines 
(number of selected features=10).  
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Figure 5: (a) ROC curve for assessing power of multi-class classification of the selected 
features in Bagging Random Forests (AUC=0.823), and (b) Multivariate Adaptive Regression 
Splines (AUC=0.816). Statistical comparison of ROC curves by “pROC” R package indicated 
non-significant difference (Z=-1.164, P-value=0.244). 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 28, 2022. ; https://doi.org/10.1101/2022.04.27.22274369doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.27.22274369
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 

REFERENCES 

1. Meyerowitz-Katz, G. & Merone, L. A systematic review and meta-analysis of 
published research data on COVID-19 infection fatality rates. Int J Infect Dis 101, 
138-148 (2020). 

2. Cascella, M., Rajnik, M., Cuomo, A., Dulebohn, S.C. & Di Napoli, R. Features, 
Evaluation, and Treatment of Coronavirus. in StatPearls (StatPearls Publishing 
Copyright © 2020, StatPearls Publishing LLC., Treasure Island (FL), 2020). 

3. Corman, V.M., et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time 
RT-PCR. Euro surveillance : bulletin Europeen sur les maladies transmissibles = 
European communicable disease bulletin 25(2020). 

4. La Marca, A., et al. Testing for SARS-CoV-2 (COVID-19): a systematic review and 
clinical guide to molecular and serological in-vitro diagnostic assays. Reprod Biomed 
Online 41, 483-499 (2020). 

5. Schmidt, C.W. CT scans: balancing health risks and medical benefits. Environ Health 
Perspect 120, A118-A121 (2012). 

6. Shiri, I., et al. COVID-19 prognostic modeling using CT radiomic features and 
machine learning algorithms: Analysis of a multi-institutional dataset of 14,339 
patients. Comput Biol Med 145, 105467 (2022). 

7. Shiri, I., et al. Diagnosis of COVID-19 Using CT image Radiomics Features: A 
Comprehensive Machine Learning Study Involving 26,307 Patients. medRxiv (2021). 

8. Li, Y. & Xia, L. Coronavirus Disease 2019 (COVID-19): Role of Chest CT in 
Diagnosis and Management. AJR. American journal of roentgenology 214, 1280-1286 
(2020). 

9. Long, C., et al. Diagnosis of the Coronavirus disease (COVID-19): rRT-PCR or CT? 
European journal of radiology 126, 108961 (2020). 

10. Gambert, S. Disease Severity. in Encyclopedia of Behavioral Medicine (eds. Gellman, 
M.D. & Turner, J.R.) 606-606 (Springer New York, New York, NY, 2013). 

11. Tai, S.Y., et al. Symptom severity of patients with advanced cancer in palliative care 
unit: longitudinal assessments of symptoms improvement. BMC palliative care 15, 32 
(2016). 

12. Fjerstad, M., Trussell, J., Lichtenberg, E.S., Sivin, I. & Cullins, V. Severity of 
infection following the introduction of new infection control measures for medical 
abortion. Contraception 83, 330-335 (2011). 

13. Bouch, D.C. & Thompson, J.P. Severity scoring systems in the critically ill. 
Continuing Education in Anaesthesia Critical Care & Pain 8, 181-185 (2008). 

14. Robilotti, E.V., et al. Determinants of COVID-19 disease severity in patients with 
cancer. Nature Medicine 26, 1218-1223 (2020). 

15. Li, X., et al. Risk factors for severity and mortality in adult COVID-19 inpatients in 
Wuhan. The Journal of allergy and clinical immunology 146, 110-118 (2020). 

16. Sanders, D.B., Li, Z., Brody, A.S. & Farrell, P.M. Chest computed tomography scores 
of severity are associated with future lung disease progression in children with cystic 
fibrosis. Am J Respir Crit Care Med 184, 816-821 (2011). 

17. Sahu, B., et al. Severity assessment of acute pancreatitis using CT severity index and 
modified CT severity index: Correlation with clinical outcomes and severity grading 
as per the Revised Atlanta Classification. Indian J Radiol Imaging 27, 152-160 (2017). 

18. Raghuwanshi, S., Gupta, R., Vyas, M.M. & Sharma, R. CT Evaluation of Acute 
Pancreatitis and its Prognostic Correlation with CT Severity Index. J Clin Diagn Res 
10, TC06-TC11 (2016). 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 28, 2022. ; https://doi.org/10.1101/2022.04.27.22274369doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.27.22274369
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 

19. Alhajeri, A. & Erwin, S. Acute pancreatitis: value and impact of CT severity index. 
Abdominal imaging 33, 18-20 (2008). 

20. Prokop, M., et al. CO-RADS: A Categorical CT Assessment Scheme for Patients 
Suspected of Having COVID-19-Definition and Evaluation. Radiology 296, E97-e104 
(2020). 

21. Neri, E., et al. Structured reporting of chest CT in COVID-19 pneumonia: a consensus 
proposal. Insights into Imaging 11, 92 (2020). 

22. Francone, M., et al. Chest CT score in COVID-19 patients: correlation with disease 
severity and short-term prognosis. Eur Radiol 30, 6808-6817 (2020). 

23. Zhao, W., Zhong, Z., Xie, X., Yu, Q. & Liu, J. Relation Between Chest CT Findings 
and Clinical Conditions of Coronavirus Disease (COVID-19) Pneumonia: A 
Multicenter Study. AJR. American journal of roentgenology 214, 1072-1077 (2020). 

24. Li, K., et al. The Clinical and Chest CT Features Associated With Severe and Critical 
COVID-19 Pneumonia. Investigative radiology 55, 327-331 (2020). 

25. Yip, S.S.F. & Aerts, H.J.W.L. Applications and limitations of radiomics. Physics in 
medicine and biology 61, R150-R166 (2016). 

26. Cunliffe, A., et al. Lung texture in serial thoracic computed tomography scans: 
correlation of radiomics-based features with radiation therapy dose and radiation 
pneumonitis development. International journal of radiation oncology, biology, 
physics 91, 1048-1056 (2015). 

27. Nazari, M., Shiri, I. & Zaidi, H. Radiomics-based machine learning model to predict 
risk of death within 5-years in clear cell renal cell carcinoma patients. Comput Biol 
Med 129, 104135 (2020). 

28. Mostafaei, S., et al. CT imaging markers to improve radiation toxicity prediction in 
prostate cancer radiotherapy by stacking regression algorithm. La radiologia medica 
125, 87-97 (2020). 

29. Shiri, I., et al. Machine learning-based prognostic modeling using clinical data and 
quantitative radiomic features from chest CT images in COVID-19 patients. Comput 
Biol Med 132, 104304 (2021). 

30. Shayesteh, S., et al. Treatment response prediction using MRI-based pre-, post-, and 
delta-radiomic features and machine learning algorithms in colorectal cancer. Med 
Phys 48, 3691-3701 (2021). 

31. Amini, M., et al. Multi-level multi-modality (PET and CT) fusion radiomics: 
prognostic modeling for non-small cell lung carcinoma. Phys Med Biol 66(2021). 

32. Khodabakhshi, Z., et al. Overall Survival Prediction in Renal Cell Carcinoma Patients 
Using Computed Tomography Radiomic and Clinical Information. J Digit Imaging 
34, 1086-1098 (2021). 

33. Khodabakhshi, Z., et al. Non-small cell lung carcinoma histopathological subtype 
phenotyping using high-dimensional multinomial multiclass CT radiomics signature. 
Comput Biol Med 136, 104752 (2021). 

34. Shiri, I., et al. Impact of feature harmonization on radiogenomics analysis: Prediction 
of EGFR and KRAS mutations from non-small cell lung cancer PET/CT images. 
Comput Biol Med 142, 105230 (2022). 

35. Rahmim, A., et al. Tensor Radiomics: Paradigm for Systematic Incorporation of 
Multi-Flavoured Radiomics Features. arXiv preprint arXiv:2203.06314 (2022). 

36. Liu, Z., et al. The Applications of Radiomics in Precision Diagnosis and Treatment of 
Oncology: Opportunities and Challenges. Theranostics 9, 1303-1322 (2019). 

37. Edalat-Javid, M., et al. Cardiac SPECT radiomic features repeatability and 
reproducibility: A multi-scanner phantom study. Journal of Nuclear Cardiology 
(2020). 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 28, 2022. ; https://doi.org/10.1101/2022.04.27.22274369doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.27.22274369
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 

38. Abdollahi, H., Shiri, I. & Heydari, M. Medical Imaging Technologists in Radiomics 
Era: An Alice in Wonderland Problem. Iran J Public Health 48, 184-186 (2019). 

39. Amini, M., et al. Overall Survival Prognostic Modelling of Non-small Cell Lung 
Cancer Patients Using Positron Emission Tomography/Computed Tomography 
Harmonised Radiomics Features: The Quest for the Optimal Machine Learning 
Algorithm. Clin Oncol (R Coll Radiol) 34, 114-127 (2022). 

40. Avard, E., et al. Non-contrast Cine Cardiac Magnetic Resonance image radiomics 
features and machine learning algorithms for myocardial infarction detection. Comput 
Biol Med 141, 105145 (2022). 

41. Xie, C., et al. Discrimination of pulmonary ground-glass opacity changes in COVID-
19 and non-COVID-19 patients using CT radiomics analysis. European journal of 
radiology open 7, 100271 (2020). 

42. Di, D., et al. Hypergraph learning for identification of COVID-19 with CT imaging. 
Medical image analysis 68, 101910 (2020). 

43. Bouchareb, Y., et al. Artificial intelligence-driven assessment of radiological images 
for COVID-19. Computers in biology and medicine, 104665 (2021). 

44. Homayounieh, F., et al. Computed Tomography Radiomics Can Predict Disease 
Severity and Outcome in Coronavirus Disease 2019 Pneumonia. J Comput Assist 
Tomogr 44, 640-646 (2020). 

45. Wang, Y., et al. Temporal Changes of CT Findings in 90 Patients with COVID-19 
Pneumonia: A Longitudinal Study. Radiology 296, E55-e64 (2020). 

46. Yip, S.S.F., et al. Performance and Robustness of Machine Learning-based Radiomic 
COVID-19 Severity Prediction. medRxiv : the preprint server for health sciences, 
2020.2009.2007.20189977 (2020). 

47. Jin, C., et al. Development and evaluation of an artificial intelligence system for 
COVID-19 diagnosis. Nature communications 11, 5088 (2020). 

48. Shiri, I., et al. COLI-NET: Fully Automated COVID-19 Lung and Infection 
Pneumonia Lesion Detection and Segmentation from Chest CT Images. medRxiv, 
2021.2004.2008.21255163 (2021). 

49. Shiri, I., et al. COLI-Net: Deep learning-assisted fully automated COVID-19 lung and 
infection pneumonia lesion detection and segmentation from chest computed 
tomography images. Int J Imaging Syst Technol (2021). 

50. van Griethuysen, J.J.M., et al. Computational Radiomics System to Decode the 
Radiographic Phenotype. Cancer Res 77, e104-e107 (2017). 

51. Zwanenburg, A., et al. The image biomarker standardization initiative: standardized 
quantitative radiomics for high-throughput image-based phenotyping. Radiology 295, 
328-338 (2020). 

52. Genuer, R., Poggi, J.-M. & Tuleau-Malot, C. VSURF: an R package for variable 
selection using random forests. (2015). 

53. Zhang, W., Wu, C., Li, Y., Wang, L. & Samui, P. Assessment of pile drivability using 
random forest regression and multivariate adaptive regression splines. Georisk: 
Assessment and Management of Risk for Engineered Systems and Geohazards, 1-14 
(2019). 

54. Homayounieh, F., et al. CT Radiomics, Radiologists, and Clinical Information in 
Predicting Outcome of Patients with COVID-19 Pneumonia. Radiology: 
Cardiothoracic Imaging 2, e200322 (2020). 

55. Wei, W., Hu, X.W., Cheng, Q., Zhao, Y.M. & Ge, Y.Q. Identification of common and 
severe COVID-19: the value of CT texture analysis and correlation with clinical 
characteristics. Eur Radiol 30, 6788-6796 (2020). 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 28, 2022. ; https://doi.org/10.1101/2022.04.27.22274369doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.27.22274369
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 

56. Chaganti, S., et al. Automated Quantification of CT Patterns Associated with COVID-
19 from Chest CT. Radiology: Artificial Intelligence 2, e200048 (2020). 

57. Bae, J., et al. Predicting Mechanical Ventilation Requirement and Mortality in 
COVID-19 using Radiomics and Deep Learning on Chest Radiographs: A Multi-
Institutional Study. ArXiv (2020). 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 28, 2022. ; https://doi.org/10.1101/2022.04.27.22274369doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.27.22274369
http://creativecommons.org/licenses/by-nc-nd/4.0/

