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Abstract 37 

The Uganda Genome Resource (UGR) is a well characterised genomic database, with a range 38 

of phenotypic communicable and  non-communicable diseases and  risk factors generated 39 

from the Uganda General Population Cohort (GPC) - a population-based open cohort study 40 

established in 1989 by the Medical Research Council (MRC) UK in collaboration with the 41 

Uganda Virus Research Institute (UVRI).  42 

 43 

In 2011, UGR was launched with genotype data on ~5000 and whole genome sequence data 44 

on ~2000 Ugandan individuals from 9 ethno-linguistic groups. Leveraging other available 45 

platforms at the MRC Uganda such as Biorepository centre for sample storage, Clinical 46 

Diagnostic Laboratory Service (CDLS) for sample diagnostic testing, sequencing platform 47 

for DNA extraction, Uganda Medical informatics Unit (UMIC) for large-scale data analysis, 48 

GPC for additional sample collection, UGR is strategically poised to expand and generate 49 

scientific discoveries. 50 

 51 

Here, we describe UGR and highlight the important genetic findings thus far including how 52 

UGR is providing opportunities to: (1) discover novel disease susceptibility genetic loci; (2) 53 

refine association signals at new and existing loci; (3) develop and test Polygenic Risk Score 54 

(PRS) to determine individual’s disease risk; 4) assess how some risk factors including 55 

infectious diseases are causally related to non-communicable diseases (NCDs) in Africa; (5) 56 

develop research capacity for genomics in Africa; and (6) enhance African participation in 57 

the global genomics research arena. Leveraging established research infrastructure, expertise, 58 

local genomic leadership, global collaboration and strategic funding, we anticipate that UGR 59 

can develop further to a comparable level of European and Asian large-scale genomic 60 

initiatives.  61 

 62 

 63 

 64 

 65 
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 68 

Introduction 69 

The genetic diversity in Africa is far greater than in any other region across the globe but 70 

unfortunately, the vast majority of genomic studies have been performed in European 71 

ancestry populations (PMID: 35145307). Uganda is located in East Africa with four major 72 

ethic groups and over 40 languages. The rich linguistic, ethnic, and cultural diversity of 73 

Uganda provides an unprecedented opportunity to understand the level of the genetic 74 

structure in Uganda populations. To advance genetic epidemiology of communicable and 75 

non-communicable diseases (NCDs) in Uganda, the Ugandan Genome Resource (UGR) was 76 

launched in 2011 to prospectively collect a wide range of NCDs, infectious disease risk 77 

factors including information on lifestyle, family history social determinant, demographics, 78 

sexual health & reproductive behaviour, past illness, mental health, treatment and 79 

immunisation and environmental risk  factors (Asiki et al., 2013). 80 

 81 
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Here, we provide a detailed description of UGR which is different from previous publications 82 

on GPC that focused on specific aspects (Asiki et al., 2013) or population genetics and 83 

genome-wide association analyses of cardiometabolic traits in UGR data (Gurdasani et al., 84 

2019), we aim to give an overview of UGR as a resource including detailed phenotype 85 

availability, genomic data generation, sample characteristics, genetic discoveries to date, and 86 

finally to its data access and sharing policy. 87 

Figure 1: UGR strategic vision for continuous expansion and maintenance. UGR continues to 88 

offer as a valuable platform for investigating the genetics of NCDs and relationship with 89 

infectious diseases in Africa. 90 

Study Population – The General Population Cohort (GPC) 91 

The GPC is a population-based study of approximately 22,000 individuals residing in 25 92 

neighbouring villages in the Kyamulibwa sub-county, Kalungu district in rural  south-western  93 

Uganda. The study was founded in 1989 by the Medical Research Council UK (MRC UK) in 94 

collaboration with the Uganda Virus Research Institute (UVRI) to study the epidemiology of 95 

HIV in a general population. The GPC population was initially recruited and assessed 96 

through annual house-to-house census and survey rounds until 2012, when biannual surveys 97 

commenced. Since its establishment, 26 rounds of survey and 29 rounds of census have been 98 

undertaken. Before any survey procedures are carried out, written informed consent is 99 

obtained from participants on the use of their clinical records for research purposes and 100 

sample storage for future use (Asiki et al., 2013). Data collected includes  serological, 101 
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demographic, and medical information from participants. Information regarding mortality, 102 

fertility, sexual behaviour migration, HIV infection perception are routinely collated. 103 

 104 

The GPC Round 22 study of 2011 focused on the genetics and epidemiology of 105 

communicable and non-communicable disease. The survey round which was used to establish 106 

the Ugandan Genome Resource (UGR) consisted of five main stages, including mobilization 107 

(recruitment and consenting), mapping, census, survey, and results feedback and clinical 108 

follow-up. The specific objectives of this survey then were: 109 

• To create a one-of-a-kind study for expanding on a large-scale prospective cohort 110 

research in an African population to evaluate a wide range of health indices—and to 111 

lay the platform for longer-term investigations. 112 

• Using population, genetic and epidemiological techniques to provide aetiological 113 

insights into variance in cardio-metabolic and infectious risk factors. 114 

• To help develop public health policies in other African countries by informing health 115 

policy and public health programs aimed at addressing the rise in NCDs in Uganda. 116 

The cohort continues to offer as a valuable platform for investigating the relationship 117 

between communicable illnesses and NCDs in a regular annual survey of GPC. 118 

 119 

Genotype generation, quality control and Imputation  120 

The 2.5M Illumina chip array was used to genotype nearly 5,000 Ugandans at the Wellcome 121 

Trust Sanger Institute. Gurdasani and Fatumo et al 2019 have presented the quality control 122 

steps (Gurdasani et al., 2019). In summary, we used a strict quality control process to 123 

perform a series of steps in a logical order to eliminate a total of 39,368 autosomal markers 124 

that failed to meet the quality metrics for SNP call rate (>97 percent, 25,037 SNPs) and HWE 125 

(p<1x10-8, 14,331 SNPs). During sample QC, a total of 91 samples were eliminated because 126 

they failed the quality standards for sample call rate (>97%) or heterozygosity 127 

(HO=0.209333±0.007416 matching to the mean±3SD), or the sex extrapolated from the X-128 

chromosome did not correspond to the reported sex. Three further samples were eliminated 129 

due to high relatedness (IBD>0.90). There were no samples that were classified as outliers in 130 

terms of population or ancestry. 2,230,258 autosomal markers and 4778 samples that met the 131 

stated threshold were subjected to further analysis. We carried out SNP Phasing with the aid 132 

of SHAPEIT2 (Delaneau, Coulonges and Zagury, 2008) using default settings, then 133 

imputation was done with IMPUTE2 (Howie, Donnelly and Marchini, 2009). All samples 134 
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were imputed with a combined reference that was created by combining the UG2G sequence 135 

resource (n = 2,000, whole genome sequence data from the African Genome Variation 136 

Project (n = 320),), and the 1000 Genomes phase 3 project (n = 2,504). The principal 137 

components analysis plot for the GPC participants (n=4,778) was published (Gurdasani et al., 138 

2019) and is shown here in supplementary material figure S1. 139 

 140 

Uganda 2000 Genomes (UG2G) 141 

The entire genomes of over 2,000 Ugandans from nine ethnolinguistic groups were 142 

sequenced using the Illumina HiSeq 2000 with 75bp paired end reads at low coverage, with 143 

an average coverage of 4x for each sample. 343 of these samples overlapped with people who 144 

had already been genotyped. An automated quality control process was used to bring down 145 

the data files that needs manual processing to ascertain the quality of BAM files produced. 146 

This method was based on the one developed for the UK10K project (Walter et al., 2015) 147 

which used a set of algorithmically derived standards to determine summary data computed 148 

from the input BAMs. Any line that fell below the "fail" standard for any of the metrics was 149 

deleted; while lines falling below the warn standard for any of the scores were manually 150 

investigated; and any line that passes any of these scores was given a status of "pass”. 151 

Overall, we deleted fourteen samples from the study. Full detailed on the quality control and 152 

how we computed the summary data has be described in Gurdasani et al., 2019. 153 

 154 

 155 

Merging of Sequenced and Genotyped Data 156 

We integrated sequenced and imputed genotyped data to produce an aggregated dataset to 157 

boost power for discovery in a genome-wide association studies. Because cryptic and family 158 

relatedness persisted across sequenced and  genotyped data, we produced an aggregated 159 

dataset for analysis instead of separately meta-analysing the data, because data would be 160 

correlated rather than independent. As a result, conclusions from mixed model analysis that 161 

explicitly model this relationship are more likely to be true. We examined and deleted any 162 

consistent discrepancies between sequences and  imputed genotype data after merging the 163 

two datasets. This was done by performing principal component analysis on the dataset to see 164 

if there was any distinction by data modality (imputed genotype data vs. sequenced data) 165 

among the 343 people who had their genotypes and sequences done in duplicate. On PCA, 166 
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we noticed a strong separation of genotype imputed and sequence data points. For these 343 167 

samples, we tested alternative concordance criteria between sequencing and imputed 168 

genotype data, screening out SNPs with a concordance of 0.80 and 0.90 the dataset. We 169 

discovered that to eliminate systematic effects detected between genotyping array and 170 

sequence data on PCA, a minimum concordance criterion of 0.90 was necessary. 171 

 172 

There were no systematic changes between sequenced and genotyped data in PCAs after 173 

excluding 904,283 SNPs that exhibited 90 percent consonance in genotypes between the 174 

sequence and imputed genotype data . We examined the top ten PCs to confirm that 175 

systematic variations in the genomic data did not constitute an important axis of variation. 176 

 177 

Phenotype and laboratory measurement  178 

During survey round 22 which was conducted in 2011, several phenotypes based on clinical 179 

and physical examinations, laboratory tests, and self-reported questionnaires were collected 180 

from the respondents (Table 1) and these respondents who are still known to be alive and 181 

have not moved out of the GPC have been followed every year since then. A blood specimen 182 

was analysed for non-fasting blood lipids, blood cell traits (mean cell haemoglobin, red cell 183 

count, white cell count, mean cell haemoglobin concentration, haemoglobin, packed cell 184 

volume, mean cell volume and platelet), glycaemic characteristics, renal function, infectious 185 

biomarkers (HIV, hepatitis B and C). Basic demographics such as age, sex, marital status, 186 

and education level; anthropometrics such as BMI, weight, waist-to-hip ratio, height; blood 187 

pressure measurements; and lifestyle information such as smoking status, physical activities, 188 

and diet; sexual health & reproductive behaviour; sex education, condom use, pregnancy & 189 

outcome, and number of offspring were also collected (Table 1). 190 

 191 

Genetic discoveries and polygenic prediction in UGR 192 

A case in point in the use of our rich African genomics and phenotypic data, we undertook 193 

GWAS in 34 cardiometabolic traits including lipid, anthropometry traits,  blood cell indices, 194 

HbA1c and reported novel loci associated with anthropometric, haematological, lipid, and 195 

glycaemic traits (Gurdasani et al., 2019). In another study (Fatumo et al 2020 -eGFR), we 196 

reported the first ever GWAS of kidney function in continental Africa. Leveraging  clinical 197 

relatedness and correlations among phenotypes, we explored the power of multivariate 198 
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GWAS to identify genetic risk factors implicating pleiotropic effects in blood cell traits 199 

(Fatumo et al., 2019; Soremekun et al., 2021), body shape (Nakabuye et al., 2022) and liver 200 

function. Recently, we showed that genetic risk score derived from data of African American 201 

individuals enhance polygenic prediction of lipid traits and T2DM in Sub-Sahara African, but 202 

prediction varied greatly between another dataset from South Africa and our East African 203 

genomic data (Chikowore et al., 2022, Kamiza et al., 2022).  We have also demonstrated the 204 

Mendelian randomisation evidence of relation between lipid trait and T2DM (Soremekun et 205 

al., 2022), metabolic traits and stroke (Fatumo et al., 2021). Collectively, our studies show a 206 

need for improved representation of Africans in genomic studies and ensuring the 207 

generalisation of findings for genomic medicine. This is further supported by findings from 208 

another study as well (Martin et al., 2017). The UGR data has also been used to create a 209 

genotype imputation reference panel using UG2G available from the Sanger Imputation 210 

Service (imputation.sanger.ac.uk). 211 

 212 

 213 

Contribution to collaborative studies  214 

We contribute to global genetic studies through partnerships and consortia, such as the 215 

African Partnership for Chronic Disease Research (APCDR), an international network of 216 

research groups that collaborate to support and promote collaborative chronic disease 217 

research across Africa. An initiative created in response to the changing distribution of 218 

communicable diseases and the rising burden of noncommunicable diseases, as well as the 219 

recognition that low- and middle-income countries (LMICs), including those in Sub-Saharan 220 

Africa, will need to expand their health-care capacities to effectively respond to these 221 

epidemiological transitions. 222 

 223 

We combine research expertise with three other MRC Units (MRC Integrative Epidemiology 224 

Unit, MRC Population Health Research Unit, and MRC Unit for Lifelong Health and 225 

Ageing) to investigate the potential to use Mendelian randomization (MR) to assess the 226 

generalisability of existing drugs (e.g., statins, anti-diabetics, and anti-hypertensives) and 227 

identify the potential to tailor drugs with pilot studies focusing on established 228 

pharmacological targets to specific subpopulations (e.g. CETP, HMGCR) and to see how 229 

changes in genetic architecture affect efficacy estimates in different groups. 230 

 231 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 7, 2022. ; https://doi.org/10.1101/2022.05.05.22274740doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.05.22274740
http://creativecommons.org/licenses/by/4.0/


We are part of the CARDINAL (CARDiometabolic Disorders IN African-ancestry 232 

PopuLations) which is study site of an NIH-funded Polygenic Risk Methods in Diverse 233 

Populations (PRIMED) Consortium https://primedconsortium.org/. CARDINAL 234 

(Adebamowo, C.A. et al., 2022) aims to integrate phenotype and genomic datasets from 235 

50,000 African individuals from seven cohort studies and evaluate PRSs to develop a novel 236 

method that considers ancestry-specific genomic regions to improve PRS prediction in 237 

populations with genetic substructure. 238 

 239 

Furthermore, we recently provided GWAS data to the Meta-Analyses of Glucose and Insulin-240 

related Variables Consortium (MAGIC) in order to find additional loci that influence 241 

glycaemic and metabolic traits (Chen, J. et al 2021). We are aiming for opportunities to 242 

contribute key phenotypes such as lipids, blood cell traits, kidney, etc to other consortia. For 243 

GBMI we will contribute all phenotype in Table 1 when require, including opportunity to 244 

measure not previously collected phenotype using resources in our organisation. We believe 245 

that team science allows scientists to make the most progress toward breakthrough 246 

discoveries that benefit human health. 247 

 248 

Future directions 249 

The GPC is an active cohort of more than 22,000 participants. Genotype and sequence data is 250 

available for 6,657 respondents (N=5,000, 2,000 and 343 for genotype, sequence and 251 

overlapping samples respectively). We hope to genotype more samples to add on this 252 

resource. We also hope to sequence more samples at higher coverage in order to provide a 253 

reference panel with increased genome coverage. We also hope to extend our research into 254 

proteomics, metabolomics and single cell genomics in order to gain insights into the different 255 

mechanisms and pathways that could be implicated in different disease processes. 256 

 257 

Data access and sharing of the UGR data 258 

Request for resources and information should be directed to UGR’s Data Access Committee 259 

(DAC) via the Lead Contact, Dr. Segun Fatumo (segun.fatumo@mrcuganda.org; 260 

segun.fatumo@lshtm.ac.uk). UGR’s individual level data, genotype and sequence data are 261 

available under managed access to researchers. Requests for access will be granted for all 262 

research consistent with the consent provided by participants. This would include any 263 
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research in the context of health and disease, that does not involve identifying the participants 264 

in any way.  265 

 266 

The array and low and high depth sequence data have been deposited at the European 267 

Genome-phenome Archive (EGA, https://www.ebi.ac.uk/ega/, accession numbers 268 

EGAS00001001558/EGAD00010000965, EGAS00001000545/EGAD00001001639 and 269 

EGAS00001000545/EGAD00001005346 respectively. Requests for access to data may be 270 

directed to segun.fatumo@mrcuganda.org. Applications are reviewed by data access 271 

committee (DAC) and access is granted if the request is consistent with the consent provided 272 

by participants. The data producers may be consulted by the DAC to evaluate potential 273 

ethical conflicts. Requestors also sign an agreement which governs the terms on which access 274 

to data is granted. 275 

 276 

However, full GWAS summary statistics of UGR is freely available on GWAS catalog 277 

https://www.ebi.ac.uk/gwas/ with study accssion numbers: GCST009041 (Eosinophil 278 

counts), GCST009042 (Total cholesterol levels), GCST009043 (LDL cholesterol levels), 279 

GCST0090414 (HDL cholesterol levels), GCST009045 (Triglyceride levels), 280 

GCST009046(Aspartate aminotransferase levels), GCST009047 (Alanine aminotransferase 281 

levels), GCST009048 (Serum albumin levels), GCST009049 (Serum alkaline phosphatase 282 

levels), GCST009050 (Gamma glutamyl transferase levels) , GCST009051 (Bilirubin levels) 283 

, GCST009052 (Diastolic blood pressure) GCST009053 (Systolic blood pressure), 284 

GCST009054 (Hemoglobin A1c levels) , GCST009055 (Height), GCST009056 (Weight), 285 

GCST009057 (Body mass index), GCST009058 (Waist circumference), GCST009059 (Hip 286 

circumference), GCST009060 (Waist-hip ratio), GCST009061 (White blood cell count), 287 

GCST009062 (Red blood cell count), GCST009063 (mean corpuscular hemoglobin), 288 

GCST009064 (mean corpuscular hemoglobin concentration), GCST009065 (mean 289 

corpuscular volume), GCST009032 (red blood cell distribution width), GCST009033 290 

(hematocrit), GCST009034 (hemoglobin measurement), GCST009035 (mean platelet 291 

volume), GCST009036 (platelet count), GCST009037 (lymphocyte count), GCST009038 292 

(monocyte count), GCST009039 (basophil count), GCST009040 (neutrophil count) 293 

 294 

Conclusions  295 

The Uganda Genome Resource is designed to make direct impact in biomedical and genetic 296 

research of health and disease in Uganda, Africa and globally. UGR has become one of the 297 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 7, 2022. ; https://doi.org/10.1101/2022.05.05.22274740doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.05.22274740
http://creativecommons.org/licenses/by/4.0/


model genomic resources in Africa and offers training opportunities to researchers from 298 

Uganda and the world at large.  Here we present an overview of the UGR, showcase its broad 299 

range of phenotypic data, and highlights the genetic discoveries from UGR till date. In the 300 

next few years, UGR will continue to grow in sample size, and include proteomics, 301 

metabolomics, and single-cell genomic studies.  302 

 303 

 304 

Ethics  305 

The study was approved by the Science and Ethics Committee of the Uganda Virus Research 306 

Institute Research (UVRI) and Ethics Committee (UVRI-REC #HS 1978) and the Uganda 307 

National Council for Science and Technology (UNCST #SS 4283) and the East of England-308 

Cambridge South (formerly Cambridgeshire 4) NHS Research Ethics Committee UK 309 

 310 

 311 

 312 

 313 

 314 

  315 
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Table 1:  Sample characteristics of UGR participants at baseline 316 

Characteristic All 
(n=7833) 

Males 
(n=3425) 

Female 
(n=4404) 

Number of individuals interviewed, N 7833 3425 4404 
Age (years),  median (IQR) 30 (17-46) 27 (17-44) 31 (19-47) 
Age group (years), N(%)    
13-19 2398 (30.6) 1218 (35.6) 1180 (26.8) 
20-29 1475 (18.8) 612 (17.9) 863 (19.6) 
30-39 1311 (16.8) 495 (14.5) 816 (18.5) 
40-49 1047 (13.4) 439 (12.8) 608 (13.8) 
50-59 711 (9.1) 297 (8.7) 414 (9.4) 
60+ 887 (11.3) 364 (10.6) 523 (11.9) 
BMI (kg/m2), mean +/- SD 21.2 ± 3.83 20.1 ± 3.11 22.0 ± 4.13 
BMI Classification, N(%)    
Underweight  1712 (22.6) 1031 (30.4) 681 (16.3) 
Normal 4919 (65.0) 2188 (64.4) 2731 (65.4) 
Overweight  739 (9.8) 156 (4.6) 583 (14.0) 
Obese  201 (2.6) 21 (0.6) 180 (4.3) 
Smoking Status, N(%)    
Current Smoker 641 (8.2) 553 (16.2) 88 (2.0) 
Ex-Smoker  194 (2.5) 169 (4.9) 25 (0.6) 
Never smoked 6990 (89.3) 2700 (78.9) 4290 (97.4) 
Alcohol Consumption, N(%)    
Never or no alcohol use 5040 (70.1) 2052 (64.6) 2988 (74.4) 
Infrequent current drinker 537 (7.5) 165 (5.2) 372 (9.3) 
Frequent current drinker 1618 (22.5) 961 (30.2) 657 (16.4) 
Cardio metabolic Quantitative 
measurements (mean ± SD) 

   

TC (mmol/L),  mean ± SD 3.5 ± 0.98 3.3 ± 0.91 3.7 ± 1.00 
HDL (mmol/L), mean ± SD 1.0 ± 0.41 0.9 ± 0.42 1.0 ± 0.40 
LDL (mmol/L), mean ± SD 2.0 ± 0.77 1.8 ± 0.63 2.1 ± 0.80 
Albumin, mean ± SD 41.3 ± 4.10 41.8 ± 4.15 40.9 ± 4.02 
HbA1c, mean ± SD 3.3 ± 0.68 3.3 ± 0.69 3.3 ± 0.73 
TG (mmol/L), mean ± SD 1.2 ± 0.61 1.1 ± 0.61 1.2 ± 0.62 
ALT,  median (IQR) 14.0 (17.8-22.9) 19.4 (15.6-25.1) 13.0 (16.4-21.3) 
ALK,  median (IQR) 71.3 (92.5-144.1) 74.3 (96.8-208.0) 68.5 (89.5-123.1) 
AST,  median (IQR) 21.2 (25.1-30.4) 23.8 (28.0-33.0) 19.8 (23.1-27.4) 
GGT, median (IQR) 13.5 (18.7-28.0) 15.6 (21.6-33.0) 12.2 (17.0-24.2) 
Bilirubin, median (IQR) 5.2 (7.7-12.0) 5.92 (8.9-14.2) 4.8 (6.9.0-10.5) 
    
Anthropometric Measurements     
Weight (kg), mean ± SD 52.6 ± 11.35 52.4 ± 11.37 52.7 ± 11.33 
Height (cm) , mean ± SD 157.2 ± 9.19 160.7 ± 10.54 154.5 ± 6.83 
SBP (mmHg) , mean ± SD 122.4 ± 17.0 123.5 ± 16.2 121.6 ± 17.51 
DBP (mmHg) , mean ± SD 74.2 ± 10.26 73.5 ± 10.39 74.7 ± 10.12 
Anaemia     
WBC 5.1 ± 1.51 5.1 ± 1.58 5.1 ± 1.58 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 7, 2022. ; https://doi.org/10.1101/2022.05.05.22274740doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.05.22274740
http://creativecommons.org/licenses/by/4.0/


RBC 4.7 ± 0.62 4.9 ± 0.65 4.6 ± 0.56 
HGB 13.6 ± 1.62 14.2 ± 1.74 13.1 ± 1.33 
WHR 0.85 ± 0.16 0.86 ± 0.17 0.8 ± 0.16 
MCH 28.9 ± 2.91 29.1 ± 2.92 28.8 ± 2.90 
MCHC 33.7 ± 1.19 33.7 ± 1.24 33.7 ± 1.15 
RDW 13.1 ± 1.34 13.1 ± 1.40 13.1 ± 1.29 
MPV 8.7 ± 0.83 8.7 ± 0.83 8.7 ± 0.82 
Platelet count (PLT) 216.9 ± 77.7 207.9 ± 77.3 223.9 ± 77.30 
Lymphocytes 2.4 ±0.83  2.5 ± 0.92 2.4 ± 0.76 
Monocytes 0.3 ± 0.12 0.29 ± 0.14 0.3 ± 0.11 
Basophils 0.05 ± 0.04 0.05 ± 0.42 0.05 ± 1.58 
Neutrophils 1.9 ± 0.86 1.9 ± 0.84 2.0 ± 0.88 
Eosinophils 0.35 ± 0.39 0.4 ± 0.40 0.3 ± 0.39 
 
Vaccination  

   

Received BCG vaccine, N(%)    
Yes  1421 (18.2) 631 (18.4) 790 (18.0) 
No 553 (7.1) 221 (6.5) 332 (7.5) 
Don’t know  5850 (74.8) 2570 (75.1) 3280 (74.5) 
Received Oral Polio vaccine, N(%)    
Yes  1398 (17.9) 612 (17.9) 786 (17.9) 
No 578 (7.4) 237 (6.9) 341 (7.8) 
Don’t know  5848 (74.7) 2573 (75.2) 3275 (74.7) 
Received DPT vaccine, N(%)    
Yes  1415 (18.1) 626 (18.3) 789 (17.9) 
No 541 (6.9) 212 (6.2) 329 (7.5) 
Don’t know  5868  (75.0) 2584 (75.5) 3284 (74.6) 
Received Measles vaccine, N(%)    
Yes  1561 (20.0) 685 (20.0) 876 (19.9) 
No 561 (7.2) 226 (6.6) 335 (7.6) 
Don’t know  5702 (72.9) 2511 (73.4) 3191 (72.5) 
Received TB vaccine, N(%)    
Yes  54 (0.7) 22 (0.6) 32 (0.7) 
No 7326 (92.5) 3131 (91.5) 4105 (93.2) 
Don’t know  535 (6.8) 269 (7.9) 266 (6.1) 
Received Hepatitis B vaccine, N(%)    
Yes  54 (0.69) 22 (0.6) 32 (0.7) 
No 7258 (92.8) 3141 (91.8) 4117 (93.5) 
Don’t know  513 (6.56) 259 (7.6) 254 (5.8) 
Received Tetanus vaccine, N(%)    
Yes  1881 (24.0) 9 (0.3) 1872 (42.5) 
No 5462 (69.8) 3154 (92.2) 2308 (52.4) 
Don’t know  482 (6.2) 259 (7.6) 223 (5.1) 
Received Tetanus booster vaccine, 
N(%) 

   

Yes  1285 (16.4) 298 (8.7) 987 (22.4) 
No 6044 (77.3) 2863 (83.7) 3181 (72.3) 
Don’t know  495 (6.3) 260 (7.6) 235 (5.3) 
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Received Rabies vaccine, N(%)    
Yes  46 (0.6) 17 (0.5) 29 0.7) 
No 7268 (92.9) 3138 (91.7) 4130 (93.8) 
Don’t know  511 (6.5) 257 (7.8) 244 (5.5) 
Self-report of diseases    
Hypertension, N(%)    
Hypertensive  487 (6.2) 130 (3.8) 357 (8.1) 
Normal  7338 (93.8) 3292 (96.2) 4046 (91.9) 
Diabetes, N (%)     
Diabetic 102 (1.3) 44 (1.3) 58 (1.3) 
Normal 7723 (98.7) 3378 (98.7) 4345 (98.7) 
Blood test results    
HIV status, N (%)    
Negative  7185 (92.4)  3197 (94.0) 3988 (91.1) 
Positive 593 (7.6) 204 (6.0) 389 (8.9) 
Hepatitis  B, N (%)     
Negative 7536 (97.3) 3268 (96.5) 4268 (97.9) 
Positive  210 (2.7) 117 (3.5) 93 (2.1) 
Hepatitis C, N (%)     
Negative 7536 (97.3) 3268 (96.5) 4268 (97.9) 
Positive  210 (2.7) 117 (3.5) 93 (2.1) 

 317 

SD, standard deviation; TC, Total Cholesterol; LDL, Low-density lipoprotein; TG, 318 

Triglycerides; HDL, High-density lipoprotein; ALT, Alanine aminotransferase ; AST, 319 

Aspartate aminotransferase ; ALP, Alkaline phosphatase; GGT, Gamma glutamyltransferase; 320 

DBP,  diastolic blood pressure; SBP, systolic blood pressure; BMI, Body mass index; WHR, 321 

Waist-Hip Ratio; WBC, White blood cell, RBC, Red blood cell, MCV, mean corpuscular 322 

volume; MCH, mean corpuscular haemoglobin; MCHC, mean corpuscular hemoglobin 323 

concentration; RDW, red blood cell distribution width; DPT, Diphtheria, pertussis and 324 

tetanus vaccine 325 
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 Supplementary material 

Figure S1: The principal components analysis plot for the general population cohort 
participants (Source: Gurdasani D et al., 2019) 
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