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Abstract 

Objectives: To present a model that enhances the accuracy of clinicians when presented with a 

possibly critical Covid-19 patient.  

Methods: A retrospective study was performed with information of 5,745 SARS-CoV2 infected 

patients admitted to the Emergency room of 4 public Hospitals in Madrid belonging to Quirón Salud 

Health Group (QS) from March 2020 to February 2021. Demographics, clinical variables on admission, 

laboratory markers and therapeutic interventions were extracted from Electronic Clinical Records. 

Traits related to mortality were found through difference in means testing and through feature 

selection by learning multiple classification trees with random initialization and selecting the ones that 

were used the most. We validated the model through cross-validation and tested generalization with 

an external dataset from 4 hospitals belonging to Sanitas Hospitals Health Group. The usefulness of 

two different models in real cases was tested by measuring the effect of exposure to the model 

decision on the accuracy of medical professionals.  

Results: Of the 5,745 admitted patients, 1,173 died. Of the 110 variables in the dataset, 34 were found 

to be related with our definition of criticality (death in <72 hours) or all-cause mortality. The models 

had an accuracy of 85% and a sensitivity of 50% averaged through 5-fold cross validation. Similar 

results were found when validating with data from the 4 hospitals from Sanitas. The models were 

found to have 11% better accuracy than doctors at classifying critical cases and improved accuracy of 

doctors by 12% for non-critical patients, reducing the cost of mistakes made by 17%. 

 Keywords: COVID-19; Coronavirus; SARS-CoV-2; Machine Learning; Decision Trees, Artificial 
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Introduction 

The effects of the Covid-19 pandemic have overwhelmed the resources of the public medical 

system around the world, with saturation of medical resources being one of the most 

concerning side-effects. As long as herd immunity is not reached through mass vaccination, 

the risk of a wave of infection (Fig. 1) that swamps hospitals again and stretches resources 

even thinner would be disastrous.  

Several models have been developed using different approaches to predict the evolution of 

Covid-19 infection including a study with Spanish patients (Berenguer et al., 2021) predicting 

30-day mortality and building a checklist for ease of use or low-resource approaches using 

patients' histories instead of data during admission (Estiri et al., 2021). However, various 

literature reviews (Wynants et al., 2020; Roberts et al., 2021) show that most models are at a 

risk of bias and overfitting, since they do not generalize well to data from other hospitals 

(because of small datasets or poor model selection), and they are not focused on being 

deployed in real world situations, with the review by Roberts and colleagues finding that none 

of the models reviewed were fit for clinical use. These problems make most models never 

achieve their stated goal of helping diagnose or predict patient evolution. Taking these 

problems to heart, we built a decision tree classifier with data from 5,745 patients from 4 

public Hospitals in Madrid belonging to the Quirón Salud Health Group. Our work tackles the 

problems mentioned by the reviews head on by prioritizing explainability, with clear 

indicators of why the tree is making every decision so that the medical professional can 

choose to use it or ignore it with full information. Furthermore, since the cost of a false 

negative is much higher than a false positive, we have not optimized purely for accuracy but 

have made a choice to penalize false negatives higher. Finally, thinking about deployment of 

the model, we have validated the performance of the model not only on its own through 

cross-validation and a test set from four different hospitals belonging to another organization 

(Sanitas Hospitals Health Group) but also relative to medical professionals with the same 



   
 

   
 

information and in combination with them to see if our method helps them make better 

decisions.  

The results of this work are two models to predict Covid-19 infection severity. The first one 

uses only the data at admission (patient demographic data, vitals, and previous conditions) 

while the second one adds data from laboratory tests. 

Methods 

Source of data 

Permission was obtained from local Ethics Committee (CEIm-FJD) to perform an 

observational, retrospective study. De-identified data were extracted from electronic Clinical 

Records in 5,745 SARS-CoV2 infected patients attending 4 public Hospitals in Madrid 

belonging to the Quirón Salud Health Group from the beginning of the pandemic 

(24/02/2020) to 23/02/2021. The dataset consists of 277,332 entries, with analytic data from 

different days from each of 7,351 unique patients from four hospitals from the FJD group.  

 

Fig. 1: Daily new confirmed cases of COVID-19 in Spain. (Data by Johns Hopkins 
University, chart by Our World in Data (Roser, 2021)) 



   
 

   
 

A validation dataset was obtained through the Sanitas Hospital network which contributed 

data from 975 patients and four hospitals admitted from 24/02/2020 to 15/11/2020. This 

dataset was used to test generalization of the model. 

 

Filtering the data 

The QS dataset contains every patient that attended one of the four hospitals during the time 

period and was diagnosed with Sars-Cov-2 after a positive PCR. For our analysis we decided 

to keep only patients who had been admitted to the hospitals, reducing the total number to 

5,745. Then, for these patients, we only took the entries for which they had at least one 

measured analytical variable, giving us 45,625 in total. 

 

Missing data 

All variables except for the initial laboratory tests and initial vital signs were complete in the 

original dataset. The ones that were not and were over the 50% completion threshold were 

imputed using an iterative imputation procedure from scikit-learn in Python (Buck, 1960; 

Pedregosa et al., 2011).  

 

Problem statement 

Outcome 

The first question the doctors in the team were interested in answering was whether a patient 

was in a critical state and needed urgent care. We chose a threshold of 72 hours and labelled 

the patients as critical if the time from when the sample was taken to death was less than the 

threshold. To build the dataset used for training the model, we used, for each of the patients 

that died, the first critical entry in chronological order. For the patients that did not die, we 

chose the first sample after admission. This led to a final dataset of 5,745 samples of which 

1,173 died and 4,572 did not. 

Predictors 

Variables were chosen from the full dataset to build two models. For the first one, we only 

used data that would usually be available at admission in the ER (Table 1a) and which have 

already been associated with death in Spanish Covid-19 patients (Berenguer et al., 2020) and 

in our dataset for a total of 13 variables. For the second model, we added data from laboratory 

tests and reduced the 110 laboratory variables in the dataset to 24 through feature selection 



   
 

   
 

by learning 1000 trees with random initialization of the samples and selecting only the 

variables that were used at least once by the decision trees to separate between critical and 

non-critical patients (Table 1b). (Appendix A shows the full list of variables with their mean 

and interquartile range) 

 

 

 

 

 

 

 

EC Model Variables 

Demographics Age 

Sex 

Initial vitals O2 Saturation 

Body temperature 

BMI 

Comorbidities Smokers 

Cardiovascular 

Pulmonary 

Diabetes 

Renal 

Neurologic 

Oncologic 

Hypertension 
 

 

Lab test model variables 

Variable name Importance 

RDW 1 

Albumin 1 

RBC count 1 

Hemoglobin 1 

Lymphocyte % 1 

Neutrophil count 1 

Segmented neutrophils % 1 

Glomerular filtration rate (MDRD4) 1 

Urea 1 

Total protein 0.99 

Lactate 0.96 

CHCM 0.95 

Leukocyte count 0.93 

PCO2, gas 0.86 

Hematocrit 0.81 

Sodium 0.69 

Chlorine 0.62 

Fibrinogen 0.55 

LDH 0.16 

Creatinine 0.09 

D-Dimer 0.09 

Ph, gas 0.08 

Interleukin 6 0.03 

Monocyte % 0.01 
 



   
 

   
 

Table 1. Predictor variables used for the ER model and the laboratory test model.  Table 1a, on the 

left, shows the ER variables. These were found to be associated with all-cause mortality through 

pairwise hypothesis tests. Table 1b, on the right, shows the extra laboratory variables added to the 

second model and the fraction of times they appeared in our feature selection procedure.  

Importance of the problem 

The doctors chose to try to answer the question of criticality as a proxy for whether a given 

patient should be admitted to the hospital when the number of available beds is low. In ideal 

circumstances where admission does not have a cost, every patient for which there is 

reasonable doubt of the prognosis or who might benefit from stay would be admitted. When 

the hospital is saturated due to a rise in cases and due to resource constraints, some patients 

can follow treatment at home.  

 

This is why a decision system that can be adjusted depending on the relative cost of admission 

or rejection of critical and non-critical patients and that leads to increased accuracy in 

diagnosis would be very useful to better allocate resources and reduce the workload, 

especially during the more demanding times when the hospital is saturated. 

 

The decision to make two separate models was based on the actual procedure of deciding 

whether a patient should or should not be admitted. First, the doctor encounters the new 

patient and has access to limited information through exploration and the history of the 

patient. They must decide based on this limited information, and that is what the ER model is 

trying to support. If this decision is not made with enough confidence, they usually ask for 

more tests, including a laboratory test. Once the results arrive, they update their original 

decision with the new information, and that is what the laboratory test model is imitating. By 

separating the decision into two steps, we reduce the necessity of asking for extra information 

when it might not increase the confidence of the decision and so reduce the stress on limited 

laboratory capacity and streamlining decision making under pressure. 

 

Methods 

Decision trees 

A decision tree is a simple machine learning model that consists of a series of nodes and 

edges, starting from a single root to multiple leaves (Quinlan, 1986). At each node, the 

decision tree has a sample of the patients and every sample at the node is classified as the 

majority class with probability estimated by the relative frequency of the class. Then, at each 

node except the leaves, the classifier chooses a variable and a cut-off point: samples below 



   
 

   
 

the cut-off will be sent to the left child of the node and samples over the cut-off will be sent 

to the right. The process continues until there is a minimum number of samples in a node. 

 

Each new sample then gets classified according to the set of rules the tree describes. Starting 

from the root, we apply each of the cut-off values to the variables of interest and go down a 

path until we reach a leaf at which point the sample is classified according to the majority 

class.  

 

We learned these trees through an evolutionary algorithm (using the evtree package in R. 

Grubinger et al., 2012) where we chose parameters that made the loss due to a false negative 

(sending a critical patient home) higher than that of a false positive (admitting a non-critical 

patient to the hospital). The weight between these two types of errors can be changed to 

learn a new model that considers the current situation at the hospital. We used relative 

weights of 3:1 (false negative vs false positive) as a first approximation after consideration 

with the medical team and carried out a sensitivity analysis on different weights and their 

effects on model metrics. (See validation in the next section). 

Advantages of decision trees 

Our main concern when choosing a model for this task was making it as transparent as 

possible for the experts. Since it was going to aid and supplement decision making and never 

replace it we needed the reasoning of why the model was giving a choice to be as clear as 

possible for the doctors. This is in line with the recently released European framework 

proposal for regulating AI (Artificial Intelligent) (European commission, 2020), in which AI 

systems that deal with critical decisions in which human lives might be involved are required 

to explain their decision making in a way an expert can understand. 

 

Decision trees have an inherent advantage in this respect since the decision algorithm can be 

interpreted directly as a set of rules. Furthermore, the output probability has a clear meaning. 

As an example, when a patient is said to be critical with 65% probability, that means that 65% 

of patients with similar characteristics were found to be critical (Fig. 2 shows an example of a 

branch of the laboratory test model). 

 

When AI is assisting in decision making, the relevant metric is not the accuracy of the model 

but by how much it improves the unaided accuracy of the decision maker (weighted by the 

costs of each mistake). This is why we consider that a model that explains its reasoning and 

can lead the decision maker to consider some parameters they might be missing is better than 

a black box (Price, 2018) which might make errors silently. 

 



   
 

   
 

 



   
 

   
 

Results and validation 

There were two steps to the validation of this model. First, we checked that the model was 

fitting the data we had well and calculated the AUROC as is usual for this work, while also 

carrying out an analysis on the effect of different relative costs of false positives to false 

negatives. However, as we have mentioned before we believe that the real test of the model 

is if it can improve the accuracy of decision makers. To test this, we created a validation set 

and asked doctors to rate each patient as critical or not before and after seeing the model 

output, trying as much as possible to mimic the conditions under which the model would be 

deployed following a similar method to (Tschandl, 2020). 

Internal validation 

After learning both models, we got accuracies of 83% and 85% and AUROCs were 0.76 and 

0.90 for the ER and laboratory models respectively with 10-fold cross-validation. For the 

analytics model, which would be the last one the doctors consulted, we carried out a 

sensitivity analysis by relearning the model with different values of the relative costs of false 

positives and negatives. AUROC stayed mostly constant at 0.90 over all different weight 

ratios and the results for specificity, sensitivity and accuracy can be seen in figure 2. For the 

full table of results, see appendix B.  

 
 



   
 

   
 

 

Almost constant AUROC shows that changing the penalties for mistakes trades off between 

false positive rate and false negative rate while maintaining good model performance. This 

can be seen in the chart above, with sensitivity decreasing as the cost of a false negative 

decreases while accuracy and precision increase (due to a reduced number of false positives). 

Validation from external data 

 

Finally, with a dataset of 975 patients admitted to four hospitals from the Sanitas Hospital 

Network we validated generalization of the model. These patients were admitted with Covid-

19 between 24/02/2020 and 15/11/2020 and were processed in the same way as the QS 

dataset. Figure 3 shows the results obtained by using the model learnt with the original 

dataset to predict the status (critical or not) of the patients in this dataset for different relative 

costs of mistakes (see the full data in Appendix C). The results are very similar to those of the 

original dataset, being even better in some cases which shows that the model can generalize 

to data from different centres. Using the same cost ratio we used for the original model (3:1 

false negative to false positive) we get accuracies of 81.5% and 84.9% for the ER and lab model 

respectively (compared with 83% and 85%) and for the laboratory model we get 55% 

sensitivity and 49% precision compared to the 51% sensitivity and 46% precision we get with 

the original dataset.  

 

 



   
 

   
 

Validation as an aid to decision making 

For the final test of the model, we randomly separated 100 patients from the QS dataset that 

had not been used to train the models. Anonymised data from these patients were presented 

to 36 doctors with different levels of experience: eleven of them were residents and twenty-

five attending physicians. Presentation of the data followed two steps: first, they were given 

a patient knowing only its history (past conditions like cardiac conditions), age, temperature 

and O2 saturation. They then decided whether they think the patient is critical or not and get 

shown the model prediction and explanation. With the new information, they can decide to 

maintain their choice or change it. In the second stage they had a similar presentation but 

adding a table with the laboratory tests for the patient highlighted in red any variables that 

are outside the normality range (Fig. 5). Again, they made a choice, received the model 

prediction and are then able to change it. By recording the answers before and after getting 

the model information we can estimate the change in accuracy due to the model and see if it 

helps improve clinical decisions or not.  

 

The 36 doctors answered a total of 872 validation questions. The answers with and without 

the model were compared in three ways: comparing the accuracy, sensitivity and relative cost 

of mistakes and checking for significant differences between them adjusting for multiple 

comparisons (Dunn, 1961). For the whole validation dataset we found an improvement of 

1.4% in accuracy, 0.4% in sensitivity and a reduction of costs of 2.1% all non-significant. We 

did subgroup analysis of attending physicians and residents and observed some differences 

(models seemed to help attending doctors more) but they were also not statistically 



   
 

   
 

significant. Finally, we analysed the patients for which the model gave a low probability of 

admission. These patients are the ones we are interested in for the practical application since 

the model has been trained to be sensitive to critical patients to avoid false negatives. Due to 

the extreme sensitivity, when the model is sure that the patient is stable the doctor can be 

very sure of the decision. Here the model performs well, with an improvement of 12% in 

accuracy, 1% in sensitivity and 17% in reduction of costs of mistakes all with p<0.05 after 

Bonferroni correction.  

 

 

Discussion 

One of the most interesting aspects of the model from the clinical point of view is that it is 

built based on medical reasoning in its different stages. By mimicking the reasoning process 

of doctors, it can help them during all the steps and improve as more data is added. This was 

one of the priorities when designing the model, we not only needed a robust algorithm but 

also one that could be useful under limited data conditions. This is even more important when 

we consider countries where the resource scarcity is even more pronounced and where 

vaccination campaigns can take a much longer time.  

 

The mortality of this pandemic, beyond the inherent to its own severity and tissue impact has 

been marked by the exponentiality of cases, the speed of the course of the disease and the 

finite capacity of hospitals. Although this capacity could be expanded at the expense of the 

non-Covid pathology, in many cases it was insufficient, and this was especially true in the first 

wave. 

 

A model like the one we presented would have very importantly mitigated these effects in 

the hospital structures of all countries. But the Covid pandemic has not finished. New threats 

in the form of new variants lurk and although we hope that the waves will not be of the 

magnitude of the previous ones, a real commitment is expected in this new pandemic era in 

which these waves should coexist with the prepandemic activity. In this scenario it is 

especially important also to have a tool to classify and use the necessary resources without 

this existing detriment in relation to patients who will not have Covid. Additionally, the model 

can be adjusted to the different hospital pressure scenarios, a differential fact with respect to 

other models (Wynants et al., 2020). 

 

Limitations 

The current version of the model is limited by the amount and origin of the data with which 

the model is trained. Both datasets, Sanitas and QS come from private hospital networks in 



   
 

   
 

Madrid which gives a sample that is biased towards patients that can afford private 

healthcare. We have been in communication with the regional government of Madrid and 

various public hospitals, but we have been unable to get access to the data. Furthermore, we 

believe that the validation results could be better with a bigger sample of doctors and with 

an extra group which had been trained with the tool, allowing us to observe if further training 

after the basic notion of how the model works would be helpful in improving the results. 

Conclusions 

We show here that the development of a reliable risk-stratification tool which follows the 

recommendations for machine learning models (validation on outside data, easy to 

understand and use by the medical professionals and with transparent reasoning) in hospitals 

during the pandemic is feasible. The overall algorithm can be scaled to any type of 

unit/hospital in the world if they are collecting data. This would offer personalized results 

adapted to the environment of the unit analyzed. The models can be found at 

https://modelling-pandemics.com.  
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Appendices 

Appendix A: Dataset description (Model variables) 

 

Variable name Discharged Deceased 

Number of patients - n (%) 4572 (79.6) 1173 (20.4) 

Age - n (%) 

<40 425 (9.3) 4 (0.3) 

40-59 1365 (29.9) 67 (5.7) 

60-79 1714 (37.5) 415 (35.4) 

>=80 1068 (23.4) 687 (58.6) 

Female - n (%) 2063 (45.1) 515 (43.9) 

Initial vital signs - median (IQR) 

Oxygen saturation - % 94.8 (93.0-96.4) 94.0 (91.0-96.0) 

Body temperature - °C 36.9 (36.5-37.2) 36.8 (36.4-37.1) 

BMI 27.4 (25.0-29.3) 26.7 (24.3-28.9) 

Laboratory tests - median (IQR) 

Lymphocyte - % 14.3 (11.1-22.5) 11.3 (6.7-13.7) 

Segmented neutrophils - % 77.6 (67.6-82.4) 81.3 (77.0-87.9) 

Albumin - g/dL 3.5 (3.2-3.8) 3.2 (2.9-3.4) 

CHCM - g/dL 33.7 (33.2-34.6) 33.4 (32.6-34.0) 

Chlorine - mmol/L 102.0 (100.0-104.0) 102.4 (100.0-105.6) 

Creatinine - mg/dL 0.8 (0.7-1.0) 0.9 (0.7-1.3) 

D-Dimer - ng/mL 814.2 (381.0-1518.7) 1519.0 (802.0-2455.0) 



   
 

   
 

Fibrinogen - mg/dL 577.4 (512.5-679.0) 590.4 (519.6-703.0) 

Glomerular filtration rate 

(MDRD4) - mL/min 60.0 (59.0-60.0) 59.0 (49.0-60.0) 

Hematocrit - % 37.5 (35.1-41.0) 35.4 (33.0-40.2) 

RBC count - 10^6/µL 4.3 (4.0-4.7) 4.0 (3.6-4.5) 

Hemoglobin - g/dL 12.7 (11.7-14.0) 11.9 (10.9-13.4) 

Interleukin 6 28.9 (3.5-68.8) 54.2 (8.0-111.8) 

LDH - U/L 270.2 (217.0-326.0) 332.0 (256.0-415.0) 

Leukocyte count - 10^3/µL 7.9 (5.5-9.5) 8.6 (6.3-11.2) 

Neutrophil count - 10^3/µL 5.9 (3.7-7.4) 7.0 (4.9-9.4) 

PCO2, gas - mmHg 46.7 (45.4-47.9) 47.1 (45.5-48.8) 

Ph, gas 7.4 (7.4-7.4) 7.4 (7.4-7.4) 

Total protein - g/dL 6.2 (5.9-6.6) 6.0 (5.6-6.3) 

RDW - % 13.5 (12.7-14.4) 14.5 (13.6-15.7) 

Sodium - mmol/L 139.0 (137.0-141.0) 139.0 (137.4-142.1) 

Urea - mg/dL 42.0 (31.0-55.0) 61.5 (46.0-84.0) 

Lactate - mM/L 1.7 (1.5-2.0) 1.9 (1.6-2.2) 

Comorbidities - n (%) 

Smokers 264 (5.8) 54 (4.6) 

Cardiovascular 967 (21.2) 492 (41.9) 

Pulmonary 893 (19.5) 271 (23.1) 

Diabetes 919 (20.1) 347 (29.6) 

Renal 356 (7.8) 176 (15.0) 

Neurologic 556 (12.2) 251 (21.4) 

Oncologic 276 (6.0) 124 (10.6) 

Hypertension 2104 (46.0) 822 (70.1) 

 

 



   
 

   
 

 

 

 

 

 

Appendix B: Results of sensitivity analysis 

 

Ratio of costs (False 

positive/False negative) 

Accuracy AUROC Specificity Sensitivity F1-score 

0.01 51.03% 0.901 24.75% 93.40% 0.391 

0.016 50.91% 0.901 24.70% 92.70% 0.390 

0.026 51.62% 0.903 25.09% 93.99% 0.396 

0.043 52.32% 0.902 25.41% 93.88% 0.400 

0.070 53.28% 0.903 26.03% 94.46% 0.408 

0.113 57.11% 0.904 27.18% 91.17% 0.419 

0.183 58.92% 0.906 28.06% 90.46% 0.428 

0.298 61.57% 0.906 29.10% 87.75% 0.437 

0.483 66.33% 0.904 31.43% 83.75% 0.457 

0.785 72.87% 0.906 35.71% 75.62% 0.485 

1.27 77.00% 0.905 39.61% 69.14% 0.504 

2.07 78.85% 0.905 41.11% 58.54% 0.483 

3.36 83.42% 0.900 51.11% 46.17% 0.485 

5.46 85.31% 0.901 61.07% 36.40% 0.456 

8.86 84.87% 0.901 63.39% 25.09% 0.359 

14.4 84.37% 0.901 71.81% 12.60% 0.214 

23.4 83.44% 0.906 77.50% 4.00% 0.076 

37.9 83.14% 0.906 82.16% 0.47% 0.009 

61.6 83.08% 0.906 83.21% 0.00% - 

100 83.14% 0.904 83.43% 0.59% 0.012 

 

 

 

Appendix C: Sensitivity analysis of Sanitas hospitals 

 



   
 

   
 

Ratio of costs (False 

positive/False negative) Accuracy Specificity Sensitivity F1-score 

0.0100 54.11% 25.79% 94.93% 0.406 

0.0162 54.07% 25.87% 94.83% 0.406 

0.0264 54.53% 25.91% 94.45% 0.407 

0.0428 55.48% 26.42% 94.07% 0.413 

0.0695 55.78% 26.57% 94.74% 0.415 

0.113 57.61% 27.42% 93.97% 0.425 

0.183 61.23% 29.19% 93.49% 0.445 

0.298 64.11% 30.54% 91.00% 0.457 

0.483 71.45% 35.23% 86.99% 0.502 

0.785 74.01% 37.20% 82.20% 0.512 

1.27 78.31% 41.47% 74.93% 0.534 

2.07 82.11% 47.25% 64.98% 0.547 

3.36 84.94% 55.15% 49.67% 0.523 

5.46 85.37% 58.91% 39.23% 0.471 

8.86 85.70% 65.27% 29.86% 0.410 

14.4 85.37% 73.13% 18.76% 0.299 

23.4 84.21% 84.03% 6.03% 0.112 

37.9 83.89% 87.19% 4.11% 0.078 

61.6 83.43% 92.27% 0.38% 0.008 

100 83.40% 94.13% 0.00% - 

 


