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Abstract 

 

Objective Therapeutic efficacy of deep brain stimulation (DBS) in both established and 

emerging indications, is highly dependent on accurate lead placement and optimized clinical 

programming. The latter relies on clinicians’ experience to search among available sets of 

stimulation parameters and can be limited by the time constraints of clinical practice.  Recent 

innovations in device technology have expanded the number of possible electrode 

configurations and parameter sets available to clinicians, amplifying the challenge of time 

constraints. We hypothesize that patient specific neuroimaging data which can effectively assist 

the clinical programming using automated algorithms. 

Approach This paper introduces the DBS Illumina 3D algorithm as a tool which uses patient-

specific imaging to find stimulation settings that optimizes activating a target area while 

minimizing the stimulation of areas outside the target that could result in unknown or undesired 

side effects. This approach utilizes preoperative neuroimaging data paired with the postoperative 

reconstruction of lead trajectory to search the available stimulation space and identify optimized 

stimulation parameters. We describe the application of this algorithm in three patients with 

treatment-resistant depression who underwent bilateral implantation of DBS in subcallosal 

cingulate cortex (SCC) and ventral capsule/ventral striatum (VC/VS) using tractography 

optimized targeting with an imaging defined target previously described. 

Main results Compared to the stimulation settings selected by the clinicians (informed by 

anatomy), stimulation settings produced by the algorithm achieved similar or greater target 

coverage, while producing a significantly smaller stimulation area that spills outside the target 

(P=0.002). 

Significance The DBS Illumina 3D algorithm is seamlessly integrated with the clinician 

programmer software and effectively and rapidly assists clinicians with the analysis of image 

based anatomy, and provides a starting point for the clinicians to search the highly complex 

stimulation parameter space and arrive at the stimulation settings that optimize activating a 

target area. 

 

  

Clinical trial registration number: NCT 03437928  
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Introduction 

Deep brain stimulation (DBS) is an established and effective therapy for a diverse array of 

neuropathological conditions ranging from motor to cognitive and mood disorders. Standard 

clinical programming in DBS heavily relies on clinical experience and expertise and is often 

performed based on trial and error. During programming sessions, the clinician usually uses a 

programming device that communicates with the implanted pulse generator (IPG) to test many 

different stimulation settings, including electrode configuration, stimulation amplitude, pulse 

width, frequency and pulse patterns, and examine the patient for clinical response and the 

presence of potential side effects. This search aims to arrive at a stimulation setting that 

maximizes therapeutic benefit while minimizing the side effects [1,2]. Newest generations of 

DBS technology, such as those providing segmented leads and multiple independent current 

control (MICC), further expand the possible stimulation settings [3,4]. Although general 

guidelines for DBS programming are available [5–7], testing numerous stimulation settings is 

time consuming and exhaust clinicians, patients, and clinical resources.  

Understanding the position of the electrode relative to the neuroanatomy could potentially 

facilitate both targeting and programming [8]. The value of imaging is highlighted by the 

significant increase in reports of equally efficacious outcomes with image-guided “asleep” 

implantation [9–11]. Patient-specific imaging data can also be paired with three-dimensional 

stimulation field models (SFMs) representing the volume of tissue activated (VTA) [12]. Pre-

operative images are routinely used during DBS targeting and planning procedures.  Anatomical 

segmentation of the pre-operative images, along with the reconstruction of the lead trajectory 

using post-operative imaging can provide unique information on the position of the lead with 

respect to the brain anatomy. Access to patient-specific anatomy, combined with information 

about stimulating various brain regions leading to clinical benefit or side effects, provides the 

ability to visualize the interaction of the stimulation models with respect to these structures and 

to potentially maximize the stimulation of beneficial areas and minimize the stimulation of regions 

that may adversely affect the patient. While SFM-guided programming is increasingly utilized in 

clinical practice, there is a need for tools which help the clinician optimize stimulation parameters 

to achieve maximal coverage of the targeted region by the estimated SFM.  

In this paper we introduce and test a novel inverse programming algorithm, called the DBS 

Illumina 3D Algorithm which automates selection of optimized stimulation parameters for 
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overlapping the SFM with a desired anatomical or functional target. The algorithm utilizes 

clinician-selected benefit and side effect regions from relevant anatomy to determine a set of 

suggested electrode configurations and stimulation amplitudes that maximize benefit-region 

coverage while minimizing the stimulation of regions of avoidance that could result in unknown 

or side effects. The user is able to prioritize both the importance of target region coverage versus 

total SFM volume and target region coverage versus side effect region stimulation. The DBS 

Illumina 3D Algorithm can be run multiple times to refine preferences and produce multiple sets 

of suggested initial stimulation parameters.  These parameters can be used as a starting point 

to explore the options for treatment. 

The target structure used in this report is from a set of clinician-chosen brain areas in a series 

of patients with treatment-resistant depression (TRD), using a target described in prior 

publications [13]. We compared clinician-chosen stimulation settings to algorithm-based settings 

and assessed the performance of algorithm. We demonstrate that the algorithm is fast and 

effective at placing the SFM to maximally overlap with a target structure, while minimizing the 

stimulation of non-target brain areas that could lead to unknown or undesired effects. Moreover, 

we demonstrate its performance in consistently stimulating the target across various pulse 

widths, emphasizing its utility in effectively searching the stimulation space based on the said 

criteria of maximally stimulating the target.    
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Materials and Methods 

Patients  

Individuals who participated in this study were all enrolled in the clinical trial (NCT 03437928) 

aimed at using a novel platform for therapy development based on elucidating the 

electrophysiological mechanisms underlying DBS for treatment resistant depression (TRD) 

[14,15]. These individuals were all diagnosed with treatment resistant major depressive disorder 

without psychotic features, and all provided written informed consent as approved by the Baylor 

College of Medicine IRB (H-43036) prior to participation. Details of the study participants are 

described elsewhere [14,15]. 

 

Neuroimaging and implant procedure 

Details of neuroimaging are provided previously [14,15]. T1-weighted anatomical imaging 

(MPRAGE; 1mm isotropic, TR/TE/TI=2400/2.24/1160; FOV=256; 208 slices; flip angle=8º) and 

Diffusion weighted imaging data (DWI) were acquired prior to surgical implantation of DBS. DWI 

data were acquired (1.5mm isotropic) with two phase encoding directions (anterior-to-posterior 

and posterior-to-anterior), 92 diffusion-sensitizing gradient directions, and 7 interleaved b=0 

volumes. The diffusion-encoded volumes alternated between b=2000 and b=1000, with 

TR=3.2s, TE=87ms, TA=5:34 per scan, matrix 140x140x92, multi-slice acceleration=4 on a 

Siemens Prisma 3T scanner.  

Study participants each underwent stereotactic implantation of four directional DBS leads 

(CartesiaTM, Boston Scientific, Valencia, CA, USA), featuring 8 contacts in a 1-3-3-1 electrode 

configuration, where two leads were implanted in bilateral subcallosal cingulate cortex (SCC) 

and the other two were implanted in bilateral ventral striatum/ ventral capsule (VC/VS). The 

target area for implantation, here referred to as the tractography- guided optimized target (TOT), 

was derived using pre-operative structural and diffusion weighted MR scans [13,16], Figure 1a. 

Each set of two leads were subcutaneously connected to a 16-contact Vercise Gevia 

rechargeable pulse generator (Boston Scientific, Valencia, CA, USA). The two pulse generators 

were implanted in the bilateral infraclavicular pockets of the chest wall. 

The post-implantation clinical CT scan was acquired on a Philips iCT 256 system, using a 

reconstruction diameter of 250mm, slice thickness of 0.67mm and a space between slices of 

0.67mm, image size = 512x512, view size 1664x1236. Post-implantation CT scan was loaded 
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in Brainlab Elements and co-registered to the preoperative structural scans using Image fusion 

module (Brainlab, Munich, Germany). The trajectory and orientation of each DBS lead was 

automatically extracted using  the ‘Lead Localization’ module  and was subsequently verified by 

visual inspection (Brainlab, Munich, Germany), Figure 1a [17]. Anatomical structures were 

defined with FSL (please see “Target area for Stimulation” below). The anatomical volumes and 

DBS lead trajectories were then transferred to Vercise Neural Navigator Software (Boston 

Scientific, Valencia, CA, USA) for clinical programming of the stimulation. The neural navigator 

enabled traditional manual adjustment to the DBS parameter settings, as well as experimental 

access to the Illumina algorithms for target-based optimization programming, Figure 1b (see 

next section for more details). 

 

Stimulation Field modeling 

We use the term “fractionalization” to refer to the unique arrangement of current driven to 

each electrode, expressed as a percentage (fraction) of the total current. A fractionalization can 

include anodes (+), cathodes (−), and combinations of both polarities (Figure 1C, Table 1). To 

generate the stimulation field model (SFM) associated with each fractionalization, electric fields 

resulting from the stimulation setting are constructed as finite element models (FEM) using 

COMSOL Multiphysics software (COMSOL Inc., Burlington, MA, USA). The model consists of 

an insulating lead body having conducting electrodes, surrounded by an encapsulation layer, 

inside a cylinder of neural tissue. The neural tissue is modeled as isotropic and homogenous 

with conductivity of .2 S/m, and the encapsulation layer with a lower conductivity of .1 S/m. A 

multi-resolute mesh is created to encompass both the lead body and the encapsulation layer, 

with highest resolution at electrode-tissue interface and higher resolution in a region of interest 

(ROI) surrounding the electrode array versus the remaining volume. The scalar potentials at the 

mesh nodes are calculated and the model is solved once per electrode at unit current (1 mA).  

The electric field results from the RoI are then exported from COMSOL and interpolated 

onto a regular grid of model axons that surround the DBS lead at 0.5 mm spacing (221- 

compartment, 21-node MRG myelinated axons of length of 10 mm and diameter of 5.7 µm [18]). 

The model consists of axons which are oriented orthogonally relative to the lead body and have 

identical behavior to a given stimulus. The response to each stimulus is computed by temporally 

scaling the potentials along the axon compartments using a waveform modeled on stimulator 
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recordings to estimate the threshold current (‘Ith’, in mA) at which each axon in the grid fires an 

action potential from quiescence (NEURON, Yale, Version 7.3) [19]. A machine learning 

algorithm which takes features of the axon voltage profile as input and estimates axon’s 

response is trained on over 100 million axon simulations. 

Basis files and the trained predictor are included in the Guide XT and Vercise Neural Navigator 

programmer software and can be integrated with the anatomical model of the patient. The output 

current amplitude thresholds for the axon models are iso-surfaced at the selected stimulation 

current amplitude. The resulting surface is displayed as the SFM. Exemplar SFM from Vercise 

Neual Navigator software is shown in Figure 1b.  

Target Area for Stimulation 

Subject-specific TOT area within SCCwas defined in a semi-automated fashion, using 

methods previously described [13,16]. First, FSL probabilistic tractography [20] was performed 

to delineate the connectivity of SCC with patient-specific masks (ventral striatum (VS), uncinate 

fasciculus (UCF), anterior cingulate cortex (ACC) and bilateral medial prefrontal cortex (mFPC)) 

per hemisphere. A curvature threshold of 0.2 was used (approximately 80 degrees) for stopping 

streamline trajectories. The default 0.5mm voxel step length, 5000 samples and 2000 steps were 

used. Fibers with volume of fraction lower than 0.01 were discarded during tractography using 

the default value subsidiary fiber volume threshold. To avoid artifactual loops, streamlines that 

loop back on themselves were discarded. Using the -opd and -os2t flags 3D image files were 

created that contained the number of streamlines that reached each target voxel and seed 

segmentation maps to each target were derived where the value of each voxel corresponded to 

the number of streamlines seeded from that voxel reaching the target mask divided by the total 

number of streamlines (probability maps). Then the SCC probability maps for each target were 

smoothed using a Gaussian kernel (2 mm), multiplied on a voxel-by-voxel basis and then a high 

pass filter was applied (via thresholding) in order to include only voxels with probability higher 

than 10% of the maximum joint probability value.  

Considering the activated tissue area surrounding the DBS electrode, the filtering of 2mm 

was considered the optimal option to simulate the area within SCC/VCVS that will present strong 

connectivity to each target in case of stimulation. Although the performed filtering approach 

might reduce the variability seen within the segmentation map between the voxels with low and 

high connectivity value, it highlights the areas within SCC/VCVS maps with higher probability of 
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connectivity to each target. Finally, TOT within SCC was defined as the subregion with the 

highest joint probability of connectivity with all target areas. The same approach was followed to 

define the TOT within VCVS area using as targets the dorsolateral prefrontal cortex, nucleus 

accumbens, amygdala, medial and lateral orbitofrontal cortex.  

 

 

Figure 1- (A) Brain targets and reconstructed lead trajectories (B)Snapshot from Vercise Neural NavigatorTM software showing an exemplary program and its 

corresponding SFM with respect to anatomy (target structure, TOT on LSCC (left subcallosal cingulate cortex) is shown in purple)(C) Stimulation configurations 

defined in the study protocol (i.e., Study sets), including four rings and three vertical stacks. 

 

 

 

The DBS Illumina 3D Algorithm 
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The DBS Illumina 3D Algorithm (Boston Scientific, Valencia, CA USA) uses a metric 

optimization algorithm Bound Optimization by Quadratic Approximation (BOBQYA) [21]. The 

goal of the algorithm is to maximize stimulation of a target volume while staying within clinician-

specified constraints. The algorithm incorporates the cost of increasing the size of the SFM, the 

cost of overlapping with avoidance volumes, including possible side effect regions, as well as 

stimulation safety limits.  

The cost function, or metric, for the optimizer, for each fractionalization, is a weighted 

summation of the stimulated volumes for each structure (one target and one or more avoidance 

regions) and the SFM (background volume).  The Target structure has a positive weight, and 

the avoidance structures and background have negative weights.  For each fractionalization, the 

highest possible metric value is calculated, and the corresponding amplitude is determined. The 

clinician can specify one target region, zero or more avoidance region(s), the priority of not 

stimulating the avoidance regions (controlled by a slider to set ‘avoidance ratio’), and 

prioritization of reduced SFM volume (controlled by a slider to set the ‘background ratio’).  The 

equation to calculate the optimized metric is therefore: 

𝑚 = ∑ (𝑣𝑡𝑎𝑟𝑔𝑒𝑡 − (𝑣𝑎𝑣𝑖𝑑𝑎𝑛𝑐𝑒 ∗ 𝑎𝑣𝑜𝑖𝑑𝑎𝑛𝑐𝑒 𝑟𝑎𝑡𝑖𝑜) − (𝑣𝑆𝐹𝑀 ∗ 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑟𝑎𝑡𝑖𝑜)) 

Where: 

𝑚 = metric value 

𝑣𝑡𝑎𝑟𝑔𝑒𝑡 = stimulated target volume in mm3 

𝑣𝑎𝑣𝑜𝑖𝑑𝑎𝑛𝑐𝑒 = stimulated avoidance volume in mm3 

𝑣𝑆𝐹𝑀 = total SFM volume in mm3 

In summary, the metric is the sum of the stimulated target volume (in mm3) minus the total 

volume of stimulated avoidance region (in mm3), weighted by the avoidance ratio, minus the 

total volume of background stimulation (in mm3), weighted by the background ratio.  Where the 

avoidance ratio is the ratio of the cost (reduction in metric value) of stimulating avoidance region 

to the benefit (increase in metric value) of stimulating target region, and the background ratio is 

the ratio of the cost of stimulating background volume to the benefit of stimulating target region.  

The stimulated background volume is the same as the volume of the SFM. 

The optimization algorithm is run once for each of two virtual electrode types (one equivalent 

to the ring electrodes on the lead, and one equivalent to the segmented electrodes on the 
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lead).First, the optimizer is run using the rinig electrode, and a best solution is determined.  If 

the lead is directional, the optimizer is run using the directional virtual electrode.  As the 

optimization algorithm tests each virtual electrode’s position, the position is converted to a 

fractionalization on the real electrodes of the lead.  For each fractionalization, the best metric 

among the possible amplitudes is compared to the metric of the current best solution.  If the new 

metric is better than the previous best metric, the new metric, virtual electrode type, position, 

and derived amplitude are stored as the new best solution. When the optimization algorithm has 

met the stop conditions the best solution is returned and displayed for the clinician.   

A virtual electrode shape defines a voltage field.  For a gridded set of steering locations, the 

virtual electrode’s voltage field is transformed to that gridded location.  Least squares fitting 

determines the fractionalization that produces the best fit between the real voltage field and the 

voltage field of the virtual electrode. 

 

Selection of Stimulation Parameters 

The electrical stimulation was delivered as biphasic pulses of with passive recharge and at 

the frequency of 130 Hz. As part of the study protocol, SFMs from a series of pre-identified 

stimulation configurations were compared to find thosethat would maximally stimulate the target 

area. These pre-identified stimulation sets included four ring-mode configurations and 3 

vertically stacked segments (Figure 1c), for each of the three pulse-width (PW) values of 50, 100 

and 180 µs (total of 21 settings). Herein these sets are referred to as Study Sets. Per protocol, 

for each target, clinicians [NP ans SS] selected a final setting across all available Study Sets, 

based on the maximal volume of overlap with the target area. These final sets which we refer to 

as Image Guided Sets, represent anatomically-informed clinician-selected parameter sets that 

were subsequently used to program the patient as per study protocol (Table 1). 

We subsequently used the DBS Illumina 3D Algorithm at each pulse width (50, 100 and 180 

µs) to identify solutions for different selections of optimization cost, which we call here the 

Illumina Sets. In this application, the DBS Illumina 3D Algorithm only had one target area (i.e. 

TOT area corresponding to that lead) specified while no avoidance regions were selected. 

 

 

Statistical analysis 
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For each stimulation setting in the Study Sets, Image Guided Sets and Illumina Sets, we 

calculated the volume of resulting SFM by voxelizing the SFM isosurface and finding the number 

of voxels within the voxelized SFM, multiplied by the single voxel volume (1 mm3). The volume 

of overlap between the SFM and the target area, which is referred to as Fill Volume was similarly 

calculated by identifying the number of voxels that were common to both the SFM and the target 

area, multiplied by the single voxel volume (1 mm3). This volume was then normalized to the 

total target volume and converted to percentage to define % stimulated target volume. We also 

calculated the total volume of each SFM that spills outside the target area (i.e., Spill Volume) by 

subtracting the Fill Volume from the total volume of the SFM. These parameters were then 

shared with the clinicians (NP and SS) who compared various stimulation settings with respect 

to the objective criteria of activating the brain target while minimizing the stimulation of areas 

outside the target.  

Statistically significant difference in Spill volume between Image guided Sets and Illumina 

Sets producing closest non-smaller target coverage was assessed using a non-parametric 

paired sample test (Wilcoxon signed rank test), P-values smaller than 0.5 were determined to 

be statistically significant. This specific comparison was motivated by the selection criteria for 

generation of Image Guided sets, to be maximally stimulating the target area. 

Total charge deposited to the tissue per stimulation pulse was calculated by multiplying 

stimulation amplitude and pulse-width. Total charge was used to establish decision guiding 

criteria for selection of stimulation parameters across various combinations.  
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Results 

Stimulation settings were evaluated in four targets in each of the three individuals enrolled in 

this study (Table 1). After performing image processing steps described in the methods sections, 

brain targets (i.e., TOT areas) and lead trajectories were defined for each lead and Study sets 

and Illumina sets were generated according to the study protocol.  

We first generated SFMs from Illumina sets, Study sets, and Image Guided sets to identify 

which group provided optimized target coverage (i.e. Fill) versus spill volume. Example in Figure 

2a shows a sample from Study sets from Left SCC in TRD003 (top panel, highlighted by a red 

filled square in Figure 2b) and a comparable sample from Illumina sets (bottom panel, highlighted 

by filled circle in Figure 2b). Image Guided sets were selected from Study sets as those providing 

maximal volume of target coverage.  

DBS Illumina 3D Algorithm allowed the user to move a slider to adjust the Background Ratio 

which establishes the cost of stimulating the target area versus stimulating the area outside the 

target (Color bar in Figure 2b). Hence, a series of Illumina sets were generated for each 

pulsewidth. For each target, one single Illumina Set, that provided closest non-smaller Fill 

Volume to its corresponding Image Guided set was selected to be compared against Image 

Guided sets (Table 1). We then performed a series of comparisons between these groups of 

settings and present our findings below
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Table 1-Demographics and Stimulation parameters for Image Guided and Illumina Sets. IPG stands for implanted pulse generator/Case. Curernt fractionalizations include anodes (+) and cathodes (−) 
along with % total current allocated to each contact (shown by letter “E” followed by the contact number) 

Subject ID Age-Range Gender Image Guided set Illumina Set 

TRD001 30-40 M 

LSCC RSCC LVCVS RVCVS LSCC RSCC LVCVS RVCVS 

IPG: +100% 

E8: -100% 

5 mA 

180 µs 

IPG: +100% 

E5: -34% 

E6: -33% 

E7: -33% 

6 mA 

100 µs 

IPG: +100% 

E4: -50% 

E7: -50% 

5 mA 

180 µs 

IPG: +100% 

E3: -50% 

E6: -50% 

5 mA 

180 µs 

IPG: +80% 

E3: -1% 

E4: -1% 

E5: -6% 

E6: +10% 

E7: +10% 

E8: -92% 

9.5 mA 

100 µs 

IPG: +74% 

E2: +2% 

E3: +4% 

E4: +1% 

E5: -29% 

E6: -66% 

E7: +19% 

E8: -5% 

6.7 mA 

100 µs 

IPG: +74% 

E1:-1% 

E2: +3% 

E4: +5% 

E5: -19% 

E6: +18% 

E7: -35% 

E8: -45% 

7 mA 

180 µs 

IPG: +68% 

E1: +8% 

E2; +8% 

E3: -39% 

E4: -11% 

E5: +8% 

E6: -39% 

E7: -11% 

E8: +8% 

11.4 mA 

100 µs 

TRD002 50-60 F 

LSCC RSCC LVCVS RVCVS LSCC RSCC LVCVS RVCVS 

IPG: +100% 

E3: -50% 

E6: -50% 

5 mA 

180 µs 

IPG: +100% 

E2: -50% 

E5: -50% 

5 mA 

180 µs 

IPG: +100% 

E2: -50% 

E5: -50% 

5 mA 

180 µs 

IPG: +100% 

E2: -50% 

E5: -50% 

5 mA 

180 µs 

IPG: +65% 

E1: +9% 

E2: -29% 

E3: -34% 

E4: +12% 

E5: -17% 

E6: -20% 

E7: +8% 

E8: +6% 

20 mA 

50 µs 

IPG: +66% 

E1: +6% 

E2: -20% 

E3: +8% 

E4: -16% 

E5: -35% 

E6: +12% 

E7: -29% 

E8: +8% 

12.7 mA 

100 µs 

IPG: +78% 

E1: +8% 

E2: -41% 

E4: +2% 

E5: -59% 

E7: +2% 

E8: +10 

20 mA 

50 µs 

IPG: +76% 

E1: +9% 

E2: -47% 

E3: -1% 

E4: +3% 

E5: -51% 

E6: -1% 

E7: +3% 

E8: +9% 

17.5 mA 

50 µs 

TRD003 60-70 M 

LSCC RSCC LVCVS RVCVS LSCC RSCC LVCVS RVCVS 

IPG: +100% 

E2: -50% 

E5: -50% 

5 mA 

100 µs 

IPG: +100% 

E4: -50% 

E7: -50% 

5 mA 

100 µs 

IPG: +100% 

E2: -50% 

E5: -50% 

5 mA 

100 µs 

IPG: +100% 

E1: -100% 

2.8 mA 

180 µs 

IPG: +67% 

E1: +8% 

E2: -32% 

E3: -45% 

E4: +15% 

E5: -9% 

E6: -13% 

E7: +6% 

E8: +4% 

6.6 mA 

100 µs 

IPG: +83% 

E1: -8% 

E2: +4% 

E3: -92% 

E4: +4% 

E5: +1% 

E6: +7% 

E7: +1% 

1.7 mA 

180 µs 

IPG: +72% 

E1: +6% 

E2: -28% 

E3: -4% 

E4: +4% 

E5: -60% 

E6: -8% 

E7: +8% 

E8: +10% 

4 mA 

180 µs 

IPG: +73% 

E1: -6% 

E2: -39% 

E3: -55% 

E4: +20% 

E5: +2% 

E6: +4% 

E7: +1% 

7.3 mA 

50 µs 
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The DBS Illumina 3D algorithm found stimulation settings with optimized target coverage 

Detailed comparison across Illumina sets for different values of Background Ratio and all the 

study sets, indicated that for a given Spill Volume, across three pulse-widths, the algorithm 

identifies solutions with Fill Volumes at least on par but usually greater that the largest fill 

volumes seen with the Study set (Figure 2b). Conversely, for similar values of target coverage 

(% stimulated target volume), SFMs generated from Illumina sets, provide at least the same or 

more often smaller Spill Volume compared to Study sets. These findings were consistently 

observed across all targets in all study participants. Statistical comparison between Image 

Guided Set, which represent what clinicians selected among Study sets to maximize target 

coverage, and their matching Illumina Set (i.e., those providing closest non-smaller Fill Volume), 

indicated that Illumina Sets provided significantly smaller Spill Volume (Wilcoxon signed rank 

test, P= 0.002, Figure 2C). 

 

Figure 2- Study sets and Illumina sets. (A) Left panel shows exemplary stimulation setting from one of the Study sets at PW = 100 µS that was 
selected as the Image Guided set (highlighted in by filled red square in panel B) and how a matching output form Illumina sets (right panel) 
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produces more complex current fractionalization (including multipolar stimulation) to optimize filling the target area (i.e., for similar or greater 
target coverage, produces less Spill Volume, see panel (B)). SFM is shown in red and brain target area shown in purple (left SCC). (B) a series 
of SFMs generated from Illumina (different symbols: ×, ○ and Δ for PW = 50, 100 and 180 µS respectively) and corresponding series of SFMs 
generated from Study sets (symbol: □, different colors used for PW = 50, 100 and 180 µS) are compared based on Spill volume vs % Stimulated 
target Volume. As shown by arrows outside the graph, larger % Stimulated Target Volume and Smaller Spill volume are desired. (C) Boxplots 
comparing Spill Volume between Image Guided sets and their paired Illumina sets, identified by matching the % stimulated target volume, such 
that Illumina Sets were providing closest non-smaller target coverage to the Image Guided sets. Paired sample Wilcoxon signed rank test 
indicated a significant difference between the two group (P = 0.002). Illumina results provided significantly smaller Spill Volume. 

 

Illumina sets showed similar target coverage vs spill volume across various pulse widths  

Flexibility of DBS Illumina 3D algorithm allows for identifying various stimulation sets per 

pulsewidth via selecting different values for Background Ratio (Color bar in Figure 2b). In all of 

the 12 targets, for each Background ratio, the stimulation sets offered similar target coverage 

across three PWs of 50, 100 and 180 µs (Figure 2b). To create a better understanding of this 

behavior, we expanded the selection of PW to include values between 20 and 180 µs (at 10 µs 

steps) and found corresponding Illumina results. We then calculated % Stimulated target Volume 

for all the resulting stimulation sets (Figure 3a). When collapsed across the PW dimension, we 

confirmed that for every selected Background Ratio, variability in % Stimulated target Volume is 

small (standard deviation: 0.28- 3.1 % Stimulated Target Volume) across all PWs (between 20 

and 180 µs), Figure 2b. 

 

Figure 3- DBS Illumina 3D algorithm shows consistent behavior across various selections of PW and background Ratios (data presented from 
the same target as presented in Figure 2. TRD003 and LSCC (A) Stimulated target volume for Illumina results generated for various PW and 
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background ratios. (B) Once the data is collapsed across the PW dimension, Illumina produces near similar % stimulated target volume for 
different selections of Background ratio.  

Given the consistent behavior of the DBS Illumina 3D algorithm in providing similar target 

coverage vs Spill profile across various pulse widths, it is important to provide potential guidance 

to the user clinicians to assist with selection of appropriate background ratio. This selection can 

potentially be informed by gaining greater quantitative understanding of the adverse effects 

related to stimulation of avoidance regions. Other factors such as efficiency of stimulation can 

and should also be considered. For example, holding constant the amount of total energy or 

charge delivered per pulse, which affects both the rate of battery usage and the total volume of 

the produced SFM, can be used as a technique for making comparisons across different 

combinations of DBS parameters [22]. To provide an example, we have performed some basic 

analysis to create SFM families that provide a constant charge deposited to the tissue for various 

selections of PW and amplitude (Figure 4). 

 

 

Figure 4 - Example SFM volume for a fixed fractionalization (E1: 100%) as a function of stimulation amplitude (mA) and pulse width (PW, 
µs). Solid Black and dashed gray contours (i.e. isolines) indicate constant volume and constant total charge produced by these SFMs. 
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Discussion  

DBS has become an established therapy for the management of movement disorders (such 

as Parkinson disease, essential tremor and dystonia) and is being actively investigated for 

emerging new indications such as treatment resistant depression, and other neuropsychiatric 

indications. Effective symptom control for both established and emerging applications is directly 

related to identifying the right brain area to implant the lead and subsequently to program the 

lead to optimally stimulate the designated target area. Once DBS lead implantation has been 

finalized, programming adjustment is the only factor that could affect the therapy, highlighting 

the crucial role of programming, especially when the DBS electrodes are sub optimally placed 

at the border of the intended target structure.  

Over the past few years, there has been an emerging interest to develop tools that use 

neuroimaging data to assist with identification of stimulation settings that could assist with DBS 

programming [23,24]. Nevertheless, these advances have been mostly restricted to highly 

specialized centers with a strong computational background and are not approved for clinical 

use. Efforts are being undertaken to develop user-friendly and clinically validated software which 

may foster a more refined search strategy for identifying stimulation settings that would optimize 

activating a pre-specified target area.  

Here we have introduced and characterized the DBS Illumina 3D Algorithm as a novel inverse 

programming algorithm which automates the search with providing solutions in a matter of 

seconds, and generally out-performs human experts at matching stimulation settings to patient-

specific anatomical targets based on imaging data. Our findings suggest that the DBS Illumina 

3D Algorithm can be effectively utilized to assist with identifying stimulation parameters that 

optimizes activating a target volume with controlled spill outside the target. The algorithm 

provided consistent performance across the wide range of stimulation pulse widths including 

those used in routine clinical practice while maintaining flexibility based on the user’s clinical 

judgment and needs, by weighting stimulation of a target area versus stimulating outside the 

target area (background ratio) to rapidly provide a series of initial stimulation settings that can 

be subsequently evaluated by clinical tests. Regarding the algorithm design, the idea of trading 

off between stimulating the target and stimulating avoidance volumes is based on the 

observation that fully stimulating the target may often by impossible without some activation of 

other structures, including avoidance volumes. Therefore, a trade-off is required when deciding 
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whether to increase the volume of tissue activation—an increase in VTA will often increase both 

the activation of target volume and the activation of undesired areas, leaving the clinician with 

the need to control the trade-off.  It is possible that volumes that are described may require a 

threshold of overlap with the stimulation field, and that the decision of how much overlap is 

allowed should be left to the clinician’s judgement.  

Our philospphy in designing the  objective function used in the DBS Illumina 3D algorithm is 

informed by previous work [25,26] roughly the same as that used in Pena et al, 2017, with SFM 

volume being a surrogate for power, and the optimizer in Illumina DBS maximizing the metric, 

as opposed to minimizing it [27].  More plainly, Pena et al allow the stimulation of avoidance 

region.  The ratio of acceptable avoidance volume stimulation to target volume stimulation is 

hard coded to 2.0, meaning stimulating an additional 2 units in the target allows the stimulation 

of one unit in the avoidance region, and the user has no method of specifying some other ratio.  

Our philosophy behind allowing the user to select how sensitive they want the algorithm to be in 

regard to increasing SFM size and Avoidance region overlap is one of pragmatism.  While 

specific values could have been chosen for the algorithm, our belief is that the clinician will have 

preferences and gain experience allowing them to determine what they think is best, and that 

this is better than preselecting a set of hard coded ratios. 

Although further work is needed to determine whether this technique results in providing 

superior therapeutic benefits for DBS patients, we believe the DBS Illumina 3D Algorithm holds 

promise to facilitate image-guided selection of stimulation parameters and significantly reduce 

the time and energy required for trial and error based clinical testing.  Our current work focused 

on application of the DBS Illumina 3D Algorithm in newly proposed targets that are being actively 

investigated for DBS in treatment resistant depression, as an example. However, the technique 

is agnostic to the target, as long as it can be defined radiographically relative to DBS lead and 

contact positions. We purposefully avoid defining a subthalamic or pallidal target of stimulation, 

as that in and of itself remains controversial. More specifically, different research groups have 

different ways to define the most clinically appropriate STN/GPi based target areas. Therefore, 

our intent was to focus on the optimization of stimulation parameters based on any target of 

interest.  

 

Limitations 
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Our work focuses on application of the DBS Illumina 3D Algorithm in newly proposed targets 

that are being actively investigated for DBS in treatment resistant depression, as an example. 

Given the nature of this study to interrogate tractography optimized targates (TOTs) in TRD, the 

focus of study was to maximally activate the target area while avoiding the stimulation of areas 

outside the target. Fture work is needed to explore application of DBS Illumina 3D algorithm in 

more complex scenarios incorporating specific avoidance areas. 

, The technique used in this study via DBS Illumina 3D algorithm is agnostic to the target, as 

long as it can be defined radiographically relative to DBS lead and contact positions. We 

purposefully avoid defining a subthalamic or pallidal target of stimulation, as that in and of itself 

remains controversial. More specifically, different research groups have different ways to define 

the most clinically appropriate STN/GPi based target areas. Therefore, our intent was to focus 

on the optimization of stimulation parameters based on any target of interest. 

We further acknlowdge that the usage of homogenous and isotropic neural tissue as well as 

selection of a single fiber diameter neuron in our SFM modeling may limit the DBS Illumina 3D 

Algorthm in providing final and anatomy specific stimulation solutions. Although antomy-specifc 

modling will be more sensitive and certainly improve the accuracy of personalized treatment 

optimization; Recognizing these limitations, our goal in creating the DBS Illumina 3D algorithm 

was to facilitate searching the large and complex treatment space, which becomes increasingly 

important as newer generations of stimulation systems become available (systems capable of 

controlling the fractionalization at very fine resolutions and with mixed polarity, as well as DBS 

leads with complex segmented and directional designs). The DBS Illumina 3D algorithm aims to 

provide anatomically-informed “starting” point. This optimized starting solution needs to be 

further refined, most likely accompanied by direct clinical evalution of the patient.  

 

Conclusion 

Algorithm-guided clinical programming of DBS that uses relative position of the electrodes 

with respect to anatomical or functional neuroimaging targets may be an effective approach to 

replace traditional monopolar review. Seamless integration of this algorithm with the DBS 

surgical workflow (from targeting to programming) can enable larger group of clinicians with 

variable experience and expertise in neuroimaging to rapidly Interrogate the large space of 
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possible stimulation settings and reduce time needed for programming. Although establishing 

therapeutic efficacy of this set of brain targets and their application in TRD has not been the 

focus of this work, we argue that this application could potentially lay the ground work for other 

novel indications to facilitate testing of imaging-informed selection of stimulation parameters 

and enable interrogation of different targeting strategies, including those informed by 

aggregation of prior information derived from group SFM maps, or functional or structural 

connectivity patterns.  
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