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Abstract 

 

Background 

Repeated vaccination against SARS-CoV-2 increases serological response in kidney 

transplant recipients (KTR) with high interindividual variability. No decision support tool 

exists to predict SARS-CoV-2 vaccination response in KTR. 

 

Methods 

We developed, internally and externally validated five different multivariable prediction 

models of serological response after the third and fourth vaccine dose against SARS-CoV-2 

in KTR. Using 27 candidate predictor variables, we applied statistical and machine learning 

approaches including logistic regression (LR), LASSO-regularized LR, random forest, and 

gradient boosted regression trees. For development and internal validation, data from 585 

vaccinations were used. External validation was performed in four independent, international 

validation datasets comprising 191, 184, 254, and 323 vaccinations, respectively. 

 

Findings 

LASSO-regularized LR performed on the whole development dataset yielded a 23- and 11-

variable model, respectively. External validation showed AUC-ROC of 0.855, 0.749, 0.828, 

and 0.787 for the sparser 11-variable model, yielding an overall performance 0.819. 

 

Interpretation 

An 11-variable LASSO-regularized LR model predicts vaccination response in KTR with 

good overall accuracy. Implemented as an online tool, it can guide decisions when choosing 

between different immunization strategies to improve protection against COVID-19 in KTR. 
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Introduction 

SARS-CoV-2 vaccination offers protection from severe coronavirus disease 2019 (COVID-

19) regardless of the causative variant for most healthy individuals.1 In contrast, protection in 

immunocompromised solid organ transplant (SOT) recipients is limited. The serological 

response rate after SARS CoV-2 vaccination in kidney transplant recipients (KTR) after three 

doses of vaccine is strongly impaired in comparison to the general population – resulting in 

insufficient protection and a COVID-19 mortality which is unacceptable high within this 

population.2,3 

Different strategies to induce humoral protection for KTR have been suggested, including 

repeated vaccination and vaccination under adjusted immunosuppression – besides SARS-

CoV-2-specific monoclonal antibody therapy.4 Existing data comprises risk factors identified 

through multivariable analyses, which are helpful to identify factors associated with 

insufficient vaccination response but are not easily interpretable for the single patient or 

vaccination.5-7 Specifically, no tool exists to predict response to a vaccination in a particular 

patient. Risk calculators can build a bridge to help assess the likelihood of vaccination 

success in an individual and help decide between different possible actions to take such as 

passive or active immunization or adjustment of immunosuppressive medication. To date, no 

such decision support system is available. 

For this reason, we aim to develop a classification model to predict serological response to 

third and fourth SARS-CoV-2 vaccinations in KTR. The model’s implementation objective is 

to identify patients that will likely not respond to an additional dose of vaccine, even with 

changes in immunosuppressive medication, and thus benefit most from passive 

immunization strategies. Using our previously reported data of vaccination outcomes in KTR, 

we develop and compare a set of prediction models based on classical statistical methods 

as well as machine learning. After selecting the most promising models, we validate the 
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resulting prediction models in four independent validation cohorts, with the intent to make the 

result available as an online risk calculator.  

 

Methods 

Development cohort 

Data from KTR at Charité – Universitätsmedizin Berlin, Germany, were used to form the 

development cohort. Details of the underlying patient population, as well as the assays and 

cutoffs used have been previously reported.5 Briefly, KTR received up to five doses of 

SARS-CoV-2 vaccine in case of sustained lack of sufficient serological response to 

vaccination at our institution, usually combined with reduction or pausing MPA for fourth and 

fifth vaccination. For the enzyme-linked immunosorbent assays (ELISA) for the detection of 

IgG antibodies against the S1 domain of the SARS-CoV-2 spike (S) protein in serum (Anti-

SARS-CoV-2-ELISA (IgG), EUROIMMUN Medizinische Labordiagnostika AG, Lübeck, 

Germany), samples with a cutoff index ≥ 1.1 (in comparison to the previously obtained cut-

off value of the calibrator) were considered to be positive, samples with a cutoff index ≥ 0.8, 

and < 1.1 were considered low positive, and samples with a cutoff index <0.8 were 

considered negative, as suggested by the manufacturer. 

Alternatively, for the electrochemiluminescence immunoassay (ECLIA) (Elecsys, Anti-SARS-

CoV-2, Roche Diagnostics GmbH, Mannheim, Germany) detecting human immunoglobulins, 

including IgG, IgA and IgM against the spike receptor binding (RBD) domain protein, 

samples with ≥ 264 U/ml were considered to be positive as recommended by Caillard et al.8,9 

Any non-zero antibody level below this cutoff was considered low positive (with limit of 

detection being 0.4 U/mL). 

For predictive modeling, we included data on third and fourth vaccination, since basic 

immunization has most likely been performed in most KTR patients already, and since only 

few patients received fifth vaccination so far. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 2, 2022. ; https://doi.org/10.1101/2022.06.02.22275894doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.02.22275894
http://creativecommons.org/licenses/by-nc-nd/4.0/


After applying all exclusion criteria summarized in Table 1, the development cohort included 

585 vaccinations performed between December 2020 and January 2022 in 421 COVID-

naive adult KTR (Figure 1). The Charité institutional review board approved this 

retrospective analysis (EA1/030/22). 

 

Validation cohorts 

We used four independent, international validation cohorts from outpatient transplant centers 

at University Hospital Düsseldorf, Germany (191 vaccinations in 137 KTR) 10,11, Medical 

University Vienna, Austria (184 vaccinations in 184 KTR) 12, Strasbourg University Hospital, 

France (254 vaccinations in 229 KTR) 13,14, Hotel Dieu Nantes, France (323 vaccinations in 

269 KTR) 15. Detailed information about the validation cohorts are presented in Items S1-S4 

and patient selection including outcome frequencies are summarized separately for each 

validation cohort in Figures S1-S4. 

No sample size calculation was applicable for this post-hoc analysis. 

 

Outcome and Predictors 

The single outcome variable was a positive serological response defined by the maximum 

anti-SARS-CoV-2 spike (S) IgG or antibody level after a minimum of 14 days following the 

date of vaccination and before any further immunization event such as SARS-CoV-2 

infection, passive or active immunization. Since different assays were used at different sites, 

details on the tests and the respective cutoffs used are provided for each validation cohort in 

Item S1-S4, which are summarized in Table 2. Generally, IgG or antibody positivity was 

determined based on local laboratory’s pre-defined positivity cutoff, which was mostly the 

one provided by the manufacturer. Especially for the ECLIA Elecsys assay different cutoffs 

were available and used, which impeded comparability. We chose to assess model 

performance for two cutoffs for this specific assay. First, we used the 0.8 U/mL cutoff 

provided by the manufacturer, yielding highest sensitivity in detecting patients with previous 

COVID-19. Second, a cutoff of 15 U/mL, which was initially suggested by the manufacturer 
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to exhibit a positive predictive value of more than 99% for presence of neutralizing 

antibodies against the wild-type virus, was used.12 Contrary to the manufacturer’s 

designated use, our intention was to provide an alternative positivity cutoff, below which no 

neutralization against omicron variant occurs, but that is not as close to the limit of detection 

(0.4 U/mL) as the positivity cutoff provided by the manufacturer (0.8 U/mL). This alternative 

positivity cutoff definition was needed to test the hypothesis that indeed the absence or low 

number of “low-positive” antibody levels before vaccination (below the positivity cutoff, but 

above the limit of detection) for the ECLIA Elecsys assay led to low performance in 

validation sets 2 and 4. While the cutoff of 15 U/mL is somewhat arbitrary, it meets both 

needs mentioned above. First, it increases the percentage of low positive patients in 

validation set 4, and second, patients with antibody levels <50 U/mL in this assay show no 

neutralization against omicron BA.1, which most likely applies to omicron BA.2 as well.16,17 

Hence, adjusting the cutoff to 15 U/mL is compatible with the objective to identify patients 

without serological response to an additional vaccine dose corresponding best with a lack of 

neutralizing antibodies. 

Predictor variables in the data sets comprised 27 variables: four vaccination-specific, three 

demographic, one comorbidity, four transplantation-specific, nine encoding medication, and 

6 biomarkers (Table S1). We did not perform feature selection based on a-priori hypotheses. 

 

Missing data / imputation 

For the development dataset, we excluded all vaccinations with incomplete data (complete 

case analysis). Preliminary analysis showed that neither using data from patients without 

lymphocyte count, which was the most common missing laboratory value, nor imputation of 

missing laboratory values by multiple imputation (both of which yielded higher sample size) 

did add predictive accuracy for logistic regression and was therefore not followed for the 

main analysis (Figure S5 and Table S2). 

For each validation set, we excluded vaccinations with missing SARS-CoV-2 IgG data, 

missing information about the SARS-CoV-2 spike IgG or antibody assay used, missing 
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medication data, or missing eGFR, lymphocyte count, or hemoglobin level. We chose to 

impute the remaining variables to reduce the number of omitted cases due to missing 

values. Instead of performing multiple imputation, we chose a more pragmatic approach and 

imputed either the most frequent value of the respective variable in the development dataset 

in case of binary or categorical variables, or the median (or mean) of the respective variable 

in the development dataset in case of numerical variables, as summarized in Table 3. This is 

the way a clinician would handle a missing value when using the online risk calculator, those 

values are used as presets in the online calculator. In the validation cohorts, no data 

originating from a time after the respective vaccination was included to make predictions. 

 

Development and internal validation 

Using the development cohort, we evaluated five models during internal validation. To 

perform model validation within the development cohort, a resampling approach was used 

by assigning 585 vaccinations randomly 100 times into training and test sets of 410 and 175 

each (70:30 split). Each time, hyperparameter tuning, if applicable, and model fitting was 

performed on the respective training set, and performance metrics were assessed on the 

respective test set. 

 

First, as baseline, we fit a logistic regression model with all candidate variables using the R 

package glm. 

Second, we fit 2 logistic regression models with least absolute shrinkage and selection 

operator (LASSO) regularization using the packages caret and glmnet in R. The LASSO 

hyperparameter λ, which adjusts the tradeoff between model fit and model sparsity, was 

optimized for each training cohort with respect to the mean squared error (MSE) using inner 

5-fold cross-validation. We chose 2 different λ optimization criteria yielding 2 different models 

for each training cohort: (1) minimization of the MSE (termed LASSO-Min model), and (2) 

penalty maximization while keeping the MSE within one standard error of the minimum MSE 

(termed LASSO-1SE model). 
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Third, we fit a random forest regression model using the package randomForest in R. We 

optimized the hyperparameter mtry by evaluating 15 random parameter combinations during 

two repeated 5-fold cross-validations within the training set. The value of mtry yielding the 

highest accuracy during cross-validation was used to fit the random forest on the respective 

training data. 

Fourth, we fit a gradient boosted regression trees (GBRT) model using the gbm package. 

We used a tune grid with 4*8*3*1 hyperparameter combinations (n.trees: 300, 500, 700, 900; 

interaction.depth: 2, 4, 6, 8, 10, 12, 14, 16; shrinkage: 0.001, 0.01, 0.1; n.minobsinnode: 10) 

to optimize hyperparameters during two repeated 5-fold cross-validations within the training 

set. The combination yielding the highest normalized discounted cumulative gain during 

cross-validation was used to fit the GBRT on the respective training data. 

 

We calculated median performance during resampling for those five developed models. To 

evaluate the performance of the binary classification, we used Area Under the Curve of the 

Receiver Operator Characteristic (AUC-ROC), and confidence intervals (CI) in the 

resampling approach were determined from the empirical 2.5% and 97.5% quantiles of the 

performance on the 100 different test sets. Based on the threshold determined by the 

optimization criterion “closest.topleft” as provided in R package pROC (point with the least 

distance to [0,1] on the ROC-curve) during ROC-analysis, we calculated models’ sensitivity, 

specificity, accuracy, positive predictive value, and negative predictive value for each 

resampling step, again yielding median and empirical 95% CI. 

  

External validation and implementation 

Due to their performance, we chose LASSO-Min and LASSO-1SE for estimation of model 

coefficients in the entire development cohort, which were then used for external validation. 

The relationship between the hyperparameter λ that controls model sparsity and the MSE 

during inner 5-fold cross-validation is shown in Figure S6. We assessed the thresholds for 

classification by determining the “closest.topleft” threshold on the entire development cohort, 
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which were used for classification during external validation and are also provided in the 

online risk calculator after transforming into risk probability according to the formula: 

P (xt) = 1 / ( 1 + exp ( - f (xt) ) 

where xt is the risk score threshold. 

For external validation, we calculated the aforementioned performance metrics on each 

validation cohort separately. Furthermore, 95% CIs in the external validation cohorts were 

determined by performing 1000-fold ordinary nonparametric percentile bootstrap, as the 

empirical 2.5%, and 97.5% quantiles of AUC, sensitivity, specificity, accuracy, positive 

predictive value, and negative predictive value based on the thresholds determined within 

the development cohort. 

To make the prediction model publicly available, we created an online tool implementing the 

models used for external validation, which can be assessed at https://www.tx-vaccine.com.  

Statistical analysis was performed using R studio v.1.2.5042 and R version 4.1.2 (2021-11-

01). The underlying code is available on request from the corresponding author. 

This article was prepared according to the transparent reporting of a multivariable prediction 

model for individual prognosis or diagnosis (TRIPOD) statement and we provided a checklist 

in the supplement.18 

 

Results 

In total, 585 vaccinations (407 third vaccinations, and 178 fourth vaccinations) were used for 

development and internal validation, which is summarized together with outcome 

frequencies and reasons for exclusion in Figure 1. 

Baseline characteristics of patients in the development and validation datasets including 

summary statistics of all variables are shown in Table 3.  

 

Model development and internal validation 
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Using the resampling approach outlined above, we fit five different models on each training 

set and evaluated their performance on the respective unseen test set during 100 

resampling steps. 

A logistic regression model employing all candidate variables served as a baseline. Using 

the two different λ optimization criteria outlined in “Methods”, the LASSO-Min and LASSO-

1SE models were fitted. Additionally, two tree-based machine-learning approaches were 

studied - random forest (RF) and gradient boosted regression trees (GBRT). 

LASSO logistic regression selected in the majority of resampling runs 23 and 11 out of 27 

potential predictors to yield the LASSO-Min and LASSO-1SE models, respectively. The 

regression coefficients, their variances, and the selection frequency of the predictors are 

shown in Figure S7 and S8. 

Figure 2 compares AUC-ROC of the 5 models on the unseen test sets during 100 

resampling steps, and Table 4 summarizes median performance metrics as well as 95% 

confidence intervals determined from empirical 2.5% and 97.5% quantiles during internal 

validation. Thresholds for binary classification were determined on the respective test set 

during each resampling step by performing ROC-analysis. 

With respect to AUC-ROC, the LASSO-Min model - 0.825 (0.779 - 0.875) and the baseline 

logistic regression model - 0.822 (0.763 - 0.868) showed best performance during internal 

validation. Since the sparser LASSO-1SE model showed comparable predictive 

performance of 0.809 (0.753 - 0.860) with fewer variables, we chose to use both, LASSO-

Min and LASSO-1SE regularized logistic regression models for external validation. Due to 

higher model complexity with comparably worse predictive performance, we did not follow 

RF and GBRT for external validation. 

 

Model specification 

Final risk equations were obtained by fitting LASSO-Min and LASSO-1SE models on the 

complete development dataset, yielding a 23-variable and 11-variable risk equation, 

respectively. The intercept and regression coefficients of the final models are shown in 
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Table 5. Risk equations are provided in Items S5 and S6, and are implemented as an online 

tool available at https://www.tx-vaccine.com.  

 

External validation 

After applying all exclusion criteria and performing imputation of missing variables, we 

evaluated both risk equations in the four independent validation datasets. Since predictive 

performance during external validation was comparable for both models, in the following we 

report on the sparser 11-variable model. Results of external validation of the 23-variable 

model are summarized in Table S3, and Figure S9. 

AUC-ROC of the sparser 11-variable model during external validation was 0.855 (0.799 - 

0.911) for validation set 1, 0.722 (0.647 - 0.786) for validation set 2, 0.828 (0.772 - 0.877) for 

validation set 3, and 0.708 (0.643 - 0.773) for validation set 4, yielding an AUC-ROC of 

0.764 (0.732 - 0.795) when merging all validation sets. Sensitivity, specificity, accuracy, 

positive predictive value, and negative predictive value using the thresholds determined 

during ROC-analysis in the development dataset are summarized in Table 6. The decision 

thresholds used for external validation are also provided in the online risk calculator to guide 

physicians’ decision. 

To estimate confidence intervals of predictive performance metrics, we performed 1000 

nonparametric ordinary bootstrapping for each validation set and assessed the same metrics 

as above. Median, as well as 95% confidence intervals derived from the empirical 2.5% and 

97.5% quantiles are provided in Figure 3 and Table 6. 

 

Implementation and cutoff definition 

Performance in the validations sets 2 and 4 was poorer than in the development as well as 

in the other two validation sets. We suspected the positivity cutoff of 0.8 U/mL provided by 

the manufacturer for the ECLIA Elecsys assay as one main reason. Since it is close to the 

limit of detection (0.4 U/mL), no or small fraction of “low positive” antibody levels (values 

above the limit of detection and below positivity cutoff) before vaccination are present in both 
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validations sets (Table 3), which is different to both other validation sets and the 

development dataset. Since a low positive antibody level before vaccination is an important 

predictor of serological response (Table 5), we chose to adjust the positivity cutoff to 15 

U/mL arbitrarily for two reasons. First, to test the hypothesis that cutoff definition is a reason 

for lower performance. Second, to provide data that an implementation of this model is 

feasible independent of the assay used. Our proposed implementation strategy for the 

prediction model is to identify patients, who will not respond to an additional vaccine dose 

despite changes in immunosuppression, and to offer those patients passive immunization 

(Figure 4). Hence, instead of using the positivity cutoff from the manufacturer, using any 

other cutoff below which no neutralization against omicron occurs, is compatible with this 

strategy under the circumstances of omicron-dominance. As described in “Methods”, we 

arbitrarily use an alternative positivity cutoff of 15 U/mL for this respective assay, since it has 

already been proposed by the manufacturer before. 

When adjusting the assay cutoff to 15 U/mL for the ECLIA Elecsys assay, AUC-ROC 

increased to 0.749 (0.672 - 0.819) for validation set 2, and to 0.787 (0.737 - 0.850) for 

validation set 4, yielding an overall AUC-ROC of 0.819 (0.793 - 0.844) after merging all 

validation sets. With the thresholds assessed in the development dataset, the model 

achieves a negative predictive value of 0.76 (0.728 - 0.800). 

 

Discussion 

In this article, we present the development, as well as internal and external validation of an 

11-variable LASSO regularized logistic regression model for prediction of serological 

response to the third and fourth dose of SARS-CoV-2 vaccine in seronegative kidney 

transplant recipients. 

It shows good discrimination of KTR exhibiting serological response both in a rigorous 

resampling approach in the development cohort and in four independent validation cohorts 

with positive and negative predictive values of 0.76 based on a threshold established within 

the development dataset. Available online as a risk calculator at https://www.tx-vaccine.com 
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and embedded into the proposed implementation strategy, it can assist physicians in 

choosing between different immunization strategies, namely, additional vaccination with or 

without adaption of immunosuppressive therapy, or pre-exposure prophylaxis with 

monoclonal anti-SARS-CoV-2-(S) antibodies. 

While serological response is only one part of the immune response to vaccination, 

neutralizing anti-SARS-CoV-2-(S) antibodies are pathophysiologically and epidemiologically 

established to offer protection from severe disease 9,19, which is also supported by the 

protection offered by monoclonal antibodies against SARS-CoV-2 applied for prophylaxis 

and treatment.20,21 

Yet, after the emergence of the omicron variants, neutralization antibody levels against 

omicron variant show 25.7-fold to 58.1-fold reduction in sera of healthy vaccinated subjects 

in comparison to wild-type.22 Consequently, antibody levels that ensure neutralization, 

increased from >264 U/mL for alpha variant 8,9 to >2000 U/mL for omicron 16, making the 

interpretation of antibody levels more difficult than before. 

Despite these uncertainties, it seems impossible to leave patients without any humoral 

protection whatsoever. Hence, in patients without serological response to basic 

immunization, physicians and patients need to decide between additional active vaccination 

with or without adapting immunosuppressive medication, and pre-exposure prophylaxis with 

monoclonal antibodies.23 

Since negative predictive value was above 0.75, when merging all validation sets, and above 

0.8 in the development dataset and in two out of four validation datasets, when using the 

higher positivity cutoff of 15 U/mL for the ECLIA Elecsys assay, we suggest the following 

implementation strategy summarized in Figure 4. For patients, who are likely not to respond 

to additional SARS-CoV-2 vaccination according to the prediction model, pre-exposure 

prophylaxis with monoclonal antibodies exhibiting neutralizing capacity against omicron BA.2 

should be administered to ensure timely protection.24-27 In patients, who are likely to respond 

according to the prediction model, there is still a chance that these patients will not reach 

antibody levels, which ensure neutralizing capacity against omicron variants. For these 
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patients, both, repeated vaccination and monoclonal antibody prophylaxis are feasible and 

should in our view be chosen depending on the risk for severe disease course. When 

evidence about antibody levels that ensure sufficient neutralization against omicron 

increases, an updated model for the prediction of high-responders that do not warrant 

monoclonal antibody therapy can be made available. 

  

Strengths and Limitations 

We provide a rigorously developed and validated prediction model, which is provided as an 

online risk calculator to support kidney transplant physicians in their daily practice when 

deciding upon the immunization strategy for their patients. Especially, the estimated effects 

of adaptions in immunosuppressive medication can be evaluated, e.g. reducing or pausing 

MPA dose, or switching from belatacept to calcineurin inhibitor. Regarding the general 

sparsity of data on vaccine response to third and fourth dose in KTR, we analyze extensive 

datasets for development and validation, and hereby provide representative evaluation of 

real-life model performance. While performance of the 23-variable model was slightly better, 

it is also more impractical due to the high number of variables, which is why we chose to 

report mainly on the sparser 11-variable model. 

In general, our model detects patients who are likely to respond or not respond at all to an 

additional vaccine dose, and is able to factor in changes in immunosuppressive medication, 

when making individual predictions. Since evidence of antibody level cutoffs that ensure 

neutralization of or protection from omicron is sparse, we chose not to make any predictions 

for this endpoint. Instead, we provide an implementation strategy that makes best use of the 

model’s prediction without making far-reaching assumptions about protective antibody levels 

against omicron. 

Still, one major limitation becomes evident for validation sets 2 and 4, where predictive 

performance was only moderate when using the positivity cutoff of 0.8 U/mL for the ECLIA 

Elecsys assay. As outlined above, increasing the positivity cutoff to 15 U/mL is compatible 

with the proposed implementation, and leads to improved performance for two reasons. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 2, 2022. ; https://doi.org/10.1101/2022.06.02.22275894doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.02.22275894
http://creativecommons.org/licenses/by-nc-nd/4.0/


First, since the cutoffs in the development dataset were based on protective levels against 

alpha variant for the ECLIA Elecsys assay (264 U/mL), predictive performance is expectably 

poorer when predicting positivity with a 0.8 U/mL cutoff. Second, with a cutoff of 0.8 U/mL for 

the ECLIA Elecsys assay, only very few patients with low positive antibody levels pre 

vaccination exist, with low positive being every value above zero or limit of detection (LoD), 

but below the positivity cutoff. Since this is an important predictor in both models and 

provides important information about the actual immunological status, loss of performance 

can be expected when this information is missing. This is further supported by the fact that 

after adapting the cutoff from 0.8 U/mL to 15 U/mL, in validation set 2, where all pre-

vaccination antibody levels were below 0.4 U/mL, the performance only increased slightly 

(AUC-ROC 0.722 to 0.749), but in validation set 4, where the percentage of low positive 

patients increased from 14.6% (most of which were due to the other assays used in this 

dataset) to 33.1%, the performance increased markedly (AUC-ROC 0.708 to 0.787). 

Other possible reasons for different performance are the study design of validation set 2, 

which was a randomized clinical trial, with outcome assessment between days 29 and 42, 

whereas in the development and other validation sets, the maximum antibody level after the 

respective vaccination was chosen, independent of the time passed. Additionally, validation 

set 2 was the one with the highest proportion of adenoviral vaccine, which however, did not 

show any difference in serological response in the respective trial.12 The remaining 3 

validation sets, were mostly assessing serological response to guide further vaccine doses, 

similarly to the development cohort. 

Worth noticing is the imputation method used, which ensures that performance assessed 

during external validation is comparable to real-life performance of the risk calculator 

provided. 

Other limitations arise from the different immunization strategies used, which lead to different 

seroconversion rates and have influence on model performance as well. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 2, 2022. ; https://doi.org/10.1101/2022.06.02.22275894doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.02.22275894
http://creativecommons.org/licenses/by-nc-nd/4.0/


Last, some candidate variables have low frequency below 1% in the development dataset 

(such as rituximab in the last year, mTOR inhibitor treatment, azathioprine treatment), which 

limits generalizability for these patients. 

 

 

Conclusion 

We provide the first, online available calculator to predict vaccine response to third or fourth 

vaccination in kidney transplant recipients together with a clear implementation strategy that 

enables physicians to substantiate their decision making with respect to the optimal 

immunization strategy. 
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Tables 

Table 1. Inclusion and exclusion criteria regarding vaccinations. 

Inclusion Criteria 

- Functioning kidney transplant at the time of vaccination 

- Patient 18 years or older at the time of vaccination 

- Third or fourth SARS-CoV-2 vaccination 

- anti-SARS-CoV-2-S-protein antibodies below positivity cutoff before respective vaccination 

- Follow-up anti-SARS-CoV-2-S-protein antibody measurement at least 14 days after vaccination 

Exclusion Criteria 

- SARS-CoV-2 vaccinations, which were performed before transplantation or after graft loss 

- SARS-CoV-2 infection before the vaccination or before the measurement of the respective 

serological response as defined by 

- Positive SARS-CoV-2 RNA PCR 

- Positive anti-SARS-CoV-2-N-protein antibodies 

- Sufficient serological response before respective SARS-CoV-2 vaccination 

- Monoclonal anti-SARS-CoV-2-S-protein antibody therapy before the measurement of the respective 

serological response 

- Missing data on serological response before respective SARS-CoV-2 vaccination 

- Missing data on serological response after respective SARS-CoV-2 vaccination 

- Missing data on the assay used to measure serological response 

- Missing data on immunosuppressive medication at the time of vaccination 

- Missing lymphocyte count, eGFR, hemoglobin level 
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Table 2. Assays, as well as respective limit of detection and positivity cutoff used for each 
dataset. 

Dataset + Assay Assay (manufacturer) Limit of Detection Positivity Cutoff 

Development 

 

Anti-SARS-CoV-2 

ELISA (IgG) assay 

(EUROIMMUN 

Medizinische 

Labordiagnostika AG, 

Lübeck, Germany) 

0.8 index ≥1.1 index 

Development 

 

ECLIA Elecsys antibody 

assay (Roche 

Diagnostics GmbH, 

Mannheim, Germany) 

0.4 U/mL ≥264 U/mL 

Validation 1 

 

Anti-SARS-CoV-2 

QuantiVac ELISA (IgG) 

assay (EUROIMMUN 

Medizinische 

Labordiagnostika AG, 

Lübeck, Germany) 

1 BAU/mL ≥35.2 BAU/mL 

Validation 2 ECLIA Elecsys antibody 

assay (Roche 

Diagnostics GmbH, 

Mannheim, Germany) 

0.4 U/mL ≥ 0.8 U/mL or ≥15 U/mL 

Validation 3 CMIA SARS-CoV-2 IgG 

II Quant (Abbott, 

Rungis, France) 

1 BAU/mL 

(7 AU/mL) 

≥7 BAU/mL (50 AU/mL) 

Validation 4 ECLIA Elecsys antibody 

assay (Roche 

Diagnostics GmbH, 

Mannheim, Germany) 

0.4 U/mL ≥0.8 U/mL or ≥15 U/mL 

Validation 4 LIAISON® SARS-CoV-2 

TrimericS IgG assay 

(Diasorin, Saluggia, 

Italy) 

4.81 U/mL ≥33.8 BAU/mL 

Validation 4 CMIA SARS-CoV-2 IgG 

II Quant (Abbott, 

Rungis, France) 

7.8 AU/mL ≥50 AU/mL 

Validation 4 NovaLisa SARS-CoV-2 

IgG (Novatec 

Immundiagnostica 

1 U/mL ≥11 U/mL 
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GmbH, Dietzenbach, 

Germany) 

Validation 4 Atellica® IM SARS-

CoV-2 IgG (sCOVG) 

(Siemens Healthineers, 

Erlangen, Germany) 

0.5 index ≥2.0 index 

 

Table 3. Baseline characteristics of the development and validation cohorts. All variables are 

reported as mean +/- standard deviation unless stated otherwise. IQR - interquartile range, 

mRNA – messenger ribonucleic acid, IgG – immunoglobulin G, BMI – body mass index, 

DSA – donor-specific anti human leukocyte antigen antibodies, CNI – calcineurin inhibitor, IS 

– immunosuppression, MPA – mycophenolic acid, MPA dose – mycophenolic acid dose, 

MMF – mycophenolic acid, mTORi – mammalian target of rapamycin inhibitor, eGFR – 

estimated glomerular filtration rate, anti-HBs – anti hepatitis B-surface-antigen 

immunoglobulin G antibodies.  

 

 Development 

(Berlin) 

Validation 1 

(Düsseldorf) 

Validation 2 

(Vienna) 

Validation 3 

(Strasbourg) 

Validation 4 

(Nantes) 

Cutoff 0.8U/mL 

Validation 4 

(Nantes) 

Cutoff 15U/mL 

Total vaccinations / 

patients 

585 / 421 191 / 137 184 / 184 254 / 229 254 / 211 323 / 269 

Vaccination       

3rd / 4th vaccinations 407 / 178 129 / 62 184 / 0  230 / 24 177 / 77 216 / 107 

mRNA Vaccination 81.2% (475) 90.1% (173) 50.5% (93) 100% (254) 100% (254) 100% (323) 

Median time since 

previous vaccination 

in days (IQR) 

65 (51-92) 86 (79 - 140) 78 (57 - 90) 66 (49 - 65) 42 (31 - 93)   45 (31 - 92)   

Baseline SARS-CoV-

2 IgG low positive 

8.3% (40) 40.1% (78) 0% (0) 40.2% (102) 14.6% (0) 33.1% (70) 

Demographics and 

Comorbidities 

      

Female / male 38% / 62% 32% / 68% 41 % / 59% 41% / 59% 47% / 53% 46% / 54% 
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patients 

Median age in years 

(IQR) 

59 (47 - 69) 62 (54 - 68) 61 (54 - 70) 58 (50 - 68) 62 (52 - 69) 63 (52 - 70) 

BMI in kg/m2 25.2 +/- 4.5 26.7 +/- 6.3 - 26.4 +/- 6.0 25.2 +/- 4.4 25.2 +/- 4.5 

Diabetes 21.0% (123) 18.3% (35) - 41.7% (106) 30.7% (78) 28.5% (92) 

Transplantation       

Median transplant 

age in years (IQR) 

7.8 (3.1 - 

13.2) 

4 (2.5 - 10) 4.4 (2.1 - 

7.9) 

5.2 (2.2 - 

10.8) 

4.1 (1.9 – 9.8) 4.6 (2.1 - 11.3) 

Median time on 

dialysis in years 

(IQR) 

3.0 (0.5 - 6.7) 3.1 (1 - 6) - 2.2 (0.6 - 

4.2) 

1.3 (0 - 2.9) 1.3 (0 - 2.9) 

Retransplantation 4.3% (25) 12.6% (24) 23.4% (43) 20.1% (51) 22.8% (58) 22.3% (72) 

DSA 13.1% (75) 13.6% (26) 17.9% (33) 16.9% (43) 18.5% (47) 18.0% (58) 

Medication       

CNI-based 

immunosuppression 

87.2 % (510) 95.8% (183) 91.3% (168) 93.7% (238) 85.8% (218) 85.7% (277) 

Belatacept-based IS 11.3 % (66) 4.2% (8) 7.6% (14) 3.2% (12) 9.5% (24) 8.7% (28) 

MPA treatment 78.3 % (456) 95.3% (182) 92.4% (171) 91.7% (233) 71.7% (182) 70.0% (226) 

Median MPA-Dose in 

g MMF equivalent 

(IQR) 

1.0 (0.5 - 1.5) 1.0 (1.0 - 1.5) 1.0 (1.0 - 

2.0) 

1.0 (1.0 - 

1.0) 

1.0 (0.0 - 1.0) 1.0 (0.0 - 1.0) 

Steroid treatment 63.3% (370) 97.9% (187) 94.4% (174) 72.1% (183) 45.7% (115) 43.3% (140) 

mTORi treatment 0.5% (3) 1.6% (3) 0% (0) 8.3% (21) 7.5% (19) 8.1% (26) 

Azathioprine 

treatment 

0.5% (3) 1.0% (2) 4.9% (9) 0% (0) 2.4% (6) 4.3% (14) 

Treatment with more 

than 2 

immunosuppressive 

drugs 

45.3% (265) 95.3% (182) 91.3% (168) 69.7% (177) 27.0% (68) 25.7% (83) 

Rituximab in the last 

year 

0.7% (4) 6.3% (12) 0% (0) 1.6% (4) 0% (0) 0% (0) 
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Laboratory values       

Baseline eGFR 

mL/min/1.73m2 

48.0 +/- 19.9 44.0 +/- 18.7 49.3 +/- 21.4  47.4 +/- 19.3 42.8 +/- 17.7 44.1 +/- 18.8 

Leukocyte count 

(/nL) 

7.15 +/- 2.40 7.75 +/- 2.25 7.19 +/- 2.28 6.76 +/- 2.20 6.58 +/- 2.28 6.58 +/- 2.22 

Lymphocyte count 

(/nL) 

1.44 +/- 0.71 2.58 +/- 5.18 1.24 +/- 0.56 1.34 +/- 0.67 1.53 +/- 1.06 1.53 +/- 0.97 

Hemoglobin (g/dL) 12.5 +/- 1.61 13.1 +/- 1.86 12.6 +/- 1.79 12.5 +/- 1.84 12.6 +/- 1.81  12.7 +/- 1.77  

Median Anti-HbS in 

U/mL (IQR) 

50 (0 - 297) 52 (0 - 158) 50 (47 - 167) 39 (2 - 224) 50 (50 - 50) 50 (50 - 50) 

Median urine 

albumin-creatinine 

ratio in g/g (IQR) 

0.030 (0.009 

- 0.098) 

0.034 (0.009 

- 0.125) 

0.035 (0.021 

- 0.075) 

0.046 (0.019 

- 0.159) 

0.031 (0.013 - 

0.119) 

0.030 (0.011 - 

0.108) 

 

 

Table 4. Performance of five different models during internal validation. AUC-ROC, as well 

as sensitivity (Sens), specificity (Spec), accuracy (Acc.), positive predictive value (PPV), 

negative predictive value (NPV) in the test set based on the best threshold during ROC-

analysis. Median and empirical 95% CI are derived from 100 resampling steps for each 

metric. 

Model Type AUC Sens Spec Acc PPV NPV 

Logistic Regression 0.822 

(0.763 - 

0.868) 

0.763 

(0.690 - 

0.838) 

0.784 

(0.679 - 

0.861) 

0.778 

(0.707 - 

0.827) 

0.671 

(0.563 - 

0.764) 

0.851 

(0.795 - 

0.898) 

LASSO-Min 0.825 

(0.779 - 

0.875) 

0.767 

(0.679 - 

0.863) 

0.773 

(0.685 - 

0.859) 

0.776 

(0.712 - 

0.821) 

0.667 

(0.546 - 

0.767) 

0.854 

(0.797 - 

0.907) 

LASSO-1SE 0.809 

(0.753 - 

0.860) 

0.746 

(0.654 - 

0.835) 

0.761 

(0.681 - 

0.844) 

0.756 

(0.696 - 

0.813) 

0.649 

(0.533 - 

0.743) 

0.833 

(0.778 - 

0.896) 

Random Forest 0.784 

(0.726 - 

0.839) 

0.724 

(0.620 - 

0.817) 

0.762 

(0.646 - 

0.848) 

0.750 

(0.673 - 

0.795) 

0.634 

(0.503 - 

0.739) 

0.825 

(0.763 - 

0.894) 
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GBM 0.800 

(0.742 - 

0.854) 

0.741 

(0.626 - 

0.842) 

0.757 

(0.652 - 

0.862) 

0.750 

(0.688 - 

0.804) 

0.642 

(0.519 - 

0.763) 

0.831 

(0.775 - 

0.898) 

 

 

Table 5. Final intercept and coefficients of the 23-variable (LASSO-Min), and 11-variable 

(LASSO-1SE) logistic regression model fitted on the entire development dataset, both of 

which are used for external validation. 

 23-variable (LASSO-Min) model 11-variable (LASSO-1SE) model 

Intercept -0.1079327 0.188049601 

Baseline SARS-CoV-2 IgG 

low positive (0/1) 

0.4155510 0.352724365 

Third vaccination (0/1) -0.1124036 -0.085350859 

Female sex (0/1) -0.04148614 - 

Age (years) -0.001085888 - 

BMI in kg/m2 0.007465119 - 

mRNA Vaccination (0/1) 0.02857272 - 

Retransplantation (0/1) 0.1343634 - 

Transplant age in years 0.01113518 0.004443167 

Dialysis years -0.007937533 -0.002761632 

Diabetes (0/1) - - 

Steroid (0/1) - - 

Belatacept (0/1) -0.2339575 -0.149986747 

CNI (0/1) - - 

MPA (0/1) -0.008675321 -0.070823712 

MPA-Dose in g MMF 

equivalent 

-0.1773556 -0.105965120 

mTORi (0/1) -0.007156921 - 
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Azathioprine (0/1) -0.03860331 - 

More than 2 

immunosuppressants (0/1) 

-0.06123297 -0.045726834 

Rituximab in the last year -0.01829209 - 

DSA (0/1) - - 

Days since previous 

vaccination 

-0.0002238902 - 

Baseline eGFR 

mL/min/1.73m2 

0.003344195 0.002274646 

Leukocyte count (/nL) -0.007810127 - 

Lymphocyte count (/nL) 0.06496441 0.039311344 

Hemoglobin (g/dL) 0.02987510 0.018128558 

Anti-HbS (U/mL) 0.00006856821 - 

Albuminuria (g/g creatinine) -0.01705246 - 

 

Table 6. Performance of the 11-variable model during external validation. AUC-ROC, as well 

as sensitivity (Sens), specificity (Spec), accuracy (Acc.), positive predictive value (PPV), 

negative predictive value assessed on each validation set. The threshold was derived during 

ROC-analysis on the development dataset. To provide 95% CI, empirical 2.5% and 97.5% 

quantiles of the respective metric are provided after performing a 1000-fold nonparametric 

ordinary bootstrapping with each validation set. 

Model Type AUC 

point 

estimate 

(95% CI) 

Sens 

point 

estimate 

(95% CI) 

Spec 

point 

estimate 

(95% CI) 

Acc 

point 

estimate 

(95% CI) 

PPV 

point 

estimate 

(95% CI) 

NPV 

point 

estimate 

(95% CI) 

Validation 1 

11-variable 

 

0.855 

(0.799 - 

0.911) 

0.800 

(0.700 - 

0.891) 

0.674 

(0.586 - 

0.756) 

0.717 

(0.649 - 

0.780) 

0.559 

(0.460 - 

0.660) 

0.867 

(0.796 - 

0.927) 

Validation 2 

11-variable 

(cutoff 0.8/mL) 

0.722 

(0.647 - 

0.786) 

0.174 

(0.088 - 

0.278) 

0.922 

(0.867 - 

0.964) 

0.641 

(0.565 - 

0.707) 

0.571 

(0.350 - 

0.769) 

0.650 

(0.570 - 

0.719) 
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Validation 2 

11-variable 

(cutoff 15 U/mL) 

0.749 

(0.672 - 

0.819) 

0.205 

(0.077 - 

0.344) 

0.910 

(0.863 - 

0.952) 

0.761 

(0.696 - 

0.821) 

0.381 

(0.167 - 

0.611) 

0.810 

(0.744 - 

0.868) 

Validation 3 

11-variable 

 

0.828 

(0.772 - 

0.877) 

0.718 

(0.637 - 

0.790) 

0.738 

(0.669 - 

0.809) 

0.728 

(0.669 - 

0.800) 

0.724 

(0.646 - 

0.803) 

0.733 

(0.656 - 

0.801) 

Validation 4 

11-variable 

(cutoff 0.8/mL) 

0.708 

(0.643 - 

0.773) 

0.667 

(0.588 - 

0.745) 

0.615 

(0.522 - 

0.706) 

0.646 

(0.587 - 

0.705) 

0.714 

(0.640 - 

0.784) 

0.561 

(0.475 - 

0.655) 

Validation 4 

11-variable 

(cutoff 15 U/mL) 

0.787 

(0.737 - 

0.850) 

0.795 

(0.735 - 

0.850) 

0.585 

(0.496 - 

0.670) 

0.715 

(0.666 - 

0.762) 

0.757 

(0.696 - 

0.814) 

0.637 

(0.542 - 

0.725) 

Overall 

performance 

11-variable 

0.764 

(0.732 - 

0.795) 

0.620 

(0.571 - 

0.673) 

0.739 

(0.700 - 

0.774) 

0.684 

(0.653 - 

0.715) 

0.671 

(0.621 - 

0.716) 

0.694 

(0.651 - 

0.733) 

Overall 

performance 

11-variable 

(cutoff 15 U/mL) 

0.819 

(0.793 - 

0.844) 

0.720 

(0.676 - 

0.762) 

0.735 

(0.698 - 

0.775) 

0.728 

(0.702 - 

0.756) 

0.689 

(0.647 - 

0.731) 

0.762 

(0.728 - 

0.800) 
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Figures and Figure legends 

 

  

Figure 1. Patient flow diagram of the development cohort. 
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Figure 2. Predictive performance of the developed models (AUC) in internal validation. LR - 

logistic regression, LASSO-Min LR - least absolute shrinkage and selection operator 

regularized logistic regression with lambda hyperparameter optimized to yield minimum 

mean squared error within an inner 5-fold cross validation in the training set. LASSO-1SE - 

least absolute shrinkage and selection operator regularized logistic regression with lambda 

hyperparameter increased from lambda-min, so that mean squared error stays within one 

standard error within an inner 5-fold cross validation in the training set. GBRT - gradient 

boosted regression trees. RF - random forest. lympho – including lymphocyte count as 

predictor variable. 
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Figure 3. Predictive performance (AUC-ROC) of the 11-variable model in external validation. 

 

Figure 4. Possible implementation strategy of the described prediction model into clinical 

decision making. 
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