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Abstract  

We studied whether a polygenic score for reduced kidney function developed from 

population-based studies was associated with adverse outcomes among persons 

with chronic kidney disease. The polygenic score was significantly associated with 

incident kidney failure, major adverse cardiovascular outcomes and overall mortality 

while adjusting for age, sex, and baseline eGFR: the hazard ratio for kidney failure 

over 6.5 years was 1.83 (95% CI 1.40-2.39) comparing those in the highest and 

lowest quartiles of the polygenic score. However, the significant associations of the 

polygenic score did not translate to improved outcome prediction in comparison to 

established risk equations.  

 
Keywords: Polygenic Score; Chronic Kidney Disease, Kidney Function. 
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Introduction 

Chronic kidney disease (CKD) is a global health burden of increasing importance that 

affects >10% of the general adult population.1 CKD is defined as the sustained 

presence of abnormalities of kidney structure or function, and classified using 

estimated glomerular filtration rate (eGFR) and the urinary albumin-to-creatinine ratio 

(UACR).2 The eGFR based on serum creatinine is the most common measure of 

kidney function. Persons with CKD are at increased risk of adverse outcomes such 

as kidney failure (KF), cardiovascular diseases, and premature death.3  

Genome-wide association studies enable the calculation of polygenic scores 

(PGS). PGS aggregate the effects of many genetic variants into a single number and 

permit a straight-forward investigation of the association between a genetic 

predisposition with a given outcome. Yet, evaluations of such PGS in external 

studies, including different target populations, are often limited. Large CKD cohorts 

like the prospective German Chronic Kidney Disease (GCKD)4 study represent a 

valuable opportunity to study whether a PGS for reduced eGFR (termed “eGFR 

PGS”), is associated with adverse outcomes in CKD. Therefore, the aim of this study 

was to investigate if (i) a polygenic predisposition to lower eGFR is associated with 

KF, cardiovascular events and mortality in persons with CKD, and if (ii) the eGFR 

PGS carries predictive ability by itself and in addition to established risk factors. 

 

 
Short Methods 

We developed and tuned a PGS for log(eGFR) in independent, general population-

based study samples consisting of European ancestry participants of the UK 

Biobank5 and the CKDGen Consortium6 via the LDpred algorithm7 as described in 

the Supplementary Methods, following a workflow published previously8. The best 
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performing PGS was then applied using data from 4 924 GCKD participants with 

moderate CKD and full information. The eGFR PGS was calculated, standardised 

and evaluated for association with i) KF defined as a composite endpoint of kidney 

replacement therapy (dialysis, kidney transplantation) or death due to foregoing 

dialysis, ii) a composite endpoint of acute myocardial infarction, cerebral 

haemorrhage and stroke (short: 3P-MACE), and iii) overall mortality (short: death). 

Secondary outcomes included the three components of 3P-MACE. Cox proportional 

hazard regression was conducted to estimate (cause-specific) hazard ratios. In case 

of KF and 3P-MACE and its components, we considered death of other causes as a 

competing event and additionally analysed the subdistribution hazard for the event of 

interest. For each outcome, we adjusted for three different sets of variables: 1) age + 

sex + significant genetic principal component, 2) model 1 + baseline eGFR and 3) 

model 2 + log(UACR). Predictive performance of the eGFR PGS for KF, above and 

beyond the well-established kidney failure risk equation (KFRE; based on age, sex, 

eGFR and UACR) introduced by Tangri et al.9, was assessed using prediction error 

curves, the c-index, a calibration plot and the 6-year receiver operating characteristic 

(ROC) curve.10,11 The KFRE was chosen for comparison because of its common use 

in the care for CKD patients. The statistical significance level was Bonferroni-

corrected for three adjustments (p<0.05/3). If not stated otherwise, results of model 

2) are reported. Detailed methods can be found in the Supplementary Methods 

section of the Supplementary Materials.  

 

 
Results 

In the PGS development stage, the PGS with the best performance (Supplementary 

Methods) assumed a fraction of causal variants of 0.1 and was subsequently applied 

in the GCKD study. The mean eGFR among 4 924 participants (39.8% women) with 
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complete data was 49.4 mL/min/1.73m2 (Supplementary Table 1). As expected in a 

CKD cohort that recruited mostly participants with stage G3 CKD, Spearman 

correlation of the eGFR PGS with eGFR at the enrolment visit was low (0.03). Over a 

median follow-up of 6.5 years (Q1: 6.5; Q3: 6.5), 470 (9.5%) participants experienced 

KF, 551 (11.2%) 3P-MACE, and 630 (12.8%) died.  

 

A PGS for eGFR is associated with adverse outcomes  

A higher continuous PGS, corresponding to a lifelong genetic predisposition to lower 

eGFR, was associated with higher risk for all three outcomes (KF: HR 1.22, 95% 

confidence interval (CI) [1.11;1.33], 3P-MACE: 1.15 [1.06;1.25], death: 1.13 

[1.04;1.22]) after controlling for age, sex, baseline eGFR and one signifcant genetic 

principal component (model 2; Figure 1, panel A; Supplementary Tables 2-4). Upon 

adjustment for the UACR (model 3), these associations remained significant for KF 

and 3P-MACE, but were attenuated for death (KF: HR 1.12, 95% CI [1.02;1.23], 3P-

MACE: 1.12 [1.03;1.22], death: 1.09 [1.01;1.18]). Results without adjustment for 

eGFR (model 1) were similar to model 2. The subdistribution analyses delivered 

similar results, indicating the absence of indirect effects through the competing event. 

The risk of KF over 6.5 years was 1.83 (95% CI 1.40-2.39) times higher comparing 

those in the highest and lowest PGS quartiles (Supplementary Table 2). Across 

deciles of the eGFR PGS, participants in the highest decile, corresponding to 

genetically lowest eGFR, had a more than two-fold increased risk of KF compared to 

those in the lowest decile (HR=2.17 [1.41;3.33]). 

 The unadjusted cumulative incidence function for KF as well as for 3P-MACE 

was most pronounced for the highest quartile of the eGFR PGS, in line with the Cox 

regression results (Figure 1, panels B and C). Notably, the functions clearly 

distinguished participants in the highest and lowest quartiles of the PGS (cumulative 
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incidence of KF of 13.8% (highest quartile) vs. 7.7% (lowest quartile) and 14.6% vs 

10.9% for 3P-MACE). The same trends were observed for the 3P-MACE sub-

outcomes acute myocardial infarction, cerebral haemorrhage and stroke 

(Supplementary Table 4), albeit mostly not significant. 

 

Predictive ability of the PGS 

The likelihood ratio test (LRT) comparing the well-established KFRE for incident KF 

with the same model after addition of the PGS was nominally significant 

(Supplementary Table 5), indicating potential for improvement of model 

performance. Yet, neither calibration nor the prediction error curves, the c-index or 

the receiver operating characteristic (ROC) curve at year 6 improved when adding 

the PGS to the KFRE model for KF (Figure 2). Addition of the PGS to the KFRE 

resulted in no change of the c-index of 0.84 for KF. Similarly, the integrated 

prediction error curve (IPEC), where higher values indicate worse prediction, 

changed from 56.37 to 56.72 for KF.  

 
Discussion 

In this study of an eGFR PGS in persons with CKD, we found significant associations 

with KF, 3P-MACE and death but limited predictive ability with respect to KF.  

 While various studies focused primarily on the association of an eGFR PGS 

with clinical outcomes or the prediction of the presence of CKD (e.g. Yun et al.12, 

Khan et al.13) in the general population, little is known about the relationship of an 

eGFR PGS to adverse outcomes in persons with already diagnosed moderate CKD, 

a novel aspect addressed in this study. In agreement with our findings, a previous 

population-based study by Yu et al.8 reported significant positive association of a 

similarly developed eGFR PGS with incident CKD and KF. Thus, our results support 
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that an eGFR PGS developed in the general population is associated with adverse 

kidney outcomes not only in population-based studies, but also among persons with 

already existing CKD. 

 At the same time, this study showed no improvement in risk prediction, 

underlining the finding of Gleiss et al.14 that significant associations are only a 

necessary but not a sufficient condition for the usefulness of prognostic markers in 

prediction studies. The limited use of PGS for risk prediction has been pointed out by 

Wald et al. previously.15 While several studies concluded that eGFR PGS were 

suitable for prediction of the presence of CKD8,13, they did not evaluate prediction of 

incident outcomes, although these are two important separate aspects in PGS 

validity according to Torkamani et al.16 A previous population-based prospective 

study of incident CKD8 on the other hand did not report on risk prediction. Thus, 

evidence around the predictive ability of an eGFR PGS for adverse outcomes among 

CKD patients is lacking, a knowledge gap filled by our study. Our results suggests 

that in order to achieve the goal of clinical translation of an eGFR PGS17, further 

validation in CKD cohorts is warranted in order to identify settings in which such a 

PGS can add above and beyond established risk prediction equations that do not 

require genetic information.   

 Strengths of our study are its new focus on persons with CKD and a large 

sample size with systematic outcome ascertainment over 6.5 years of follow-up. 

Despite the large number of outcomes, however, the power to study finer distinctions, 

such as deciles of the PGS or rare outcomes, was limited, as discussed previously.18 

Another limitation is that findings in the GCKD study may not be generalizable to 

non-European ancestry populations. 

 In conclusion, our study revealed significant associations between a polygenic 

predisposition to lower eGFR and KF, 3P-MACE, and death among persons with 
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moderate CKD, emphasising the importance of genetic background even after 

disease onset. However, the eGFR PGS carried no added predictive ability with 

regard to KF beyond the well-performing KFRE among patients with established 

CKD.   
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Figure Legends 

Figure 1: Association results of the eGFR PGS with all studied outcomes. A: 
Hazard ratios by PGS quartiles for different adjustment models. The studied 
outcomes are color-coded. B: Cumulative incidence function (unadjusted) for KF by 
quartile of PGS. C: Cumulative incidence function (unadjusted) for 3P-MACE by 
quartile of PGS. 
 
Figure 2: Predictive ability of the eGFR PGS. A: Calibration plot at year six; B: 
Prediction error curves for KF over time; C: Six-year ROC curve for KF; Each panel 
displays different adjustments: Null model: unadjusted; PGS only: PGS; KFRE: 
adjustment for age, sex, baseline eGFR, log(UACR); KFRE plus PGS: KFRE + PGS. 
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