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Auckland, New Zealand 9 Medical Research Institute, Gisborne-Tairāwhiti, New Zealand 10Departments of Neurological Surgery, Radiology,

Mechanical Engineering, and Stroke & Applied Neuroscience Center, University of Washington School of Medicine, Seattle, USA
∗ These authors contributed equally to this work

Abstract

Ruptured intracranial aneurysms (IAs) are catastrophic events associated with a high mortality rate. An estimation
of 6 million people in the United States have reported IAs, raising a pressing need for diagnostic tools to assess IAs
rupture risks. Current population-based guidelines are imperfect, hence the need for new quantifiable variables and
imaging markers. Aneurysm wall motion has been identified as a potential marker of high risk aneurysms, but conven-
tional imaging techniques are challenged by small IAs sizes and limited spatial resolution. Recently, amplified Flow
(aFlow) has been introduced as an algorithm which allows visualization and quantification of aneurysm wall motion
based on amplification of 4D flow MRI data. In this work, we used aFlow to assess IAs wall motion in patients with
growing aneurysms. The results were compared with a patient cohort with stable aneurysms. Among 118 patients
with unruptured IAs who underwent sequential surveillance imaging, 10 patients with growing IAs who had baseline
3D TOF-MRA and 4D flow MR imaging were identified and matched with another cohort of patients with stable
IAs based on IAs size and location. aFlow was then applied to the 4D flow MR data to amplify the aneurysm wall
displacement. Voxel-based values of displacement were extracted for each aneurysm and normalized with respect
to the reference parent artery. Following histogram analysis, the highest and lowest IAs displacements were calcu-
lated, together with their standard deviation and interquartile ranges. A paired-wise analysis was adopted to assess
the differences among clinical variables, demographic data, morphological features, and aFlow parameters between
patients with stable versus growing aneurysm. Results demonstrated higher wall motion and higher variability of de-
formation for the growing aneurysms, possibly due to inhomogeneities of the mechanical characteristics of the vessels
walls or to underlying hemodynamics. Computational Fluid Dynamic simulation was also conducted for a subset of
6 stable and 6 growing aneurysms to examine the correlation between hemodynamic parameters, wall motion, and
aneurysm stability. The magnitude and variance of directional wall shear stress gradient, in addition to area of colo-
cation of elevated oscillatory shear stress and high variance in pressure, were highly correlated with both wall motion
and aneurysm stability. We demonstrated here that the measurement and amplification of the aneurysm wall motion
achieved with our method has the potential to differentiate stable from growing aneurysms, and potentially act as a
substitute for in depth computational fluid dynamic analysis.
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1. Introduction

There is a pressing need for a diagnostic tool able
to assess the risk intracranial aneurysms (IAs) rupture.
The reported incidence of IAs is approximately 2-5%

in the general population with an estimation of 6 mil-
lion people in the United States [1–4]. Even if the over-
all rupture rate for IAs is relatively small, ranging from
0.1% to 1.4% per year depending on associated risk fac-
tors [5–7], ruptured IAs are catastrophic events with a
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mortality rate ranging from 32-67% and significant mor-
bidity in one third of the survivors [3, 8, 9].

Due to low rate of rupture, preventive treatment in-
cluding surgical clipping and endovascular coiling is
often considered in the context of the natural history
of IAs with a strategy to carefully balance the risk of
rupture against the risk associated with treatment com-
plications and cost [4, 6, 10, 11]. Risk factors asso-
ciated with growing aneurysms have been studied ex-
tensively; some of these include age, sex, family his-
tory of aneurysm or subarachnoid hemorrhage, smok-
ing, hypertension, aneurysm size and location [6, 12–
15]. These population-based data have been used to
create management and treatment guidelines that are
used for risk stratification and treatment decision mak-
ing such as PHASES score (population, hypertension,
age, size of aneurysm, earlier subarachnoid hemorrhage
from another aneurysm, site of aneurysm) [6, 16].

However, these population-based guidelines are
rather imperfect in determining risk of rupture. For ex-
ample IAs size of greater than 7 mm has been used as
an objective measure of risk stratification with mixed re-
sults since a significant number of ruptured IAs can be
small [17–19].

Therefore, other quantifiable variables and imaging
markers have been investigated for more specific and
individualized IA risk stratification such as presence of
IA wall inflammation assessed by MR-vessel wall imag-
ing [20, 21] and patient-specific hemodynamic variables
obtained through computational fluid dynamic (CFD)
studies [22–25]. Computational fluid dynamics shows
great promise for quantifying hemodynamic parame-
ters that are associated with aneurysm growth and rup-
ture. Hemodynamic parameters that can only be cap-
tured through CFD, such as Oscillatory Shear Index and
Wall Shear Stress Gradient, have been established as
indicators for aneurysm development [26] and rupture
risk [27] While CFD has the potential to provide invalu-
able insight to the study of aneurysm development and
rupture, its clinical application is currently limited by
the high level of engineering expertise necessary, a lack
of methodological consistency between studies, and dif-
ficulty of obtaining large sample sizes for longitudinal
study [28].

Aneurysm wall motion is shown as a potential marker
to identify high risk aneurysms, where inhomogeneous
mechanical characteristics and wall motion abnormal-
ities are often associated with IAs growth and rupture
[29–33]. Subjective parameters of irregular wall motion
and deformation such as irregular pulsation and pul-
sating blebs were reported in growing or ruptured IAs
[31, 32]. More objective and quantitative approaches

in estimating IAs wall motion using dynamic cardiac
gated magnetic resonance angiography (MRA) [34, 35]
or computed tomography angiography (CTA) [36, 37]
have been explored in determination of high risk IAs
with some success. However, aneurysm wall motion has
proven difficult to quantify with conventional imaging
techniques due to the small size of IAs and limited spa-
tial resolution. Small IAs wall deformations are often
close to the imaging resolution, rendering quantitative
wall motion analysis challenging [33].

Recently, a promising image processing algorithm
called amplified Flow (aFlow) has been introduced
which allows for visualization and quantification of
aneurysm wall motion [38]. This amplification algo-
rithm derives from an improved version of a Eulerian
video magnification (EVM) algorithm [39–41]. By us-
ing a modal decomposition technique called dynamic
mode decomposition (DMD) to capture the transient
phenomena in the desired frequency range, arterial wall
motion in a 4D flow MRI acquisition can be ampli-
fied and quantified [38]. In this study, we aimed to
use the aFlow algorithm to assess IAs wall motion in
a group of patients with growing aneurysms and per-
form a comparative analysis to a matched cohort with
stable aneurysms. We then conducted CFD simulation
on a sub cohort of these growing and stable aneurysms,
allowing for direct correlation of wall motion and com-
putationally derived hemodynamic parameters.

2. Methods

2.1. Human subjects
This retrospective case control study was approved

by our institutional review board. Study subjects were
identified within a prospectively collected data of pa-
tients with unruptured IAs who underwent MRA and
4D flow MRI between Jan 2016-Dec 2020. As part of
this study, patients agreed to come back for follow up
visits and undergo follow up MRA scans to determine
interval change in aneurysm size. Informed consent was
obtained from all individuals . The inclusion criteria
were 1) Availability of MRA and 4D flow MRI at base-
line imaging 2) Follow up MRA at least one year or later
from the baseline imaging. At the time of analysis for
this project, a total of 118 patients have been consented
and enrolled who met the inclusion criteria.

2.2. Aneurysm measurement
IA size was measured independently by two board

certified neuroradiologists with 10 and 6 years of ex-
perience. 3D time-of-flight MRA (TOF-MRA) source
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data were available in a commercially available soft-
ware (Vitrea, Vital Images) and 3D multi-planar refor-
mations were used to calculate the following in each IA:
1) Aneurysm size: maximum perpendicular distance
of the dome from the neck plane; 2) Aneurysm neck:
maximum diameter of the aneurysm neck where it at-
tached to the parent vessel; 3) Aspect ratio: aneurysm
size/neck. Individual measurements were first obtained
on the baseline scan, then on the follow-up MRAs of
the same patient. The observers were not blinded to the
time order of the scans and had the baseline for com-
parison to mimic standard clinical practice. Among 118
patients enrolled, a total of 14 patients were identified
as having growing aneurysms determined by follow up
MRA studies. Determination of growth was based on
interval increase in aneurysm size by 1mm [42] on two
sequential follow up MRA. In four patients, the 4D flow
MRI datasets were non diagnostic (motion, n=2; failed
flow-encoding, n=2) resulting in a total of 10 patients
with growing IAs for analysis. Subsequently a cohort
of 10 patients with IAs whom aneurysm remained stable
in size throughout the course of the study were selected
and matched on the basis of aneurysm size and location.
These twenty patients were included in the study for a
case control pairwise analysis.

2.3. Imaging protocols

Image acquisition was performed on a 3T MR750
Discovery scanner (GE Healthcare, Milwaukee, WI,
USA) or a 3T Skyra scanner (Siemens Healthineers AG,
Germany). A multichannel head-neck coil with 20 el-
ements were available on both scanners for signal re-
ception. A TOF-MRA was obtained with identical se-
quence parameters on both scanners with the following
parameters: TR/TE: 16/3.1 ms, FA: 20◦, slices: 40, slice
thickness: 0.6 mm, 4-axial slabs, matrix 384 × 384,
FOV: 180 × 180 mm. For 4D flow MRI, a 3D phase-
contrast peripherally-gated sequence was used with the
following parameters: TR/TE = 5.8/3.1 ms, FA: 14◦,
matrix: 224 × 224, FOV: 180 mm, slices: 60-90, slice
thickness: 1 mm. Twenty cardiac phases were ob-
tained with a temporal resolution of approximately 40-
60 ms (depending on the subject’s heart rate). A 3D-
velocity encoding value (venc) of 80 cm/s was chosen
[43]. Sequence parameters between GE and Siemens
scanners varied slightly due to technical differences and
restrictions imposed by the scanner hardware, however
the voxel-sizes were kept near identical throughout the
study.

2.4. Preprocessing of the 4D flow MRI data

The acquired images underwent a series of prepro-
cessing steps to improve their quality before ampli-
fication (Figure 1). The raw data was corrected for
background phase errors arising from Maxwell terms
[44, 45], gradient field non-linearity [45, 46], and eddy
currents [47]. Phase errors due to eddy currents were
corrected by fitting a third-order polynomial to the static
regions of the image and subsequently subtracting this
from the velocity data [47]. Finally, to visualize the
blood vessels, the acquired anatomical magnitude data
was combined with the 3D velocity information [48].

Before applying aFlow on the data, de-noising steps
were taken to improve the signal-to-noise ratio (SNR).
Here, median [49, 50] and diffusion filtering [51]
were performed to improve the contrast between the
aneurysm edge and the stationary background. Follow-
ing this, the Matlab histogram matching algorithm [52]
was used between each time step (with respect to the
first time step) to reduce the temporal intensity varia-
tion, resulting in an improved temporal SNR [53].

2.5. aFlow algorithm

To visualize the subtle aneurysm wall displacement
in 3 directions, the aFlow algorithm was used on the
preprocessed data. In the first step, by using a 3D steer-
able pyramid, aFlow decomposes the data at each time
step into local phases at different scales and orienta-
tions [38, 53, 54]. Then, the temporal variations of the
decomposed data at each time-step with respect to the
first time point was calculated (i.e. phase difference at
each level and orientation). It should be noted that these
phase differences correspond to the local displacement
of the preprocessed 4D flow MRI data at each scale and
orientation [55]. Next, the DMD modal decomposition
technique was used on the local phase differences, al-
lowing one to isolate the motion at specific temporal
frequencies and capture the highly transient phenomena
present in the aneurysm wall deformation [38, 56]. In
short, DMD sums up the modes in the selected range
of frequencies making it possible to capture the domi-
nant behavior of a dataset in the absence of its govern-
ing model [57–60]. An amplitude-weighted Gaussian
spatial filter can be used on the DMD processed phase
differences to reduce the noise that might arise from
the amplification. The filtered phase data were multi-
plied by an amplification factor α and added back to the
original phase data. Finally, the modified 4D flow MRI
dataset is reconstructed by collapsing the 3D steerable
pyramid, resulting in an amplified dataset in the selected
frequency range [38].
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Figure 1: Overview of the data processing and aFlow method: First, 4D flow data were filtered to improve SNR. Then, aneurysms and reference
arteries were masked and the 4D flow images were amplified. Finally, the displacement fields were extracted using the Demons registration
algorithm.

2.6. Analysis of the in vivo data through aFlow

The aFlow algorithm was applied to the 4D flow MRI
datasets in our 20 patients to extract wall motion metri-
ces. To analyze the aneurysm wall motion via the aFlow
algorithm, we selected an amplification factor of α = 3
and two frequency ranges of f ∈ [0 1.5 fH] Hz (denoted
as ”main harmonics”) and f ∈ [1.5 fH 3 fH] Hz (denoted
as ”higher frequencies”), where fH corresponds to the
heart rate of the analyzed subject.

2.7. Displacement measurement

After the amplification, the displacement fields were
extracted with the Demons registration algorithm [61,
62]. Then, a region of interest (ROI) containing all the
voxels of the aneurysm was selected. Another reference
ROI including the parent artery voxels was selected a
few mm away from the aneurysm neck. The ROI of the
reference artery was used to normalize the displacement
of the aneurysm wall for every individual. To calculate
the normalized displacement of each aneurysm with re-
spect to the reference artery at the selected ROI, we used
the following formulation:

UN(x, y, z) =
max(UA(x, y, z, t))

Ure f (x, y, z, t)
(1)

where UN(x, y, z) is the normalized displacement at
x, y, z coordinates on the aneurysm wall (the vox-
els of the aneurysm wall), and max(UA(x, y, z, t)) and
Ure f (x, y, z, t) are the maximum aneurysm and mean ref-
erence artery displacements over time t, respectively.
These voxel-based displacement values were calculated
for each aneurysm and used to calculate the following
parameters: maximum of UN (max|UN |), 90th percentile
of UN (P90%UN ), 50th percentile of UN (P50%UN ), 10th

percentile of UN (P10%UN ), standard deviation of UN

(σUN ), and interquartile range of UN (IQRUN ). Here,
σUN and the IQRUN are indicators of the deformation
variability across the same aneurysm geometry.

2.8. Statistical Analysis

A paired-wise analysis was adopted to assess the dif-
ferences in clinical variables, demographic data, mor-
phological features, and aFlow parameters between pa-
tients with stable versus growing aneurysms. Base-
line characteristics and neuroimaging variables were
compared between subjects with stable and growing
aneurysms employing t-tests, Wilcoxon, or McNemar
tests as appropriate. Significant variables following uni-
variate analysis were tested by a conditional (fixed-
effect) logistic regression and predictive values were
provided as Odds ratios with a 95% confidence interval.
Unmatched methods, e.g. unconditional logistic regres-
sion, were used in addition to our loose-matching data
based on the findings of [63]. Finally, the correlation
between significant variables was assessed by Pearson
correlation analysis. All statistical analyses were car-
ried out at the p =0.05 (2-sided) significance level us-
ing IBM SPSS Statistics for Windows (Version 24.0)
and Stata Statistical Software (Release 15).

2.9. CFD Analysis

Time resolved computational fluid dynamic sim-
ulation was conducted for 6 stable and 6 growing
aneurysms using a similar methodology to that outlined
in McGah et al [64]. In this work patient specific veloc-
ity inlet boundary conditions were obtained via 4D flow
MR velocimetry. The meshes were constructed using
unstructured polyhedral elements with a characteristic
length of 0.125 mm and six prism layers at all wall sur-
faces. The average number of elements in each mesh is
1.5 million. Blood was assumed to be an incompress-
ible Newtonian fluid with a density of 1050 kg/m3 and a
viscosity of 3.5cP. Transient simulations were run for 6
cardiac cycles at a time step of 0.001 seconds to ensure
the results are independent of initial conditions. The
hemodynamic parameters of interest in this work are the
local fluid pressure (P), Wall Shear Stress (WSS), Os-
cillatory Shear Index (OSI), and Directional Wall Shear
Stress Gradient (WSSGdir).
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Figure 2: Overview of the displacements measurement. Selection of ROI: aneurysm ROI (red) and healthy artery ROI (green) (A). Extraction of
normalized maximum displacement for each time step (t1 to tn) to generate the volume tmax of maximum normalized displacement over time (B).
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OSI measures the oscillation of WSS by dividing the
magnitude of the time average of the WSS vector with
the time average of the magnitude of WSS and has been
shown to correlate directly with aneurysm instability
and rupture [65].

Directional wall shear stress gradient is defined to be
positive when the spatial gradient of WSS is in the same
direction as the WSS vector, representing an accelera-
tion of flow, while a negative value represents a decel-
eration. The time variance of WSSGdir therefore is a
good measure of the change in direction of flow within
the aneurysm, which we hypothesize will correlate with
wall motion. In this work we developed 10 represen-
tative hemodynamic parameters that correlate with wall
motion and aneurysm stability by taking spatial aver-
ages, time averages, time coefficient of variance and
spatial standard deviations of the pressure, WSS, OSI,
and WSSdir. In addition to statistical measures, we ex-
amined the percent of the aneurysm dome area that had
outlier levels of these variables when compared to the
same values calculated for the reference artery. These
10 parameters are defined in Table 1.

Table 1: Description of CFD hemodynamic parameters

Parameter Abbreviation Parameter Description
% Area of HCVP and HOSI Percent of the aneurysm dome with colocation

of WSS above the 95th percentile of the ref-
erence artery and coefficient of variance above
the 95th percentile of the reference artery.

%Area of HOSI Percent area of the aneurysm dome with OSI
above 95th percentile of the reference artery.

%Area of LWSS+HOSI Percent of the aneurysm dome with colocation
of WSS below the 5th percentile of the refer-
ence artery and OSI above the 95th percentile
of the reference artery.

%Area of LWSS+HWSSGdir Percent of the aneurysm dome with colocation
of WSS below the 5th percentile of the refer-
ence artery and directional WSS gradient above
the 95th percentile of the reference artery.

SA of CV of WSSGdir Spatial average across aneurysm dome of the
time coefficient of variation of directional wall
shear stress gradient

SA of TA of WSSGdir Spatial average across the aneurysm dome of
the time average of directional WSS gradient

SSD of CV of WSSGdir Spatial standard deviation across aneurysm
dome of the time coefficient of variation of di-
rectional WSS gradient

SA of Normalized CV of P Spatial average across the aneurysm dome of
time coefficient of variance divided by the spa-
tial average of time coefficient of variance av-
eraged across the reference artery

SA of OSI Spatial average across aneurysm dome of OSI
SSD of OSI Spatial standard deviation across the aneurysm

dome of OSI
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3. Results

3.1. Wall motion results

There were no statistical differences among demo-
graphic and clinical variables between patients with sta-
ble versus growing IAs and no statistical differences in
these between the two groups (Table 2). We also com-
pared baseline aneurysm measurements including sac
size, neck size, aspect ratio and location (Table 3). To-
tal follow up time (mean ± S D) was 30.6 ± 9.1 months,
28.4 ± 9 in the stable vs. 32.9 ± 9.1 in the growing co-
hort. Following the final size measurement analysis, the
final aneurysm sac size (mean±S D) in the stable cohort
was 4.50 ± 2.56 mm (p = 0.77, mean difference: 0.03
mm, standard error of mean difference: 0.21 mm). In
the growing cohort, the final sac size (mean ± S D) was
increased to 7.53 ± 4.65 mm (p = 0.012, mean differ-
ence: 1.12 mm, standard error of mean difference: 0.36
mm). A quantitative analysis of IAs wall displacement
in stable and growing cohorts are summarized in Table
4.

Using the acquired displacement fields, we calculated
P90%UN , P50%UN , P10%UN , σUN , and IQRUN for each sub-
ject at two frequency ranges. Overall, we observed sig-
nificantly higher P90%UN values and wider IQRUN and
σUN values in growing IAs as compared to the stable
group regardless of the frequency (p < 0.05, Table
4). We found that on average, P90%UN in both of the
frequency bands are approximately 70% higher in the
growing IAs (Figure 4(C), Table 4). The maximum
wall IAs motions depicted by P90%UN values were sig-
nificantly higher in the growing IAs in comparison to
the stable IAs (p = 0.035 for the 1st frequency and 0.04
for the 2n frequency wall motion).

The growing IAs also showed higher variability of
deformation across their geometry, evident by the dis-
persion variables including σUN and IQRUN . We found
approximately 153% and 124% larger σUN in the 1st,
and the 2nd frequency ranges of the growing IAs as com-
pared to the stable ones, respectively (Table 4). These
values for IQRUN were 164% and 132% larger in the
1st and the 2nd frequency ranges of the growing IAs,
respectively (Fig. 4.D, Table 4). There was no signifi-
cant difference in the IAs wall motion when consider-
ing P10%UN or P50%UN between stable vs. growing IAs
(Table 4). Similar results were observed for the 2nd fre-
quency band. The same parameters were significantly
higher for growing IAs: P90%UN , IQRUN and σUN (p =

0.040, 0.011 and 0.012, respectively).

Table 2: Demographic and clinical variables in patients with stable
vs. growing aneurysms (univariate analysis).

Variable Stable (n=10) Growing (n=10) p-value
Age (years) 56.5 ± 13.1 57 ± 16.9 0.16
Sex (M/F) 1/9 3/7 0.62
Family history of aneurysm 4 (40%) 0 (0%) 1
Family history of SAH 2 (20%) 1 (10%) 1
History of hypertension 5 (50%) 9 (90%) 1
History of smoking 3 (30%) 5 (50%) 0.12
History of alcohol consumption 2 (20%) 3 (30%) 1
History of migraine 1 (10%) 1 (10%) 1
Aneurysm multiplicity 4 (40%) 5 (50%) 0.37
PHASES score; Median (IQR) 1 (0.75-2.25) 1 (0.75-6.25) 0.3

Table 4: aFlow parameters in patients with stable vs. growing
aneurysms, first and second frequency bands.
* p values are based on paired-wise analysis. ** Data are presented
as mean ± SD, unless otherwise specified.

Variable Stable (n=10) Growing (n=10) p-value** AUC, Sensitivity, Specificity
1st frequency band

P10%UN 0.987 (0.381) 1.373 (0.438) 0.511 -
-
P50%UN 1.126 (0.402) 2.018 (0.441) 0.108 -
-
P90%UN 1.389 (0.584) 2.336 (0.721) 0.035 0.85, 100%, 70%
σUN 0.259 (0.179) 0.655 (0.216) 0.008 0.91, 90%,90%
IQRUN 0.388 (0.301) 1.024 (0.381) 0.010 0.90, 90%,80%
2nd frequency band

P10%UN 0.755 (0.369) 0.928 (0.341) 0.367 -
-
P50%UN 0.941 (0.425) 1.629 (0.225) 0.081 -
-
P90%UN 1.679 (0.730) 2.874 (0.973) 0.040 0.82, 90%, 70%
σUN 0.238 (0.140) 0.533 (0.185) 0.011 0.90, 90%, 70%
IQRUN 0.347 (0.194) 0.805 (0.336) 0.012 0.89, 90%, 70%

Table 3: Baseline aneurysm size and morphometric features.
* p values are based on paired-wise analysis. ** Data are presented
as mean ± SD, unless otherwise specified.

Variable Stable (n=10) Growing (n=10) p-value**
Sac size (mm) 4.48 (2.60) 5.95 (3.77) 0.062
Neck size (mm) 2.86 (1.36) 3.98 (0.80) 0.034
Aspect Ratio 1.71 (0.91) 1.46 (0.81) 0.328
Location (ICA/MCA) (number) 8/2 8/2 1.00

3.2. CFD Results

After analyzing the hemodynamic results, we found
several hemodynamic parameters correlate with wall
motion, and are themselves predictive of aneurysm
stability (Figure 5). In order to reduce transient, 3-
dimensional data into single parameters we examined
time averages (TA), spatial averages (SA), time coeffi-
cients of variance (CV) and spatial standard deviations
(SSD) of hemodynamic parameters. We also exam-
ined the percent area of the aneurysm dome that ex-
perienced outlier levels of OSI, variance in pressure,
WSS and WSSGdir. An outlier level was defined as
greater than the 95th percentile (or lower than 5th per-
centile) of the value of the same parameter in the refer-
ence artery. Table 5 shows the correlation between 10
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Figure 3: Comparison of the displacement fields between stable (A) and growing aneurysms (B). The first row shows the MRA images of
the IAs in the coronal plane. The second row show the 4D flow images of the IAs in the axial plane. The third row shows the displacement
fields symbolized by arrows for each IA. The stable aneurysm shows homogeneous displacement field, globally oriented in the same direction and
comparable to a uniform bulging of the aneurysm sac. On the contrary, growing aneurysm presents inhomogeneous motions, similar to a swirling
motion.

hemodynamic parameters and measures of wall motion
and aneurysm stability. The best predictor of maximum
wall motion and variance of wall motion is the spatial
standard deviation of the time coefficient of variance of
the directional wall shear stress gradient. This backs up
our hypothesis that aneurysms with large changes in the
direction of WSS will also have higher levels of wall
motion. The percent of the dome that has a coloca-
tion of outlier high levels of OSI and outlier high lev-
els of time coefficient of variation of pressure is also
highly correlated with wall motion. The areas with
high oscillation in WSS, but with low levels of WSS
will be those with vorticity and rotational flow, and
as such it makes sense they would correlate with wall
motion. Table 5 also compares the hemodynamic pa-
rameters for the stable and growing aneurysms. The
best hemodynamic discriminator from a Receiver Op-
erator Characteristic (ROC) perspective is the spatial
standard deviation of the coefficient of variance of di-
rectional wall shear stress gradient, matching the find-
ing from the wall motion analysis that spatial variance
is the best predictor of aneurysm growth. The spa-

tial average of the time average of WS S Gdir is also
a strong predictor of aneurysm growth, with high val-
ues corresponding to growing aneurysms. These high
values of WS S Gdir corresponds with flow accelerat-
ing into the aneurysm dome, which intuitively should
correlate with aneurysm growth. While the directional
wall shear stress gradient variables perform well in an
ROC analysis, the t-test reveals that the difference in
means between stable and unstable aneurysms is not
quite statistically significant. Neither the spatial aver-
age or spatial variance of OSI was a significant pre-
dictor of aneurysm growth, but the percent area of the
aneurysm with outlier high levels of OSI is a statisti-
cally significant predictor. This indicates that, similar
to wall motion, it is important to consider OSI relative
to the base state of the reference artery when examin-
ing the impact on aneurysm growth. The spatial aver-
age across the aneurysm dome of the coefficient of vari-
ance of pressure, normalized by the spatial average of
the same value across the reference artery, was a statis-
tically significant predictor of growing aneurysms. A
high value of normalized coefficient of variance of pres-

7

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 3, 2022. ; https://doi.org/10.1101/2022.06.02.22275917doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.02.22275917


A B C

Figure 4: Comparison of displacement parameters between stable and growing aneurysms. 90th percentile of normalized displacement
P90%UN (A), standard deviation σUN (B) and interquartile range IQRUN (C)

sure indicates that the pressure is fluctuating more in
the dome of the aneurysm than the rest of the artery on
average, and this increase in pressure fluctuation corre-
lates well with growing aneurysms. Furthermore, the
most statistically significant difference in means was in
the percent of aneurysm dome area with a colocation
of outlier high OSI and high variance in pressure. This
indicates that normal and shearing stress both fluctuat-
ing at high rates in the same region leads to aneurysm
growth. Figure 6 displays contours of the areas of colo-
cation of elevated variance in pressure and elevated OSI
for the stable and unstable cohorts.

DC

A B

Figure 5: Comparison of hemodynamic parameters between sta-
ble and growing aneurysms. SSD of CV of WSSGdir (A), %Area
of HOSI (B), %Area of HCVP+HOSI (C) and SA of TA of WSSGdir
(D)

4. Discussion

This work showed that aFlow can provide quantita-
tive analysis of IAs wall motion and differentiate grow-
ing IAs from stable IAs at baseline imaging with high
diagnostic accuracy in a pairwise analysis. We specif-
ically showed that growing IAs have inherently higher
wall motion and more heterogenous wall deformation
compared to stable IAs.

A heterogenous pattern of motion and wall defor-
mation has been associated with growing and ruptured
IAs [29, 30]. Conventional in vivo imaging techniques
were previously used to quantify aneurysm wall mo-
tion [30, 34–37]. However, such small deformations in
wall motion are close to the imaging resolution, making
these deformations difficult to visualize, thereby ren-
dering these approaches unreliable in the clinical set-
ting [66]. Currently, four imaging techniques are often
used to measure aneurysm wall motion: power Doppler
ultrasonography, phase-contrast MRA, 3D rotational
catheter angiography and 4D-CTA [30] each with some
technical and practical limitations. Observed pulsation
with transcranial ultrasonography is operator dependent
and depends on the device setting, which raises con-
cerns about reproducibility [67]. Both 3D rotational
catheter angiography and 4D-CTA can achieve high
spatial and temporal resolutions although with practi-
cal limitations for a non-invasive screening tool related
to requirements for radiation and injection of contrast
material [30]. Phase-contrast MRA is an appealing al-
ternative due to lack of radiation and no requirements
for contrast injection, however it can suffer from low
spatial resolution and flow artifacts from out-of-range
velocities [50]. aFlow, however, allows one to clearly
visualize the cerebrovasculature wall motion during the
cardiac cycle, while also achieving sufficient spatial and
temporal resolution for wall motion quantification [38].
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Table 5: Pearson correlations between hemodynamic parameters and wall motion, and t-test and ROC statistics between stable and unstable
aneurysms for the hemodynamic parameters.

Pearson Correlations T-test on means ROC Analysis
Hemodynamic Parameter Max Disp Mean Disp STD Disp Stability Stable (n=6) Unstable (n=6) p-value t-stat ROC AUC Sensitivity Specificity
SSD of CV of WSSGdir 0,762 0,711 0,747 0,540 28.186 (16.433) 252.70 (246.79) 0,070 -2,027 0,917 0,833 1,000
%Area of HCVP+HOSI 0,758 0,724 0,725 0,633 0.038 (0.036) 0.137 (070) 0,027 -2,585 0,861 1,000 0,666
SA of CV of WSSGdir 0,687 0,634 0,704 0,545 2.121 (0.951) 7.459 (5.720) 0,067 -2,058 0,861 0,833 0,833
%Area of HOSI 0,635 0,508 0,728 0,608 0.131 (0.053) 0.303 (0.152) 0,036 -2,419 0,833 0,833 0,833
%Area of LWSS+HWSSGdir 0,605 0,559 0,564 0,460 5e-05 (1.2e-5) 0.001 (0.001) 0,132 -1,639 0,708 0,500 0,833
SA of OSI 0,538 0,536 0,510 0,352 0.009 (0.008) 0.026 (0.031) 0,262 -1,190 0,639 0,666 0,833
%Area of LWSS + HOSI 0,502 0,494 0,482 0,456 0.016 (0.027) 0.049 (0.038) 0,154 -1,540 0,805 1,000 0,500
SSD of OSI 0,483 0,496 0,464 0,361 0.022 (0.016) 0.039 (0.027) 0,249 -1,225 0,667 0,666 0,833
SA of Normalized CV of P 0,472 0,554 0,389 0,586 0.607 (0.112) 0.792 (0.0148) 0,045 -2,287 0,861 0,833 0,833
SA of TA of WSSGdir 0,399 0,548 0,287 0,568 -380.58 (626.95) 259.467 (317.78) 0,054 -2,184 0,889 1,000 0,833

Figure 6: Colocation of elevated OSI and elevated coefficient of variation of pressure Contour plots of colocation of elevated OSI and elevated
coefficient of variation of pressure for stable and unstable aneurysms. Colocation areas are shown in yellow, while area without colocation are
shown in purple.

In this study, our recent results using aFlow showed
that the maximum IAs wall motion depicted by P90%UN

values were significantly higher in the growing IAs in
comparison to the stable IAs. This is concordant to prior
reports suggesting that growing and ruptured aneurysms
were subject to higher pulsatile motion [31, 32]. Neu-
rosurgical assessment confirmed that the IAs rupture
points are the sites of pulsating blebs [31] and also
match the location of the observed wall motion abnor-
mality during preoperative analysis [32]. High pulsatile
motion of the wall of intracranial aneurysms could be
due to several factors, such as its complex geometry and
its interactions with the blood flow [68].

Indeed, abnormal flow patterns such as turbulent
flows are associated with high risk aneurysms [56, 69,
70]. Moreover, flow related metrics such as oscillatory
shear index or wall shear stress obtained via computa-
tional fluid dynamics have been correlated with risks of
rupture and growth [71]. These flow related abnormal-
ities may result in high motion of the aneurysm wall.
Therefore it is plausible that capturing high arterial wall
motion could be an indicator of the presence of under-
lying flow related abnormalities, and that useful diag-
nostic metrics of this motion can be obtained through
aFlow without the need for complicated CFD analysis.

Another important finding in our results is that σUN

and IQRUN dispersion measures were also significantly
higher in growing aneurysms in comparison to the sta-
ble aneurysms (Table 4), suggesting that growing IAs
have higher heterogeneity of wall motion with areas of
high and low motion resulting in wide dispersion met-
rics. The causes of these dyskinetic movements may
have multiple origins, such as specific blood flow pat-
terns or inhomogneous mechanical properties of the
aneurysm wall, previously proven in the literature to
be related to the risk of rupture. The association be-
tween unusual hemodynamics, increased risk of rup-
ture [72, 73] and blebs formation [74, 75] has been
shown. These abnormal flow patterns are character-
ized by large and concentrated inflow jets, complex and
oscillatory flow patterns, and wall shear stress distri-
butions with focal regions of high shear and large re-
gions of low shear stress, which likely result in inho-
mogeneous aneurysm wall motion. From the perspec-
tive of tissue mechanical characterization, analysis of
wall thickness and other parameters such as yield stress
and strain in aortic aneurysms showed that different re-
gions of the aneurysm have different mechanical prop-
erties [76]. In cerebral aneurysms, rupture seems to be
caused by localized degradation and weakening of the
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wall [77]. Indentation tests on an intracranial aneurysms
sample also found that the ruptures occured in a re-
stricted area of increased elastic capacity and that un-
ruptured areas had increased stiffness [78]. While to our
knowledge no direct causal link has been demonstrated
between variation in mechanical properties and IAs wall
deformation, it can be reasonably assumed that regions
of lower stiffness are subject to higher deformation.
These localized areas of higher or lower wall stiffness
are likely causing the inhomogeneous wall motion. The
complementary CFD analyses performed on a subset of
stable and growing aneurysms were in line with our as-
sumptions. The correlation between hemodynamic pa-
rameters and wall motion parameters seemed to con-
firm our hypothesis that large changes in WSS direc-
tion would lead to large deformations. Furthermore, the
best hemodynamic discriminator of stability was spa-
tial variance, which supported the observations made in
this study and in prior reports that growing aneurysms
have more heterogeneous wall motions. Finally, the re-
sults showed that wall motion parameters are equiva-
lent or better predictors than hemodynamic parameters
for the assessment of aneurysm stability, which was a
very encouraging result that allows to consider aFlow
as a potential substitute for CFD analyses, although the
number of samples is insufficient to draw significant
conclusions. Our study has several limitations. The
retrospective nature introduces unknown bias. Despite
our best efforts to collect prospective data for nearly 5
years, the sample size remains small. This is an inherent
limitation of any study of this type where the required
outcome (i.e. aneurysm growth) has relatively low in-
cidence. Moreover, the majority of growing aneurysms
were likely to get treated and were not enrolled in this
type of wait and watch practice. Unlike our previous
study [38], no significant differences were observed be-
tween the two frequency bands in determining instabil-
ity. In the current study, displacement metrices from
both frequency bands were significantly correlated with
growth (Table 4). This is probably due to the smaller
number of imaging phases in the current dataset. We
anticipate that increasing the number of cardiac phases
and improvement in temporal resolution can probably
unmask the potential added value of higher harmonics.
The differences between information obtained from low
and high frequency bands require further investigation.

Although we showed that other clinical and demo-
graphic data were not contributing to growth prediction,
this should be interpreted in the context of selection bias
in matching the control cohort. After all, patients in the
control cohort were matched based on aneurysm size
and location, both of which have been considered sig-

nificant risk factors for IAs. Another limitation is re-
lated to potential differences in aneurysm wall motion
depending on location and geometry of the aneurysms.
We did however normalize the values based on parent
artery for each aneurysm to calculate normalized values
and mitigate heterogeneity. Also the analysis was pair-
wise, i.e. MCA aneurysm displacement metrices were
compared against another MCA aneurysm in the con-
trol group to mitigate differences due to IAs locations.

Finally, the aFlow algorithm can suffer from techni-
cal limitations related to noise and artifacts. Motion ar-
tifacts can occur if a high amplification factor is used or
if the unamplified motion is initially too large [38, 53].
However, amplification parameters were calibrated with
phantoms and in vivo testing [38] to mitigate this limi-
tation.

5. Conclusion

In this study, we used the aFlow algorithm to amplify
the subtle motions of the cerebrovasculature, to test the
ability of aFlow to differentiate stable from unstable
IAs. The wall motion of IAs were assessed in patients
with growing aneurysms and compared to those with
stable aneurysms. A CFD analysis was also performed
on a subset of stable and growing aneurysms. Higher
aneurysm wall motion and higher variability of defor-
mation was shown in the growing aneurysms compared
to the stable aneurysms.These differences are possibly
due to inhomogeneities of the mechanical characteris-
tics of the vessel walls or to underlying hemodynamics,
which were correlated with aneurysms instability and
risk of rupture in previous studies. CFD analysis results
confirmed these observations.

We have demonstrated here that the measurement
and amplification of the aneurysm wall motion achieved
with aFlow has the potential to differentiate stable from
growing aneurysms. These results are encouraging and,
with further validation, we believe that this technique
could be a valuable tool for the assessment of aneurysm
stability and potentially act as a substitute for in depth
computational fluid dynamic analysis.
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