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ABSTRACT 
 
Background: As highlighted by the COVID-19 pandemic, researchers are eager to make use of 
a wide variety of data sources, both government-sponsored and alternative, to characterize the 
epidemiology of infectious diseases. To date, few studies have investigated the strengths and 
limitations of sources currently being used for such research. These are critical for policy 
makers to understand when interpreting study findings.  
 
Methods: To fill this gap in the literature, we compared infectious disease reporting for three 
diseases (measles, mumps, and varicella) across four different data sources: Optum (health 
insurance billing claims data), HealthMap (online news surveillance data), Morbidity and 
Mortality Weekly Reports (official government reports), and National Notifiable Disease 
Surveillance System (government case surveillance data). We reported the yearly number of 
national- and state-level disease-specific case counts and disease clusters according to each of 
our sources during a five-year study period (2013–2017). 
 
Findings: Our study demonstrated drastic differences in reported infectious disease incidence 
across data sources. When compared against the other three sources of interest, Optum data 
showed substantially higher, implausible standardized case counts for all three diseases. 
Although there was some concordance in identified state-level case counts and disease 
clusters, all four sources identified variations in state-level reporting.  
 
Interpretation: Researchers should consider data source limitations when attempting to 
characterize the epidemiology of infectious diseases. Some data sources, such as billing claims 
data, may be unsuitable for epidemiological research within the infectious disease context. 
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INTRODUCTION 
 
The COVID-19 pandemic has exposed foundational gaps in government-sponsored public 
health surveillance across the United States (US) (1). Most notably, for the first year of the 
pandemic, the Centers for Disease Control and Prevention (CDC)—which has historically been 
responsible for reporting population-level situational statistics (e.g., cases, hospitalizations, and 
deaths over time during infectious disease outbreaks)—did not efficiently report COVID-19-
related statistics. This was due, in part, to lack of prioritization and underinvestment in local 
public health surveillance systems (2). News media organizations such as The Atlantic’s COVID 
Tracking Project partially filled this gap (3), highlighting the critical role that alternative data 
sources can play during public health emergencies. Situational statistics are also useful more 
broadly in infectious disease epidemiology research. 
 
Gaps in government-sponsored public health surveillance have long preceded the pandemic, as 
has the practice of leveraging alternative data sources. For infectious disease research 
specifically, case count data obtained from news coverage of outbreaks led to studies that 
examined the 2014–2015 Disneyland measles outbreak (4) and the 2016 Arkansas mumps 
outbreak (5), as well as a broad range of international studies, including Zika (6,7) and dengue 
(8) in Latin America, H7N9 in China (9), and Ebola in West Africa (10), among others. News 
media data have repeatedly demonstrated usefulness in aggregating case counts, and in each 
of the aforementioned instances, were implemented to augment otherwise insufficient data from 
government-sponsored agencies. 
 
In high-income settings like the US, insufficiency of government-sponsored public health data is 
often characterized by delays in reporting (11). Although the data may exist and are frequently 
treated as “ground truth” statistics, they are reported at a pace that disallows real-time 
evaluation of emergent crises. For example, even nationally notifiable infectious diseases are 
only reported once a week by the CDC’s National Notifiable Diseases Surveillance System 
(NNDSS) (12)—a pace that is too infrequent for real-time monitoring and mitigation of highly 
contagious infectious disease outbreaks. Moreover, NNDSS data—unlike news media data—
are only reported at the state-level, which is an inadequate geographic resolution in the event of 
localized (i.e., county- or zip-level) outbreaks. The CDC also prepares Morbidity and Mortality 
Weekly Reports (MMWR), which include detailed government reports on notable infectious 
disease outbreaks (13). However, these reports are challenging to rely on for emergent crises, 
as there are no clear inclusion criteria for a MMWR reportable outbreak, inconsistencies in the 
reported level of geographic resolution, and they are often published well after the outbreak. 
 
Beyond news media data, insurance billing claims data are also a potential alternative data 
source for characterizing infectious disease epidemiology in the US. These data experience  
more considerable delays in reporting, with data released after months or more (14,15). 
However, unlike the population-level situational statistics that are obtainable from news media 
data and government-sponsored public health surveillance systems, insurance claims provide 
patient-level data. Historically, these patient-level data have enabled important advances in 
monitoring chronic illness in both individuals and populations, but their utility within the context 
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of acute infectious disease surveillance remains largely untested. Given recent interest in using 
insurance claims data to study COVID-19 (14), validating the quality of these data for other 
infectious diseases—those that pre-date the pandemic—is urgently needed. 
 
In this retrospective study, we evaluate case count data for the years 2013 through 2017 from 
the news media platform HealthMap and the Optum insurance claims database against two 
government-sponsored data sources (NNDSS and MMWR) for three infectious diseases: 
measles, mumps, and varicella (chickenpox). Because these three diseases are nationally 
notifiable, healthcare providers are obligated to report cases of them to state health agencies 
and state health agencies are obligated to report them to the CDC—thus ensuring a high 
degree of completeness for government-sponsored data. 
 
METHODS 
 
We compared infectious disease case counts for each disease across all four sources during 
the period 2013–2017. Our main outcomes of interest were yearly counts of cases and 
Micropolitan and Metropolitan Statistical Area (MSAs) clusters at both the national and state 
level. Clusters are defined as a group of cases interrelated according to both time and 
geography.  
 
Data sources 
 
Health insurance claims data. Optum Clinformatics® Data Mart Database is a de-identified 
database derived from a large claims data warehouse(15). The claims submitted have been 
adjudicated to the appropriate enrollee, adjusted, and de-identified prior to inclusion in the 
database. Claims are subject to adjustment after initial adjudication due to delays in reporting 
and additional visit information. 
 
The database includes approximately 15–20 million annual covered enrollees for a total of 
roughly 83 million unique enrollees from 2006–2018. During the 2013–2017 period of our study, 
there were approximately 39 million unique enrollees in commercial and Medicare plans. The 
Optum Clinformatics® Data Mart contains enrollee-level information on demographics (age and 
documented sex) and geography at the ZIP code level. Individual enrollee medical claims 
include data on the date of service, as well as associated diagnoses, procedures, laboratory 
tests, prescriptions, and providers.  
 
Using a set of International Classification of Diseases (ICD-9 and ICD-10) codes, we identified 
enrollees with diagnoses for measles, mumps, and varicella (See Supplement Table 1 for ICD 
codes). Given the nature of these infectious diseases, we assumed that enrollees could only 
have each disease once during the five-year period. We identified service dates and ZIP codes 
associated with the enrollee’s first diagnosis.  
 
US Department of Housing and Urban Development (HUD) United States Postal Service 
CrossWalk files were used to map patient ZIP codes to the Core-Based Statistical Areas 
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(CBSAs) for MSAs as defined by the Office of Management and Budget (OMB) in February of 
2013 (16). The Optum Clinformatics® Data Mart protects against re-identification by associating 
enrollee with multiple different ZIP codes if they live in a ZIP code with a small number of 
people. In this case, we used the first identified ZIP code-MSA pairing. Further details on 
cleaning and processing data from the Optum Clinformatics® Data Mart are provided in the 
Appendix.  
 
Enrollees without CBSA and state-level information were not included in the cluster and state-
level portion of the analysis. However, enrollees without this granular location information were 
included in overall national case counts. 
 
Online news surveillance data. HealthMap surveillance data aggregates online informal news 
sources for disease outbreak monitoring and public health surveillance. Since September of 
2006, HealthMap has offered free access to their automated database, and many national and 
international organizations have used these data for surveillance activities (17). For each 
HealthMap alert (e.g., news article), the database contains the disease of interest, article date, 
associated latitude and longitude coordinates of the location (which can be used to assign MSA 
or state), number of confirmed cases, and number of confirmed deaths.  
 
We used QGIS to conduct spatial joins between the latitude and longitude coordinates 
associated with each HealthMap alert to MSAs and states (18). All HealthMap alerts without 
granular location information (e.g., only at the state-level or country-level) were removed from 
the analysis.  
 
Many HealthMap alerts are duplicate entries of the same disease cluster. To avoid 
overestimating the number of cases reported from this source, we identified clusters within this 
database according to time (serial intervals) and spatial (MSA) constraints.  The start and end of 
an MSA-level cluster was determined by two consecutive serial intervals, the time between 
successive cases in transmission, of zero new cases. We assumed the total number of cases 
associated with each MSA-level cluster was the highest number of confirmed cases reported 
among all associated HealthMap alerts.  
 
Official government reports. MMWR contain scientific records of public health information and 
recommendations (13). For major disease outbreaks, the CDC will publish a conclusive MMWR, 
describing key information such as the date of identification, locations affected, and total 
number of cases. We manually reviewed all MMWR that related to measles, mumps, and 
varicella and extracted cluster identification dates, confirmed case counts, and corresponding 
MSA locations to allow comparison against the other data sources considered in our analysis. 
The Appendix contains detailed information on all MMWR. 
 
Government case surveillance data. The CDC conducts mandatory disease reporting and 
surveillance for our three diseases of interest. We used data from NNDSS, which provides 
weekly tables of disease counts (12) The data contain the number of cases reported during the 
current week, as well as the number of cumulative cases reported over a given year. If there is a 
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delay in reporting, the case will only appear as a part of the cumulative count. NNDSS only 
provides case counts at the state-level; a more granular geographic resolution is unavailable for 
public use.  
 
Analyses  
 
Standardized national yearly case counts. For each disease, we reported source-specific 
national yearly case counts standardized to 100,000 persons. Optum data was standardized to 
the total number of eligible Optum enrollees during the years 2013–2017. Data from NNDSS, 
HealthMap, and MMWR were standardized to the US population as per census bureau national 
population estimates (19). While Optum and MMWR are not meant to capture case counts in 
ways that are nationally representative, values are standardized to this population for 
comparability across data sources.  
 
National cumulative case counts. For each disease and each data source, we reported 
cumulative incidence of cases over the entire study period. Due to Optum data privacy 
requirements, we display the cumulative case count once the national case-counts are at least 
16 cases for this data source.  
 
State-level cases. For each disease, we reported yearly state-level case counts for Optum, 
NNDSS, HealthMap, and MMWR. State information was ascertained from each data source. In 
Optum, we translated patient ZIP code information to state-level information using the 
pyzipcode python module (20). We used available NNDSS state-level information directly. 
Confirmed cases from each HealthMap MSA-level cluster were allocated to corresponding 
states. In the case of multi-state MSAs, we allocated cases to states according to the relative 
proportion of HealthMap alert-associated states within the cluster. Finally, based on the 
identified MSA location from the MMWR, we allocated cases to each state. As per Optum 
privacy constraints, we do not report any state-level cases counts smaller than 16 cases.  
 
State-level clusters. For each disease, we reported the yearly number of MSA-level clusters in a 
given state according to Optum, HealthMap, and MMWR. The start and end of an MSA-level 
cluster was determined by two consecutive serial intervals of zero new (i.e., incident) cases. 
Serial interval periods differ based on the disease of interest: measles (12 days), mumps (18 
days), and varicella (14 days) (21). We report MSA-level clusters with at least 16 cases due to 
Optum privacy constraints and then comparability across all data sources. Further details 
regarding cluster identification are provided in the Appendix. Because NNDSS does not provide 
granular geographical data beyond the state-level, we did not use this source to identify MSA-
level clusters.  
 
In the event of multi-state MSAs, we assigned the MSA-level cluster to a single state for each of 
the sources. In Optum, we assigned the MSA-level cluster according to the most frequent 
patient-level state. In HealthMap, we assigned the MSA-level cluster to the most commonly 
reported state among the associated HealthMap alerts. Finally, for MMWR, we assigned the 
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MSA-level cluster to states by extracting the state from the available text information, as further 
specified in the Appendix.  
 
RESULTS  
 
National standardized incidence for all three diseases is substantially higher for Optum data in 
comparison to other sources (Figure 1) and implausibly large in magnitude. Case counts from 
MMWR are the lowest, although this is expected as MMWR are only generated for key clusters 
across the US. While HealthMap reports slightly higher case counts in comparison to NNDSS 
for measles and mumps, there were fewer cases reported in varicella, suggesting that varicella 
is less “newsworthy.” Unstandardized yearly case counts are provided in Supplement Figures 
2–4. 

 
Figure 1. Standardized yearly national case counts  
Note: MMWR and Optum are not designed to capture the entire US population; values are standardized to this 
population for comparability across data sources. 
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Examining state-level geographic trends, Ohio had the highest number of measles cases during 
the study period according to HealthMap and NNDSS (Figure 2). In comparison, Optum 
reported the highest number of cases in New York and New Jersey. California had the highest 
case counts according to MMWR. All states with MMWR were also captured as having measles 
cases in both HealthMap and NNDSS. 
 
For mumps, there were few MMWR on outbreaks during the study period (Figure 3). Of the 
states with clusters identified by MMWR, all other sources reported cases for these states as 
well. There was a high concentration of mumps cases in the Midwestern region (Iowa, Illinois, 
Missouri, Indiana, and Ohio) according to HealthMap, yet this concentration was not reflected as
clearly in NNDSS and Optum data. NNDSS reported a substantial number of mumps cases in 
Arkansas, yet there was no MMWR on these cases.  
 
Nearly all states reported varicella cases in the Optum data (Figure 4). According to NNDSS, 
Texas and Florida reported the highest numbers of varicella cases, which was also reflected in 
the Optum data, as these states also had higher numbers during the study period. Very few 
varicella cases were reported in HealthMap and MMWR.  
 

 
Figure 2. State-level measles cases (2013–2017) 
Note: Optum data are presented for states with at least 16 cases during the study period. 
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Figure 3. State-level mumps cases (2013–2017) 
Note: Optum data are presented for states with at least 16 cases during the study period.  
 

Figure 4. State-level varicella cases (2013–2017) 
Note: Optum data are presented for states with at least 16 cases during the study period.  
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Figure 5. Cumulative incidence during study period  
 
Cumulative incidence of measles and mumps cases over the study period follows similar 
general patterns in HealthMap and NNDSS. Disease clusters are evident as case counts rise 
rapidly and then are stagnant. In comparison, in the Optum data, measles and mumps case 
counts rose constantly over time. Incidence of varicella cases were constant over time in all 
data sources.  
 
DISCUSSION 
 
To our knowledge, this is the first study to examine the concordance of infectious disease case 
counts across multiple disparate sources, including news media, insurance claims, and 
government-sponsored data. We found wide variation in the number of reported cases for 
measles, mumps, and varicella across these data sources, with implausibly high volumes of 
standardized cases reported by Optum that far exceed the other sources considered. Because 
these three highly infectious diseases are nationally notifiable and thus must be reported both to 
state health agencies and to the CDC, it is highly unlikely that Optum would capture cases that 
were not reported by NNDSS.  
 
Overcounting may be due to the coding of likely cases, as perceived by providers, rather than 
laboratory confirmed diagnoses. However, laboratory results in claims data are typically 
incomplete as many test results are not recorded (22); thus, analyses that include only 
laboratory confirms cases produce severe undercounts (as presented in the Appendix.)  
 
Notably, evidence of over-billing for conditions like measles and mumps may contribute to the 
rise in medical expenditures and patient healthcare spending. Using Optum data on reported 
total paid charges, we estimated wasted expenditures from suspected over-billing of measles 
and mumps cases to be roughly 395 thousand dollars for the five-year period among Optum 
enrollees alone. While the use of insurance claims data to characterize infectious disease 
epidemiology might appear appealing due to the availability of additional individual-level 
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information, these analyses may lack credibility given the erroneous coding issues we identified 
here.  
 
While there are well-known gaps in government-sponsored data sources, NNDSS compared 
favorably to other sources, capturing a larger scope of the mumps outbreak in 2016-17 as well 
as more varicella than HealthMap or MMWR. We also saw that HealthMap may produce similar 
case counts to NNDSS in non-outbreak years for measles and mumps. This is advantageous as 
HealthMap does not have the same delays in reporting that characterize NNDSS and is also 
available at a more granular geographic resolution. However, HealthMap is not likely to be a 
reliable source for case counts of less “newsworthy” diseases like varicella. 
 
Before using a particular data source to characterize the epidemiology of a given infectious 
disease, researchers should consider the underlying process that led to the creation of the data 
and how these processes may impact reliability. Some data sources, such as health insurance 
billing claims, may not be suitable for research questions that are contingent on reliable 
reporting of situational statistics—including those that pertain to the epidemiological properties 
of COVID-19 and other infectious diseases. 
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