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Abstract 

Predictive analytics tools variably take into account data from the electronic medical record, lab tests, 

nursing charted vital signs and continuous cardiorespiratory monitoring data to deliver an 

instantaneous score that indicates patient risk or instability. Few, if any, of these tools reflect the risk 

to a patient accumulated over the course of an entire hospital stay. This approach fails to best utilize 

all of the collated data regarding the risk or instability sustained by the patient, and hence fails to fully 

characterize this to optimize the ability of treating clinicians to maximize the chances of a favorable 

outcome. We have built on our instantaneous CoMET predictive analytics score to generate the 

cumulative CoMET score (cCOMET), which sums all of the instantaneous CoMET scores throughout a 

hospital admission relative to a baseline expected risk unique to that patient. We have shown that 

higher cCOMET scores predict mortality, but not length of stay, and that higher baseline CoMET scores 

predict higher cCoMET scores at discharge/death. cCoMET scores were higher in males in our cohort, 

and added information to the final CoMET when it came to the prediction of death. In summary, if one 

is going to go to the trouble and expense of performing repeated measures when performing 

predictive analytics calculations, we have shown that including all of these measures in a cumulative 

way adds data to instantaneous predictive analytics, and could improve the ability of clinicians to 

predict deterioration, and improve patient outcomes in so doing. 

 

Introduction 

Early detection of clinical deterioration in hospitalized patients allowing early medical intervention to 

mitigate or prevent this has benefits in terms of morbidity, mortality and healthcare economy.1-4 

Utilizing the 'HeRO' score based on heart rate characteristics, our group has demonstrated, in the setting 

of a randomized controlled trial, that using only data from the ECG, an instantaneous risk score can be 

calculated that predicts the future onset of sepsis in very low birthweight infants, and allows clinicians to 

intervene earlier, decreasing mortality in this most vulnerable group of patients.5  The score is 

predicated on the finding of a signature of illness6 in the continuous cardiorespiratory monitoring data 

that can be detected using mathematical time-series analyses and mapped to the risk of an event in the 

next time window. 

The ethos underlying the HeRO score was translated to the discovery of signatures of illness in adult7-9 

and pediatric ICU10 patients, and adult ward patients.8  In these settings, risk is displayed as the 'CoMET' 

('Continuous Monitoring of Event Trajectories') score. In addition to parameters extracted from 

continuous cardiorespiratory monitoring data, the score takes account of vital signs and lab results from 

the electronic health record (EHR). 

The outputs that generate CoMET, which are the products of logistic regression, are instantaneous 

metrics of 'cardiorespiratory' and 'cardiovascular instability', and the output display charts the trajectory 

of this instability over the prior 3 hours to allow identification of patients with a deteriorating 

trajectory.11-14  

A potential shortcoming of this however is that, while excellent at reflecting patient trajectory now, i.e. 

based on the prior 3 hours of data, the CoMET score is unable to reflect the cumulative burden of illness 

sustained by the patient throughout their hospital stay.  As such, the score may fail to reflect all that we 
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have learned about a given patient and their illness to date. We hypothesize that it would be better to 

develop a predictive analytics tool that is reflective of all accrued data since the patient's admission, to 

better refine our ability to predict outcomes and forewarn of deterioration. 

Herein, we investigate the value of the novel cumulative CoMET ('cCoMET') score, which represents a 

continuous summation of the CoMET scores throughout a patient's hospital stay, which we hypothesize 

will reflect the accumulating burden of physiological instability, and in doing so will be related to 

morbidity and mortality. This particular metric is akin to the HbA1C measured in diabetes, and is a 'test 

with memory', so that regardless of whether there is little or much instantaneous cardiorespiratory 

instability, the events that have gone before will still be reflected in the output predictive metric. We 

have previously explored this concept using the cumulative HeRO score in very low birth weight infants, 

demonstrating that a high cumulative HeRO score is significantly associated with in-hospital mortality.6 

We hypothesize that the cCOMET will have the ability to summarize the entire hospital stay to date, and 

thereby give a more accurate and complete idea of the physiological insult suffered by a patient, which 

should assist in accurately predicting their trajectory and ultimately their outcome, and assist clinicians 

to direct their efforts to the most vulnerable and fragile patients under their care. 

Methods 

The Study Population 

We studied adult (age =/> 18 years) patients consecutively admitted to acute care beds for whom 

continuous ECG data was available at the University of Virginia Medical Center. The 71 monitored beds 

are arranged in 3 units and are under the care of a variety of hospital services, principally Cardiovascular 

Medicine and Cardiothoracic Surgery. An institutional electronic data warehouse archived the electronic 

medical record (EMR) data, including admission, discharge, and transfer information. Patients with a 

length of stay of <72 hours were excluded from the analysis due to a lack of accumulated data to 

facilitate meaningful cumulative predictive analytics. 

EMR vital signs and laboratory results 

At 15-minute increments, we recorded the most recent charted vital signs measurements and 

laboratory tests as described elsewhere.15 We excluded observations occurring after "Do Not 

Resuscitate" (DNR) or "Do Not Intubate" (DNI) orders or after transition to comfort measures-only 

(CMO). 

Cardiorespiratory dynamics measured from continuous ECG monitoring 

Heart rate dynamics 

We processed the continuous ECG with multiple QRS detection algorithms on the ECG lead with the 
highest signal to noise ratio. The three resulting heartbeat time series were combined to determine the 
probability density of each detected heartbeat. Low confidence beats were excluded from the analysis. 
We made observations every 15 minutes of the preceding 30 minutes and calculated the mean interbeat 
interval, the standard deviation or HR variability, and nonlinear dynamics of HR.16-18  

ECG derived respiratory rate and respiratory sinus arrhythmia 
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We estimated the respiratory rate (RR) from both the cyclic variation in ECG waveform characteristics 
that result from respiratory movements and, when present, from the respiratory sinus arrhythmia peak 
in the frequency spectrum of heartbeat intervals. We analyzed 60-second interbeat interval time series 
windows containing 20 or more heartbeats. Windows overlapped by 75%. Details of how calculations 
were performed can be found in our previous publications.19-22 

Calculating the CoMET score 

Details regarding how the CoMET score is calculated are exhaustively given elsewhere.8, 9, 11, 13, 15 
Comprehensive clinical data that is incorporated into the CoMET score are shown in Table 1. 
Comprehensive clinical data that is incorporated into the CoMET score are shown in Table 1. The CoMET 
score is the fold-increase in probability of an event occurring in the next 8 hours, with a score of 1 
meaning that the risk of the event occurring is the average risk for that particular patient in that 
particular unit. CoMET scores are calculated every 15 minutes to give a continuously updated estimation 
of the risk of imminent events. The event was emergent transfer to the ICU. The CoMET display as 
presented to clinicians is shown in Fig. 1 for 2 patients – a stable patient, and an unstable deteriorating 
patient. 
 

Calculating cCoMET 

Different to the CoMET score described above, which is an instantaneous estimate of risk of an 

imminent event, the cCoMET was developed to be a dynamic risk marker with memory. Calculation of 

the cCoMET was performed by comparing the instantaneous CoMET score to a dynamic baseline 

predicted risk, individualized for that patient. The baseline risk model used in the current study 

incorporated age, time since admission (minutes), admitting service, race, and sex. If the instantaneous 

CoMET score was below the baseline risk, the patient received a negative contribution to their cCoMET 

proportionate to the amount the CoMET was below the baseline predicted risk. If the patient's CoMET 

scores remained below the baseline predicted risk, then their cCoMET would become progressively 

more negative over time. Conversely, if the instantaneous CoMET score was above the baseline 

predicted risk, the patient received a positive contribution to their cCoMET proportionate to the amount 

the CoMET was above the baseline predicted risk. If the patient remained above the baseline predicted 

risk, they would develop a progressively more positive cCoMET. Therefore, the final recorded cCoMET at 

the end of a patients stay reflects the aggregate degree of risk endured by the patient over that 

particular stay compared to the baseline model, and gives an idea of whether this was a 'low risk 

hospitalization' or a 'high risk hospitalization'. 

Results 

We retrospectively calculated the cCoMET scores of 8105 patients admitted to the acute care floor of 

the University of Virginia Medical Center from October 11, 2013 to September 1, 2015. After removal of 

patients whose stay was <72 hours, 5363 patients remained for analysis. The mean age of all patients 

was 64.6 years (range 18-90 yrs), while the mean length of stay was 8.5 days (range 3-122), with an 

average of 2.1 ICU days (range 0-104). 116 patients died (2.2%). When compared to the surviving 

patients, those patients who died were older (67.6 yrs vs 64.5), had longer lengths of stay (17.2 days vs 

8.3), and averaged more days in the ICU (8.5 days vs 2.0) prior to their death. The vast majority of 

patients were classed as white (4362, 81%) on the electronic medical record, with significantly fewer 
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being classed as black (897, 17%) or 'other' (104, 2%). Of the patients who died, 86 were white (74%), 27 

were black (23%), and 3 were classed as 'other' (3%). 

cCoMET's relationship to length of stay 

Since cCoMET is cumulative over time, we examined whether there was a marked relationship between 

cCOMET and length of stay. If cCoMET increased monotically with length of stay, then it would not fit 

our purpose as an indicator of illness burden. However, Fig. 2 demonstrates there is no large 

dependence of cCoMET on length of stay. While the final cCoMET score was higher in those patients in 

the quintile of longest length of stay, and was progressively lower with each shorter length of stay 

quintile, these differences were small. LOS quintiles 1 thru 5 had median cCoMET scores of -0.44, -0.18, -

0.12, -0.12 and 0 respectively, (p=<0.001, Kruskal-Wallis test). 

Distinct patterns of cCoMET evolution 

Exemplar patterns of cCoMET evolution are shown in Fig 3. Panel a demonstrates the data from a 

patient who survived to discharge. Their CoMET score (green) was lower than the baseline model (blue) 

for the majority of their stay, and accordingly the cCoMET (red) became a progressively more negative 

value as time passed. This patient's final cCoMET score was more negative than -5 on the day of 

discharge, suggesting that this was a 'low risk hospitalization'. Panel b demonstrates another pattern in 

cCoMET score evolution – that of a patient who did not survive their hospitalization. In this patient, the 

CoMET score was persistently above the baseline model, and accordingly the cCoMET score became 

progressively more positive, until ultimately they died. At the point of death, the cCoMET was above 20.  

Increasing cCoMET score was associated with mortality  

Higher cCoMET scores were significantly associated with mortality. Fig. 4 demonstrates a rightward tail 

to the histogram in patients who died during this hospitalization, with a median cCOMET of 2.49 in 

patients who died versus -0.25 in those who survived (p<0.0001, Kolmogorov-Smirnov test). 

Fig. 5 demonstrates that in both patients who died (green circles) and those who survived (red circles), 

higher baseline CoMET scores were positively associated with higher final cCoMETs. Note that here the 

'baseline CoMET' score is the initial CoMET score on admission minus the baseline risk estimate – 

negative values of this suggest a lower baseline risk compared to expected on admission, while positive 

values suggest a higher baseline risk compared to expected on admission. 

cCoMET adds information to the CoMET score when predicting mortality 

Fig. 6 shows the log odds of death as a function of a logistic regression model using baseline factors (left 

panel), the cCoMET (central panel), and the last CoMET score reflecting the final 30 minutes of data 

(right panel) – the relationship between death and any of these parameters is steepest for the last 

CoMET prior to death (p <0.001), and as such this is the strongest predictor, while cCoMET is less 

effective (yet still has a significant p-value: 0.03) and baseline CoMET is the least effective (non-

significant relationship: p = 0.10). One might speculate that the reason that last CoMET score 

outperforms cCoMET in this circumstance is that significant numbers of patients die from sudden and 

unpredictable illnesses that could not have been foreseen using a tool such as cCoMET. Such diagnoses 

include ventricular arrhythmia, aneurysmal rupture, intracranial hemorrhage, acute myocardial 

infarction, and pulmonary emboli. 
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Sex differences in cCoMET  

Fig. 7 is a histogram of final cCoMET by sex, demonstrating that males in the studied cohort are more 

likely to have higher (more positive) cCoMET scores, and hence to have high risk hospitalizations, than 

their female counterparts (median -0.16 vs -0.33, p<0.001 on Kolmogorov-Smirnov test).  

Discussion 

The development of risk prediction models to assist clinicians evaluate high vs low risk hospitalizations, 

and weigh this information to avoid potentially preventable deteriorations and attain optimal outcomes 

in patients, is a developing and rapidly expanding field.23 The CoMET model referred to in this paper was 

developed from 146 patient years of vital sign and ECG waveform time series, encompassing 9232 ICU 

admissions, and 1206 clinician chart review identified episodes of unplanned intubation, sepsis or 

hemorrhage.9 The multivariate models that were developed from this data demonstrated C-statistics of 

0.61-0.88 with respect to their ability to predict such events up to 24 hours prior to their occurrence, 

and give the clinician a dynamic mean fold-increase in the risk of that event occurring.  

In this new work, we have studied how to use the CoMET score to produce a new metric, the cumulative 

CoMET, or cCoMET, score, by comparing each individual 15-minute CoMET score with respect to a 

baseline risk model, and then summing the results throughout the patients stay. The baseline risk model 

here was simplistic, comprising age, time since admission, admitting service, race, and sex. The blue 

lines on Fig. 3 show that the baseline risk model varied relatively little with time, while every-15-minute 

CoMET scores varied more markedly. CoMET scores above the baseline risk model added to the cCoMET 

score, while instantaneous CoMET scores below the baseline risk model subtracted from the cCoMET 

score. Thus, unlike the instantaneous CoMET score, cCoMET is a historical record of risk during a 

patient's stay, and reflects not only on recent developments in the patients CoMET score compared to 

the baseline model, but on all CoMET scores since admission. One way to look at it is that the cCoMET 

reflects accruing risk or indeed damage, or lack thereof, occurring to a patient's health status during a 

given hospital admission. A very positive cCoMET score suggests that a lot of damage was accrued to a 

patient's health during a hospital admission, while a very negative cCoMET suggests that much less 

damage than expected occurred to a patient's health during a hospital admission. 

Our main findings are that cCoMET is crucially little affected by length of stay, and that higher (more 

positive) cCoMET scores portend a higher risk of dying in a given hospital admission. We have also found 

that a high baseline CoMET is related to an ultimately higher cCoMET in both patients who survived or 

died during the index hospital stay. Finally, cCoMET scores seems to be higher in males than females in 

our patient group. In performing this work, we have sought to extend the value of instantaneous risk 

scores, and to ensure that all valuable data accrued during a patient's hospital stay is brought to bear 

when assessing their ultimate risk. 

Relationship to the work of others 

The prediction of deterioration in hospitalized patients has traditionally utilized track-and-trigger 

systems, including the National Early Warning Score (NEWS) and others.24-33 These scoring systems have 

benefits including their relative ease of use and accessibility, yet suffer because they largely rely on vital 

signs and lab tests, which are variously intermittent, delayed, incorrect, unvalidated or indeed never 

taken.34-37 Few take account of crucial information contained within continuous cardiorespiratory 
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monitoring.  Potential benefits of the CoMET score are that it includes all of the above, and furthermore 

utilizes multiple models that have been trained on patients with specific causes of clinical deterioration 

identified by clinician review,9 and in doing so it is capable of learning the signatures preceding the 

development of specific clinical illnesses.8 However, the CoMET score is also an instantaneous score, 

based on vital signs, lab values and continuous cardiorespiratory monitoring parameters that are 

happening now.13 The novelty of the cCoMET score explored here is that it includes the 'now', but adds 

this to all of the predicted risk that has occurred from admission to now, to add vital information to 

current risk prediction. While one can argue that the instantaneous CoMET score (and the factors that it 

takes into account) has some degree of short term memory (i.e. lab values, vital signs and 

cardiorespiratory parameters do not vary with time at random, or stochastically, instead do bear some 

relation to the values that went before), it is not able to take account of all aspects of the risk since 

admission in as comprehensive a way that the cCoMET does. As such, the demonstrated relationships 

between cCoMET and mortality, baseline CoMET and gender are both novel and important, and 

emphasize the need for development of predictive analytics scores that incorporate 'memory', since, 

without this, important characteristics of the patient's condition may be overlooked, negatively 

impacting on the performance of predictive analytics tools. 

Limitations 

We omitted all patients with lengths of stay <72 hours, since it was felt that these patients did not have 

enough time to develop a meaningful cCoMET score, though this may have affected the data presented. 

The numbers of surviving patients was substantially more than the patients who died, limiting the 

analysis in this group, and limiting the statistical significance of the findings. 

 

1. Liu V, Kipnis P, Rizk NW and Escobar GJ. Adverse outcomes associated with delayed intensive 
care unit transfers in an integrated healthcare system. J Hosp Med. 2012;7:224-30. 
2. Mardini L, Lipes J and Jayaraman D. Adverse outcomes associated with delayed intensive care 
consultation in medical and surgical inpatients. J Crit Care. 2012;27:688-93. 
3. Young MP, Gooder VJ, McBride K, James B and Fisher ES. Inpatient transfers to the intensive 
care unit: delays are associated with increased mortality and morbidity. J Gen Intern Med. 2003;18:77-
83. 
4. Mokart D, Lambert J, Schnell D, Fouche L, Rabbat A, Kouatchet A, Lemiale V, Vincent F, Lengline 
E, Bruneel F, Pene F, Chevret S and Azoulay E. Delayed intensive care unit admission is associated with 
increased mortality in patients with cancer with acute respiratory failure. Leuk Lymphoma. 
2013;54:1724-9. 
5. Moorman JR, Carlo WA, Kattwinkel J, Schelonka RL, Porcelli PJ, Navarrete CT, Bancalari E, 
Aschner JL, Whit Walker M, Perez JA, Palmer C, Stukenborg GJ, Lake DE and Michael O'Shea T. Mortality 
reduction by heart rate characteristic monitoring in very low birth weight neonates: a randomized trial. J 
Pediatr. 2011;159:900-6 e1. 
6. Griffin MP, O'Shea TM, Bissonette EA, Harrell FE, Jr., Lake DE and Moorman JR. Abnormal heart 
rate characteristics are associated with neonatal mortality. Pediatr Res. 2004;55:782-8. 
7. Politano AD, Riccio LM, Lake DE, Rusin CG, Guin LE, Josef CS, Clark MT, Sawyer RG, Moorman JR, 
Calland JF and Predictive Monitoring in Patients with Trauma G. Predicting the need for urgent 
intubation in a surgical/trauma intensive care unit. Surgery. 2013;154:1110-6. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 5, 2022. ; https://doi.org/10.1101/2022.06.03.22275909doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.03.22275909


8. Blackwell JN, Keim-Malpass J, Clark MT, Kowalski RL, Najjar SN, Bourque JM, Lake DE and 
Moorman JR. Early Detection of In-Patient Deterioration: One Prediction Model Does Not Fit All. Crit 
Care Explor. 2020;2:e0116. 
9. Moss TJ, Lake DE, Calland JF, Enfield KB, Delos JB, Fairchild KD and Moorman JR. Signatures of 
Subacute Potentially Catastrophic Illness in the ICU: Model Development and Validation. Crit Care Med. 
2016;44:1639-48. 
10. Spaeder MC, Moorman JR, Tran CA, Keim-Malpass J, Zschaebitz JV, Lake DE and Clark MT. 
Predictive analytics in the pediatric intensive care unit for early identification of sepsis: capturing the 
context of age. Pediatr Res. 2019;86:655-661. 
11. Keim-Malpass J, Ratcliffe SJ, Moorman LP, Clark MT, Krahn KN, Monfredi OJ, Hamil S, 
Yousefvand G, Moorman JR and Bourque JM. Predictive Monitoring-Impact in Acute Care Cardiology 
Trial (PM-IMPACCT): Protocol for a Randomized Controlled Trial. JMIR Res Protoc. 2021;10:e29631. 
12. Moorman LP. Principles for Real-World Implementation of Bedside Predictive Analytics 
Monitoring. Appl Clin Inform. 2021;12:888-896. 
13. Ruminski CM, Clark MT, Lake DE, Kitzmiller RR, Keim-Malpass J, Robertson MP, Simons TR, 
Moorman JR and Calland JF. Impact of predictive analytics based on continuous cardiorespiratory 
monitoring in a surgical and trauma intensive care unit. J Clin Monit Comput. 2019;33:703-711. 
14. Keim-Malpass J and Moorman LP. Nursing and precision predictive analytics monitoring in the 
acute and intensive care setting: An emerging role for responding to COVID-19 and beyond. Int J Nurs 
Stud Adv. 2021;3:100019. 
15. Moss TJ, Clark MT, Calland JF, Enfield KB, Voss JD, Lake DE and Moorman JR. Cardiorespiratory 
dynamics measured from continuous ECG monitoring improves detection of deterioration in acute care 
patients: A retrospective cohort study. PLoS One. 2017;12:e0181448. 
16. Lake DE and Moorman JR. Accurate estimation of entropy in very short physiological time series: 
the problem of atrial fibrillation detection in implanted ventricular devices. Am J Physiol Heart Circ 
Physiol. 2011;300:H319-25. 
17. Moss TJ, Lake DE and Moorman JR. Local dynamics of heart rate: detection and prognostic 
implications. Physiol Meas. 2014;35:1929-42. 
18. Pena MA, Echeverria JC, Garcia MT and Gonzalez-Camarena R. Applying fractal analysis to short 
sets of heart rate variability data. Med Biol Eng Comput. 2009;47:709-17. 
19. Clark MT, Rusin CG, Hudson JL, Lee H, Delos JB, Guin LE, Vergales BD, Paget-Brown A, Kattwinkel 
J, Lake DE and Moorman JR. Breath-by-breath analysis of cardiorespiratory interaction for quantifying 
developmental maturity in premature infants. J Appl Physiol (1985). 2012;112:859-67. 
20. Moody GB and Mark RG. The impact of the MIT-BIH arrhythmia database. IEEE Eng Med Biol 
Mag. 2001;20:45-50. 
21. Nemati S, Malhotra A and Clifford GD. Data Fusion for Improved Respiration Rate Estimation. 
EURASIP J Adv Signal Process. 2010;2010:926305. 
22. Li Q, Mark RG and Clifford GD. Robust heart rate estimation from multiple asynchronous noisy 
sources using signal quality indices and a Kalman filter. Physiol Meas. 2008;29:15-32. 
23. Monfredi O, Keim-Malpass J and Moorman JR. Continuous cardiorespiratory monitoring is a 
dominant source of predictive signal in machine learning for risk stratification and clinical decision 
support(). Physiol Meas. 2021;42. 
24. Nannan Panday RS, Minderhoud TC, Alam N and Nanayakkara PWB. Prognostic value of early 
warning scores in the emergency department (ED) and acute medical unit (AMU): A narrative review. 
Eur J Intern Med. 2017;45:20-31. 
25. Smith ME, Chiovaro JC, O'Neil M, Kansagara D, Quinones AR, Freeman M, Motu'apuaka ML and 
Slatore CG. Early warning system scores for clinical deterioration in hospitalized patients: a systematic 
review. Ann Am Thorac Soc. 2014;11:1454-65. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 5, 2022. ; https://doi.org/10.1101/2022.06.03.22275909doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.03.22275909


26. Churpek MM, Wendlandt B, Zadravecz FJ, Adhikari R, Winslow C and Edelson DP. Association 
between intensive care unit transfer delay and hospital mortality: A multicenter investigation. J Hosp 
Med. 2016;11:757-762. 
27. Churpek MM, Yuen TC, Huber MT, Park SY, Hall JB and Edelson DP. Predicting cardiac arrest on 
the wards: a nested case-control study. Chest. 2012;141:1170-1176. 
28. Rothman MJ, Rothman SI and Beals Jt. Development and validation of a continuous measure of 
patient condition using the Electronic Medical Record. J Biomed Inform. 2013;46:837-48. 
29. Bittman J, Nijjar AP, Tam P and Khan N. Early Warning Scores to Predict Noncritical Events 
Overnight in Hospitalized Medical Patients: A Prospective Case Cohort Study. J Patient Saf. 
2020;16:e169-e173. 
30. Alam N, Hobbelink EL, van Tienhoven AJ, van de Ven PM, Jansma EP and Nanayakkara PW. The 
impact of the use of the Early Warning Score (EWS) on patient outcomes: a systematic review. 
Resuscitation. 2014;85:587-94. 
31. Bartkowiak B, Snyder AM, Benjamin A, Schneider A, Twu NM, Churpek MM, Roggin KK and 
Edelson DP. Validating the Electronic Cardiac Arrest Risk Triage (eCART) Score for Risk Stratification of 
Surgical Inpatients in the Postoperative Setting: Retrospective Cohort Study. Ann Surg. 2019;269:1059-
1063. 
32. Green M, Lander H, Snyder A, Hudson P, Churpek M and Edelson D. Comparison of the Between 
the Flags calling criteria to the MEWS, NEWS and the electronic Cardiac Arrest Risk Triage (eCART) score 
for the identification of deteriorating ward patients. Resuscitation. 2018;123:86-91. 
33. Rojas JC, Carey KA, Edelson DP, Venable LR, Howell MD and Churpek MM. Predicting Intensive 
Care Unit Readmission with Machine Learning Using Electronic Health Record Data. Ann Am Thorac Soc. 
2018;15:846-853. 
34. Grant S. Limitations of track and trigger systems and the National Early Warning Score. Part 1: 
areas of contention. Br J Nurs. 2018;27:624-631. 
35. Grant S and Crimmons K. Limitations of track and trigger systems and the National Early 
Warning Score. Part 2: sensitivity versus specificity. Br J Nurs. 2018;27:705-710. 
36. Grant S. Limitations of track and trigger systems and the National Early Warning Score. Part 3: 
cultural and behavioural factors. Br J Nurs. 2019;28:234-241. 
37. Gerry S, Bonnici T, Birks J, Kirtley S, Virdee PS, Watkinson PJ and Collins GS. Early warning scores 
for detecting deterioration in adult hospital patients: systematic review and critical appraisal of 
methodology. BMJ. 2020;369:m1501. 

 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 5, 2022. ; https://doi.org/10.1101/2022.06.03.22275909doi: medRxiv preprint 

https://doi.org/10.1101/2022.06.03.22275909


Table 1: Data that is incorporated into the CoMET score 

Data Category Examples  

Flowsheet vital signs Heart rate  

 Respiratory rate  

 O2 saturation  

 Temperature  

 Blood pressure  

 Glasgow Coma Scale  

Laboratory measurements Basic and complete metabolic 
panels 

 

 Complete blood counts with and 
without diff 

 

 Arterial blood gases  

 Troponin levels  

 Blood coagulation tests  

Continuous monitoring Average and standard deviation 
of vitals 

Heart rate 

  Respiratory rate 

  O2 saturation 

  Non-invasive blood 
pressure 

  Invasive blood pressure 

 ECG-derived parameters Respiratory rate 

  Standard deviation of resp 
rate 

 Cross-correlation between signals Heart rate and respiratory 
rate 

  Heart rate and O2 sats 

  Resp rate and O2 sats 

  Mean RR interval and ECG-
derived resp rate 

 Inter-heart beat intervals 
parameters 

Mean inter-beat interval 

  Standard deviation of RR 
intervals 

  Local dynamics score 

  Coefficient of sample 
entropy 

  Detrended fluctuation 
analysis 

  Probability of atrial 
fibrillation 
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Fig 1: the CoMET display as presented to treating teams. Panel a shows 48 hour data from a patient in 

room 89, whose instantaneous cardiovascular and respiratory risk scores are low. Panel a,i shows the 

current CoMET for this patient (bed number is displayed in the head of the CoMET), which is small, and 

pale, reflecting the fact that the instantaneous risk is low. It is plotted on a graph with ‘cardiovascular 

instability’ on the x-axis, and ‘respiratory instability’ on the y-axis. The numbers are the fold increase in 

risk of an event within the next 6-12 hours. A score of 1 means that the risk of an event is at the average 

risk for that unit, with higher numbers meaning higher risk. The tail of the CoMET is barely visible, 

suggesting that the patient has been at this level of risk for the prior 3 hours. The contours on the graph 

delineate the expected percentile of patients in each contour of the graph, with darker shades of gray 

indicating more frequently populated areas – this patient is in the darkest gray area, and as such is 

exhibiting expected levels of risk for that unit – ‘nothing out of the ordinary’. Panel a,ii shows the 

‘leaderboard’ – all of the patients on a given unit ordered from top to bottom based on their current 

CoMET score, highest to lowest. The 3-hour tail of the CoMET is also shown to demonstrate the degree 
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of recent stability or instability. Individual patients can be selected for a deeper dive by checking the box 

to the left of their bed number (the check next to the patient in bed 89 can be seen). This brings up the 

graph shown in panel a,iii, which is a 24-, 48- or 72-hour graph showing the progress of the patient’s 

CoMET scores over the defined period, with cardiovascular instability shown as the red line, and 

respiratory instability shown as the green line. Panel b reflects the data from a different patient in bed 

61, who appears much less stable. Their CoMET (b,i) is large and bright red, emphasizing the current 

high level of risk, mainly in respect of their risk of respiratory instability. The tail of the CoMET 

demonstrates that this instability has substantially progressed over the prior 3 hours, and that the 

patients CoMET now occupies a position on the graph which is rarely occupied (very pale contour), and 

ought to draw clinical attention to the patient if it has not done so already. The leaderboard in b,ii has 

this patient at the top (most unstable on the unit), along with the CoMET tail which is long and 

increasing, underscoring the increasing degree of risk and instability. Selecting this patient using the 

check box next to their bed number brings up the graph shown in panel b,iii, which demonstrates the 

evolution of CoMET over the prior 48 hours, showing recurrent and at times progressive respiratory 

instability in the face of relative stability of the cardiovascular risk. The instantaneous CoMET graph is 

deliberately selected at a time of peak respiratory instability (occurring at around 1 am on the day 

shown). 
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Figure 2: Relationship of cCoMET with length of stay. Dividing all patient up into quintiles based on their 

length of stay reveals that patients with higher lengths of stay have higher cCoMET scores (p<0.0001). 

Broken lines are median cCOMET scores in the different quintiles of lengths of stay. Inset uses a smaller 

x-axis to facilitate visualization of the differences between the groups. 
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Figure 3: examples of cCoMET score evolution in two example patients. a. 4-day evolution of cCoMET 

score in a patient who survived hospitalization to discharge. Baseline risk is shown in blue. Actual CoMET 

score through admission is shown in green. cCoMET is shown in red. Because the CoMET score is 

persistently below the baseline predicted risk throughout the admission, the cCoMET score becomes 

progressively more negative than zero throughout the admission, being around -5 on the day of 

discharge. b. 4-day evolution of cCoMET score in a patient who died during this hospitalization. Colors 

are the same as in panel a. The CoMET score is persistently above the baseline predicted risk, and so 

cCoMET becomes progressively more positive through the admission, being around 23 just before 

death. x-axis numbers are probabilities of an event occurring in the selected CoMET model. 
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Figure 4: The relationship between cCoMET and mortality. a. Box-and-whisker plots of cCoMET score 

based on whether the patient survived (red dots) or died (green dots) during the index hospitalization. 

Mean cCoMET in surviving patients was 1.19, while it was 10.41 in those who died. b. histogram 

depicting the relative frequency of individual cCoMET scores by whether the patient survived (red bars) 

or died (green bars). The median cCoMET in each group is depicted by the broken line, and was 

significantly higher in those who died (2.49 vs -0.25, p<0.0001) 
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Figure 5: The relationship between baseline CoMET (the first CoMET score adjusted for by the baseline 

risk) and cCOMET in patients who survived (red dots) and those who died (green dots) during the index 

hospitalization. In both groups, higher baseline CoMET scores were associated with higher cCoMET 

scores. 
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Figure 6: The log odds of death as a function of the outputs of logistic regression models using baseline 

factors only (left panel), the cCoMET score (central panel), and last CoMET score (right panel) – the 

relationship between death and any of these parameters is steepest for the last CoMET prior to death, 

and as such this is the strongest predictor, while cCoMET is less effective and baseline factors are the 

least effective. 
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Figure 7: Sex differences in cCoMET score. Histogram depicts cCoMET score based on sex, showing that 

males (blue bars) have higher cCoMET scores than females (red bars, p<0.0001). Broken lines are 

median cCoMETs in the two groups. 
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